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Machine learning in astrophysics

cf. review by Fluke & Jacobs 2020
e Machine learning: automated processes that learn by examples (training data)

Photometry (Kojima+20)
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Machine learning in astrophysics

We review the current state of data mining and machine learning in astronomy. Data
Mining can have a somewhat mixed connotation from the point of view of a researcher in
this field. If used correctly, it can be a powerful approach, holding the potential to fully
exploit Fheexponentiallyincreasing amount of avallabledata. promising great scientific
advance. However, if misused, it can be little more than the black box application of
complex computing algorithms that may give little physical insight, and provide ques-
tionable results. Here, we give an overview of the entire data mining process, from data
collection through to the interpretation of results. We cover common machine learning
algorithms, such as artificial neural networks and support vector machines, applications
from a broad range of astronomy, emphasizing those in which data mining techniques
directly contributed to improving science, and important current and future directions,
including probability density functions, parallel algorithms, Peta-Scale computing, and
the time domain. We conclude that, so long as one carefully selects an appropriate algo-
rithm and is guided by the astronomical problem at hand, data mining can be very much
the powerful tool, and not the questionable black box. Ball & Brunner (201 O)

Abstract:  In recemt years, machine learning (ML) methods have remarkably improved how
cosmologists can interpret data. The next decade will bring new opportunities for dalasdniven

cosmological discovery. but will also present new challenges for adopting ML methodologies and
understanding the results. ML could transform our field, but this transformation will require the

astronomy community to both foster and promote interdisciplinary research endeavors.
Ntampaka et al. (2020)



When is ML useful?

 High-speed processing of large amounts of
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observational/simulation data — Classification, e ..' b 5
search for rare objects, analysis of e.g., LSST, ... ...
SKA, etc. in the future, generate realistic images
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When is ML useful?

 High-speed processing of large amounts of V¥ Parameter estimation from
observational/simulation data — Classification, noiseless WL maps (Gupta+18)
search for rare objects, analysis of e.g., LSST, . . :' |
SKA, etc. in the future, generate realisticimages .,, « " % ¢, "
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e Capture complex structures/relationships — =" 309
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Non-Gaussianity in WL maps, halo-galaxy |
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When is ML useful?

 High-speed processing of large amounts of
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Machine learning methods

* Principal component analysis (PCA; ~1980s-) Support vector machine

* Artificial neural network (ANN; ~1990s-) feature space | ;.{;‘.-"’\

e Decision tree (DT: ~1990s-) of | & 0;‘ | o‘@'?'s

* Support vector machine (SVM; ~2000s-) 05| 4 c;;.:'g}./;k -'.:'g:;ié"?k’
Decision tree| .1 & ) ,

= gD Avrtificial neural network

= D

After appearance of GPU... =5 =

e Convolutional neural network (CNN)
* Recurrent neural network (RNN)

e Graph neural network (GNN)

* Transformer

Figures from Baron (2019)



Convolutional Neural Network (CNN)

Convolutional filters are
updated during training

Input layer 1 lo ]

1x64x64x1
batch_size x hexght x

width x number of fiters

2 filters 1x64x64x2

Foster2019 ™o h  wanmerdines Output (class/map/value)



Our recent work: application of CNNs to LIM data

KM & Yoshida (2021)

Line intensity mapping (LIM) observations provide large-scale 3D distributions of

line intensities
LIM surveys
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De-confusing interloper lines with CNNs

KM & Yoshida (2021)

(Line confusion problem
Multiple emission lines contaminate

each other when they satisfy
)\obs=)\1(1 + Z1 )=)\2(1 +22)

[Olll] from z = 2.0 galaxies

Ha from z = 1.3 galaxies

e.g., Integrated intensity
atA=1.5um

CNN \ 3 F %

\ Observed data (3D data cube) [Olll] distribution at z = 2.0 j




De-confusing interloper lines with CNNs

.5 § Observed (Ha+[Olll]+noise) KM & Yoshida (2021)
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Reconstruction result

Observed (Ha+[Olll]+noise)

»

KM & Yoshida (2021)
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Recurrent Neural Network (RNN)

* Process sequential data (sentences, videos, etc.)
* Hidden state is propagated to downstream (e.g., long short-time memory, LSTM)
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Processing simulation data with CNN + RNN

Hirashima, KM, et al. (in prep.)

ASURA-FDPS |
e Purpose: galaxy formation / | Supercomputer System | \
. . . . AL BT
simulation with ~1Me resolution. (>106 cores) (-104 cores)
: dt~10° yr dt~102 yr
» Bottleneck: very short time steps ~ e a1 )
. ZEEBC W i
required to compute SN- s oo § [ 10 cores)

influenced particles.
* \We want to send such particles
selectively to the low DOP server. \\

/ \@ (~102#<éores) //

SN explodes att=0 t =0.2Myr

Predicited Region

Initial Condition (t=0)

pick up
a  SN-affected
| particles
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_} data
processing



Processing simulation data with CNN + RNN

Hirashima, KM, et al. (in prep.)
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Graph Neural Network (GNN)

e Graph = a collection of nodes and edges
e Applications:
e particle physics (e.g., Shiomi+2020),
* neutrino detector (Choma+2018)
e SPH simulation (Sanchez-Gonzalez+2020)
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Comvolutional Attentional Message-passing

Figure 17: A visualisation of the dataflow for the three flavours of GNN

layers, g. We use the neighbourhood of node b from Figure 10 to illustrate

this. Left-to-right: convolutional, where sender node features are multiplied Neutrino detector (Ch oma+201 8)
with a constant, ¢,,,; attentional, where this multiplier is implicitly computed

via an attention mechanism of the receiver over the sender: a,, = a(xy, X,);

and message-passing, where vector-based messages are computed based

on both the sender and receiver: m,,,, = ¥(X,, Xy).

Bronstein et al. (2021)



SPH simulation with GNN

Sanchez-Gonzalez+2020 (DeepMind)
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Possible advantages of the machine learning simulators

* Could be faster than numerical simulation (future work: more efficient, parallelizable networks).
* Trained directly from observed data.

* |fitis optimized for inverse objectives it would be valuable for solving inverse problems.



Transformer

e Transformer: ML model based on attention mechanisms (Vaswani+2017)
= a GNN with every node connected to the every other node
e SOTA NLP models: BERT (Devlin+2018; Google), GPT-3 (Brown+2020; OpenAl)

e Long-range dependencies are more easily computed.
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Law/Law
will will
never\ never dynamically defined
be be : : ___
. \ . weight matrix Ol Ll
bu;r - \'but : =
its its - —
application application matm U I 3 : - -
should should [
be be
just just S
- - outpu
e value °Y'P ‘
what === what s
missing‘ - 'missing 1 St Iayer 1 St Iayer
vy
opinion - opinion v "/ E . "t E \s
e g 2nd layer 2nd layer
Vaswani+17

kernel size = 3



Vision Transformer (ViT)

«~—{ ML Dosovitskiy+2020

Transformer Encoder
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Generative Adversarial Network (GAN)

e GAN (Goodfellow+2014), conditional GAN (Isola+2016)
e Two networks generator and discriminator are updated in an adversarial way.

reconstructed (Ha)

random
vector

ReconsGtructed

G: fake map

True? Fake?
probability D

oss function: L|G, D| = log D(Xue) + log|l — D(G)]



Generative Adversarial Network (GAN)

Generate mock neutral hydrogen map (HIGAN; Zamudio-Fernandez+19)



General Issues

e Comparison between models
e Accuracy and validity of ML outputs



Comparison between models

* \Which model is the best? Pros/cons of each method?

— Need for publicly accessible reference datasets for systematic

comparison (cf. MNIST, ImageNet, etc.)

Photo-z estimation contest with PHAT-1 sample (Hildebrandt+10, Cavuoti+12)

A 18-band; |Az| <0.15 14-band; |Az| < 0.15 18-band; R < 24; |Az] <0.15 14-band; R < 24; |Az| < 0.15
Code bias scatter outliers % bias scatter outliers % bias scatter outliers % bias scatter outliers %
QNA | 0.0006 0.056 16.3 0.0028  0.063 19.3 0.0002 0.053 11.7 0.0016  0.060 13.7
AN-e | -0.010 0.074 31.0 -0.006 0.078 38.5 -0.013 0.071 24.4 -0.007 0.076 32.8
EC-e | -0.001 0.067 18.4 0.002 0.066 16.7 -0.006 0.064 14.5 -0.003 0.064 13.5
PO-e | -0.009 0.052 18.0 -0.007  0.051 13.7 -0.009 0.047 10.7 -0.008 0.046 7.1
RT-e | -0.009 0.066 214 -0.008 0.067 24.2 -0.012 0.063 16.4 -0.012 0.064 18.4

B 18-band; |Az| < 0.5 14-band; |Az| < 0.5 18-band; R < 24; |Az] < 0.5 14-band; R < 24; |Az] < 0.5
Code bias scatter outliers % bias scatter outliers % bias scatter outliers % bias scatter outliers %
QNA | -0.0028 0.114 3.8 -0.0046 0.125 3.8 -0.0039 0.101 1.7 -0.0039 0.101 1.7
AN-e | -0.036 0.151 3.1 -0.035 0.173 4.2 -0.047  0.130 1.4 -0.047 0.130 1.4
EC-e | -0.007 0.120 3.6 -0.003 0.114 3.6 -0.015 0.106 1.9 -0.015 0.106 1.9
PO-e | -0.013 0.124 3.1 0.001 0.107 2.3 -0.020 0.098 1.2 -0.020  0.098 1.2
RT-e | -0.031 0.126 3.2 -0.028 0.137 3.6 -0.034 0.111 1.4 -0.034 0.111 1.4




Comparison between models

“The strong gravitational lens finding challenge™ (Metcalf+2019)
e Atraining set was provided to participants

* The participants are requested to upload the results within
48hrs after given test data set

ROC curves Space-Based
Name Type AUROC TPR, TPR,, Shortdescription / r" / K—’_
Manchester SVM Ground-based 0.93 022 035 SVM/Gabor
CMU-DeepLens-Resnet-ground3  Ground-based 0.98 0.09 045 CNN [t SRG—
LASTRO EPFL Ground-based 0.97 007  0.11 CNN o : _f (’—'—
CMU-Deeplens-Resnet-Voting Ground-based 0.98 002 0.10 CNN o ,J-
CAS Swinburne Melb Ground-based 0.96 002 0.08 CNN g 0 R o
ALL-star Ground-based 0.84 0.01 0.02 Edges/gradiants and Logistic Reg. % -
Manchester2 Ground-based  0.89 0.00 001  Human Inspection 2o // r" K— /
YattaLensLite Ground-based  0.82 0.00 000  SExtractor 000-
CAST Ground-based 0.83 0.00 0.00 CNN/SVM
AstrOmatic Ground-based 0.96 0.00 0.01 CNN
CMU-DeepLens-Resnet Space-based 0.92 022 029 CNN
GAMOCLASS Space-based 0.92 007 036 CNN
CAST Space-based 0.81 0.07 0.12 CNN Faivo Positive Rale
All-now Space-based 0.73 0.05 0.07 Edges/gradiants and Logistic Reg.
Manchester SVM Space-based  0.80 003 007  SVM/Gabor e — E—
Manchesterl Space-based 0.81 001 017 Human Inspection s ma
LASTRO EPFL Space-based 0.93 0.00 0.08 CNN r/" { r——’
GAHEC IRAP Space-based 0.66 0.00  0.01 Arc finder —
AstrOmatic Space-based 0.91 0.00 001 CNN g /"‘ /"
Kapteyn Resnet Space-based 0.82 0.00 0.00 CNN 2.- r //’/
CMU-DeepLens-Resnet-aug Space-based 091 0.00 000 CNN |
CMU-DeepLens-Resnet-Voting Space-based 0.91 0.00 0.0l CNN (
NeuralNet2 Space-based 0.76 0.00 0.00 CNN/wavelets r”»
YattalensLite Space-based 0.76 0.00 0.00 Arcs/SExtractor

False Fbﬂw Rae



Accuracy and validity of ML outputs:

Can we explain the machine’s strategies?

Saliency analysis (SA)

Kilee

vanilla gradient =

Vandia Gradwert

dyclass

d$7;j
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Villanueva-Domingo & Villaescusa-Navarro (2020)

e 21-cm map — properties of ionizing/heating
sources (e.9., Mwum, Lx, Ny)

* Red points: large saliency for Lx

* Insight from SA: the machine focus on bright
21cm regions when estimating Lx



Saliency analysis

Matilla+2020

e Parameter estimation from weak lensing maps

 The machine put more focus on the low-K regions,
consistent with previously known results
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Activation maximization method

DeepDream (Mordvintsev+15) oo ® mege 60
« Activate all the units across a given layer ’

Label

.— candle

simultaneously
* Visualization of “higher-order” information (|
* Could also be used for explaining ML l

== banana

-— convertible

- J

classifications of astrophysical data Generator network (prior) DNN being visualized

Anemone Fish Banana Parachute Screw
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Nguyen+19


https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Accuracy and validity of ML outputs:

Uncertainty of the machine’s output

 How much uncertainty is there in the machine’s output?
— Train the network to estimate uncertainties as well

Independent copies for each of M input maps

input map M maps
- ’ with F channels
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Distribution in high-dimensional space

 What to do with data that has
never been seen during training?

— Let’s think about the distribution
In high-dimensional space

cf. ZRRIR(RE

gllul:

feature 2
A

Training data

‘ Observed data A
— small uncertainty

‘ Observed data B
— large uncertainty
>

[
feature 1 I'J'

lower-dimensional latent space (manifold)

cf. Deep k-nearest neighbors (Papernot & McDaniel 2018)



Use distributions in high-dimensional space

to estimate uncertainties

Acquaviva+2020

feature 2

» Task: galaxy spectrum — stellar mass (regression)

e Train multiple models with different training datasets
generated with different physical models

 Assumption: the generalization error depends on the
“distance” between observed and training data.

e Train another machine to learn the distance metric.
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Summary

e Various ML methods are used for various kinds of astronomical data for various purposes.
* ML could deal with a lot of data at high speed
ML could capture complex structures/relations
 We may be able to obtain new insights from ML outputs

e Relatively new methods such as CNNs, RNNs, and GANs are also proving to be useful.

e Alot of collaboration with people in the statistics/Al fields, especially in emerging phases.

 General issues

e Sharing reference datasets is crucial for systematic comparison between conventional
methods and ML models.

e Explainable Al techniques are getting applied for astrophysical studies — mostly just
making sure that the machine is working as expected rather than finding new physics.

e Several methods to estimate the uncertainties of the ML outputs are proposed

o Still, it is difficult to deal with completely unpredictable data (but this could also be true
for the other methods besides ML!)
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