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Spiral? Merger? 
(classification)

Images (Dieleman+15)

Photometry (Kojima+20)

Redshift, metallicity, etc. 
(regression)

Weak lensing map (Shirasaki+19)

Cosmological parameter 
(regression) 

De-noising 
(reconstruction)

Random 
noise

Image of galaxy 
(Ravanbakhsh+16)

(Generation)

cf. review by Fluke & Jacobs 2020
• Machine learning:  automated processes that learn by examples (training data) 

Machine learning in astrophysics



Ball & Brunner (2010)

Machine learning in astrophysics

Ntampaka et al. (2020)



When is ML useful?

▲ Classification of SDSS transients 
(duBuisson+15)

▲ Detect outliers 
(“unknown unknowns”; 
Baron+17)

• High-speed processing of large amounts of 
observational/simulation data — Classification, 
search for rare objects, analysis of e.g., LSST, 
SKA, etc. in the future, generate realistic images 
of galaxies, emulator, etc.

Talks by Nishimichi-san, Tanaka-san



When is ML useful?

• High-speed processing of large amounts of 
observational/simulation data — Classification, 
search for rare objects, analysis of e.g., LSST, 
SKA, etc. in the future, generate realistic images 
of galaxies, emulator, etc.

▼ Parameter estimation from 
noiseless WL maps (Gupta+18)

▶︎ Subaru HSC WL maps de-noising 
with cGAN (Shirasaki+21)

• Capture complex structures/relationships —
Non-Gaussianity in WL maps, halo-galaxy 
relation, etc.



When is ML useful?

• Capture complex structures/relationships —
Non-Gaussianity in WL maps, halo-galaxy 
relation, etc.

• High-speed processing of large amounts of 
observational/simulation data — Classification, 
search for rare objects, analysis of e.g., LSST, 
SKA, etc. in the future, generate realistic images 
of galaxies, emulator, etc.

Mapping baryons onto DM haloes (Lovell+21)

• (New) insights
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Decision tree

Support vector machine

Artificial neural network

Figures from Baron (2019)

Machine learning methods

• Principal component analysis (PCA; ~1980s-) 
• Artificial neural network (ANN; ~1990s-) 
• Decision tree (DT; ~1990s-) 
• Support vector machine (SVM; ~2000s-)

After appearance of GPU… 
• Convolutional neural network (CNN) 
• Recurrent neural network (RNN) 
• Graph neural network (GNN) 
• Transformer 



Convolutional Neural Network (CNN)

input

output

filter

Foster2019
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Output (class/map/value)

Convolutional filters are 
updated during training



Our recent work: application of CNNs to LIM data

Line intensity mapping (LIM) observations provide large-scale 3D distributions of 
line intensities

Kovetz+2019
Kovetz+2017

Breysse et al. (2016)

galaxy 
survey

LIM

LIM surveys

KM & Yoshida (2021)



e.g., Integrated intensity 
at λ = 1.5µm

Hα from  z = 1.3 galaxies

[OIII] from z = 2.0 galaxies

• Line confusion problem 
Multiple emission lines contaminate 
each other when they satisfy  
λobs = λ1 ( 1 + z1 ) = λ2 ( 1 + z2 ) 

KM & Yoshida (2021)

CNN

Observed data (3D data cube) [OIII] distribution at z = 2.0

De-confusing interloper lines with CNNs

SPHEREx



Hα

[OIII]

Observed (Hα+[OIII]+noise) KM & Yoshida (2021)

De-confusing interloper lines with CNNs

λobs = 1.5 - 2.2 µm  
zHα = 1.3 - 2.4

λobs = 1.1 - 1.7 µm 
z[OIII] = 1.3 - 2.4

3D CNN Hα

[OIII]

The same underlining LSS



0.85 deg
λobs = 1.1 - 1.7µm

Reconstruction result

Observed (Hα+[OIII]+noise) Reconstruct [OIII]

Output (smoothed)

z[OIII] = 1.3 - 2.4

KM & Yoshida (2021)

0.85 deg

True [OIII] cf) True Hα+[OIII]

Reconstructed PDF

True PDF

Foreground interlopers 
are properly removed



Recurrent Neural Network (RNN)

• Process sequential data (sentences, videos, etc.) 
• Hidden state is propagated to downstream (e.g., long short-time memory, LSTM)

Foster2019

Donahue+14

Hidden state

In recent years … can interpret data. 

Hidden state Hidden state

Input xt

LSTM cell



ML prediction

t = 0.2Myr

data  
processing

ASURA-FDPS 
• Purpose: galaxy formation 

simulation with ~1M⊙ resolution. 
• Bottleneck: very short time steps 

required to compute SN-
influenced particles. 

• We want to send such particles 
selectively to the low DOP server.

Processing simulation data with CNN + RNN

pick up 
SN-affected 

particles 
at t = 0.2Myr

Hirashima, KM, et al. (in prep.)

SN explodes at t = 0



Hirashima, KM, et al. (in prep.)
Extended MIM model

3D CNN block

cf. MIM (2D CNN × RNN: Wang+2018)
RNN (MIM) block

conventional method

Our method

“無
駄
率

”

捕捉率

Processing simulation data with CNN + RNN



→おそらくメモリとかの問題？もしくは単にまだGNとかが普及していない？

Graph Neural Network (GNN)

• Graph = a collection of nodes and edges 
• Applications:  

• particle physics (e.g., Shlomi+2020),  
• neutrino detector (Choma+2018) 
• SPH simulation (Sanchez-Gonzalez+2020)

Bronstein et al. (2021)

Neutrino detector (Choma+2018)



Sanchez-Gonzalez+2020 (DeepMind) 

SPH simulation with GNN

Possible advantages of the machine learning simulators 
• Could be faster than numerical simulation (future work: more efficient, parallelizable networks). 

• Trained directly from observed data. 

• If it is optimized for inverse objectives it would be valuable for solving inverse problems.



Transformer

• Transformer: ML model based on attention mechanisms (Vaswani+2017)           
= a GNN with every node connected to the every other node 

• SoTA NLP models: BERT (Devlin+2018; Google), GPT-3 (Brown+2020; OpenAI) 
• Long-range dependencies are more easily computed.

Vaswani+17

cf) convolution

value
weight

output

attention

1st layer

2nd layer

1st layer

2nd layer

kernel size = 3

,matmul

weight value output

=

dynamically defined 
weight matrix



Dosovitskiy+2020

Vision Transformer (ViT)

e.g., generation of LSS

Training step

See also  
• Thuruthipilly et al. (2021): application of 

ViT for lensed images 
• Allam Jr. & McEwen (2021): classification 

of supernovae



Generator

Discriminator

• GAN (Goodfellow+2014), conditional GAN (Isola+2016) 
• Two networks generator and discriminator are updated in an adversarial way.

True? Fake? 
probability D

G: fake map 

Increase L

Generative Adversarial Network (GAN)

Reconstructed 
G

Decrease L

loss function:

True 
Xtrue

Reconstructed 
Gor

<latexit sha1_base64="8/B4hSJ+hq1EbWncVYear5/Ok5o="></latexit>

L[G,D] = logD(Xtrue) + log[1�D(G)]

random 
vector



Generative Adversarial Network (GAN)

Generate mock neutral hydrogen map (HIGAN; Zamudio-Fernandez+19)

Generate realistic images of galaxies for lensing study (Ravanbakhsh+16)



General Issues

• Comparison between models 
• Accuracy and validity of ML outputs



Comparison between models

Photo-z estimation contest with PHAT-1 sample (Hildebrandt+10, Cavuoti+12)

• Which model is the best? Pros/cons of each method? 
→ Need for publicly accessible reference datasets for systematic 
comparison (cf. MNIST, ImageNet, etc.) 



Comparison between models

“The strong gravitational lens finding challenge” (Metcalf+2019) 
• A training set was provided to participants 
• The participants are requested to upload the results within 

48hrs after given test data set



z = 15 z = 10

Villanueva-Domingo & Villaescusa-Navarro (2020) 
• 21-cm map → properties of ionizing/heating 

sources (e.g., Mturn, LX, Nγ) 
• Red points: large saliency for LX 

• Insight from SA: the machine focus on bright 
21cm regions when estimating LX

Saliency analysis (SA)

<latexit sha1_base64="yE0py67NMhv+UyXRzw5p7hLrJsc="></latexit>

vanilla gradient =
dyclass
dxij

Accuracy and validity of ML outputs: 
Can we explain the machine’s strategies?
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Matilla+2020 
• Parameter estimation from weak lensing maps 
• The machine put more focus on the low-κ regions, 

consistent with previously known results

Saliency analysis

WL map (κ)



https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Activation maximization method

DeepDream (Mordvintsev+15) 
• Activate all the units across a given layer 

simultaneously  
• Visualization of “higher-order” information 
• Could also be used for explaining ML 

classifications of astrophysical data Nguyen+19

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Accuracy and validity of ML outputs: 
Uncertainty of the machine’s output

• How much uncertainty is there in the machine’s output?

CMB foreground cleaning (Patrof+20)

→ Train the network to estimate uncertainties as well

Aleatoric uncertainty（観測データに内在するノ
イズ）に対してはうまく予測できるが、学習中
に見たことがないようなデータに対してはうま
く予測できない（cf. Kendall & Gal 2017)



Distribution in high-dimensional space 

• What to do with data that has 
never been seen during training?

Training data

feature 1

feature 2

Observed data B 
→ large uncertainty

Observed data A 
→ small uncertainty

cf. Deep k-nearest neighbors (Papernot & McDaniel 2018) 

→ Let’s think about the distribution 
in high-dimensional space

cf. 多様体仮説



Distance between input data and the training datasets
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• Train multiple models with different training datasets 
generated with different physical models Training data A

Training data B

feature 1

feature 2

Observed data

Distance
• Assumption: the generalization error depends on the 

“distance” between observed and training data.

• Train another machine to learn the distance metric. 

Acquaviva+2020 
• Task: galaxy spectrum → stellar mass (regression)

Use distributions in high-dimensional space  
to estimate uncertainties



Summary

• Various ML methods are used for various kinds of astronomical data for various purposes. 
• ML could deal with a lot of data at high speed 
• ML could capture complex structures/relations 
• We may be able to obtain new insights from ML outputs 

• Relatively new methods such as CNNs, RNNs, and GANs are also proving to be useful.  
• A lot of collaboration with people in the statistics/AI fields, especially in emerging phases. 

• General issues 
• Sharing reference datasets is crucial for systematic comparison between conventional 

methods and ML models. 
• Explainable AI techniques are getting applied for astrophysical studies — mostly just 

making sure that the machine is working as expected rather than finding new physics. 
• Several methods to estimate the uncertainties of the ML outputs are proposed  
• Still, it is difficult to deal with completely unpredictable data (but this could also be true 

for the other methods besides ML!) 
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