2021年II月I7~I9日 第I0回観測的宇宙論ワークショップ

Galaxy projected size fluctuations as a cosmological probe

樽家 篤史(京大基研)

With 秋津一之(プリンストン高等研)

Special thanks 奥村哲平(中央研究院天文及天文物理研究所)

Take-home message

Galaxy/halo projected size

carries ample cosmological information Trace part of the galaxy quadrupole image/shape (which we usually ignore)

c.f. Intrinsic galaxy/halo alignments Traceless part of the galaxy quadrupole image/shape

• It is spatially fluctuating

 \rightarrow sensitive to large-scale structure & its tidal field

• It exhibits anisotropies:

→ combining conventional galaxy clustering data, it greatly helps improving BAO & RSD measurements

Akitsu & AT ('21, in prep.)

Motivation

To better test & constrain cosmology,

How well we can maximize the cosmological information from <u>observational data</u> ?

Particularly,

Large-scale structure observations

Mapping the large-scale structure

Large-scale matter distribution over Mpc~Gpc carry information on

- Cosmic expansion
- Structure formation driven by gravitational instability

These information can be obtained via

Imaging/photometric surveys

(angular position + galaxy shape)

✓ Spectroscopic surveys (angular position + spectrum)

2D map + shape (+ photo-z)

- → Weak lensing observations
- → 3x2pt analysis

3D map

- \rightarrow Baryon acoustic oscillation (BAO)
- → Redshift-space distortions (RSD)

Galaxy shape information in 3D

To maximize the cosmological information, one crucial aspect is

a synergy between imaging & spectroscopic surveys

In particular,

intrinsic alignments of galaxies has been recognized as a sensitive cosmology probe, tracing tidal field of large-scale structure (Okumura-san & Kurita-san's talks)

Intrinsic alignment (IA) of galaxy

Projected orientation of observed galax/halo shape

In general, galaxy/halo has elliptical shape, aligned to some directions:

 θ_2 θ_1

This is indeed the quantity to measure weak lensing effect

IA as a cosmological probe

IA has been long considered as a contaminant of lensing signal

However, considering its 3D spatial correlations,

Il correlation $\langle \gamma_a(\mathbf{x}_1) \gamma_b(\mathbf{x}_2) \rangle$ Gl correlation $\langle \delta_g(\mathbf{x}_1) \gamma_a(\mathbf{x}_2) \rangle$ $(a, b = + \text{ or } \times)$

- IA can produce a rather *large* signal, dominating the lensing signal (Okumura, Jing & Li '09)
- IA exhibits *anisotropic* nature, on which BAO is clearly imprinted Also, RSD can be measured from the GI correlation (Okumura & AT '20, Okumura, AT & Nishimichi '20, Kurita et al. '20)
- IA is sensitive to a distinct type of primordial non-Gaussianity (Schmidt, Chisari & Dvorkin '15, Kogai et al. '18, Akitsu et al. '21)

Unlocking full shape information

Galaxy IA is now considered as a promising cosmology probe, but we may not yet unlock the *full* power of galaxy shape information

$$I_{ab} \equiv \frac{\int d^2 \theta I_{obs}(\theta) \theta_a \theta_b}{\int d^2 \theta I_{obs}(\theta)} \quad (a, b = 1, 2) \implies \gamma_+ \equiv \frac{I_{11} - I_{22}}{I_{11} + I_{22}}, \qquad \gamma_{\times} \equiv \frac{2I_{12}}{I_{11} + I_{22}}$$
One component is missing !
(trace part)

Focus of this work

Consider the following estimator for the trace part:
$$\kappa \equiv \frac{I_{11} + I_{22}}{\langle I_{11} + I_{22} \rangle} - 1 \qquad \langle \cdots \rangle$$
: ensemble average

Is this quantity a sensitive cosmology probe ?

3D shape & projected trace field

In principle, the galaxy shape is characterized in 3D space:

3D (symmetric) inertia tensor e.g., Vlah et al. JCAP 01,025 ('20)

$$I_{ij}(x) \equiv \overline{I} \begin{bmatrix} \frac{\delta_{ij}^{K}}{3} \left\{ 1 + \delta_{s}(x) \right\} + g_{ij}(x) \end{bmatrix} \quad (i, j = 1, 2, 3)$$
trace part trace-free part $\operatorname{Tr}[g_{ij}] = 0$

Spatially g_{ij} : projecting onto the sky, this is related to IA ($\propto \gamma_{+,\times}$) fluctuating δ_s : this represents the (3D) size fluctuation New !

Then, the 2D trace part is expressed as

$$\kappa \equiv \frac{I_{11} + I_{22}}{\langle I_{11} + I_{22} \rangle} - 1 \longrightarrow \delta_{s}(x) - \frac{3}{2} g_{zz}(x)$$

2D trace field as a tracer of LSS

2D size
fluctuation
$$\kappa(x) = \delta_s(x) - \frac{3}{2}g_{zz}(x)$$

Ignoring the tensor/vector modes, these fluctuations at large scales are supposed to (biased-)trace large-scale matter density field, $\delta_{\rm m}$:

 $\begin{array}{ll} \underline{Perturbative\ expansion} & (|\delta_{\rm s}|, |g_{ij}| \ll 1) & \text{Schmidt et al. Phys.Rep.733, I ('18)} \\ & \text{Vlah et al. JCAP 01,025 ('20)} \\ 1 + \delta_{\rm s} &= (1 + \delta_{\rm g}) \left\{ 1 + b_{\rm s1} \delta_{\rm m} + \frac{b_{\rm s2}}{2} \delta_{\rm m}^2 + \cdots \right\} & \delta_{\rm g}: \text{ galaxy density field} \\ & g_{ij} &= (1 + \delta_{\rm g}) \left\{ b_{\rm K} K_{ij} + b_{\delta K} \delta_{\rm m} K_{ij} + \cdots \right\} & K_{ij} &\equiv \left[\frac{\partial_i \partial_j}{\partial^2} - \frac{1}{3} \delta_{ij}^{\rm K} \right] \delta_{\rm m} \end{array}$

At leading order,

$$\kappa(\mathbf{x}) \simeq b_{s1} \,\delta_{m} - \frac{3}{2} \,b_{K} \,K_{zz}(\mathbf{x})$$

(Lensing contributions also ignored)

2D trace field as a tracer of LSS

In Fourier space,

$$\kappa(\boldsymbol{k}) \simeq \left\{ b_{\mathrm{s1}} - b_K \mathscr{P}_2(\mu_k) \right\} \delta_{\mathrm{m}}(\boldsymbol{k});$$

Line-of-sight

direction

 $\mu_k \equiv \hat{k} \cdot \hat{z}$

While monopole responds to the size fluctuation, quadrupole responds to IA, *identical* to the GI correlation (monopole)

The amplitudes are rather smaller than $P_{\rm mm}$, but the monopole & quadrupole moments of $P_{\rm h\kappa}$ are clearly non-zero, and seems to trace $P_{\rm mm}$

BAO feature is clearly visible in $P_{2,h\kappa}$, while it is subtle for $P_{0,h\kappa}$. On the other hand, hexadecapole ($P_{4,h\kappa}$) is consistent with zero

Quadrupole moment, $P_{2,h\kappa}$, quantitatively match GI monopole ($-P_{0,gE}$) All consistent with linear theory !

Redshift-space cross power spectra, $P_{\ell,g\kappa}^{(S)}$, are all non zero at $\ell \leq 4$, and their amplitudes are slightly enhanced (due to the Kaiser effect on δ_m)

Shape-density bias relation

Bias relationship measured from simulated halo catalogs

Density :
$$\delta_{h}(k) = b_{h} \delta_{m}(k)$$

E-mode IA : $\gamma_{E}(k) = b_{K} \mathscr{P}_{2}(\mu_{k}) \delta_{m}(k)$

$$M_{\rm halo}/(h^{-1}M_{\odot}) = [10^{12}, 10^{15}]$$

$$\bigwedge^{e^{\mathbf{N}}} \operatorname{Trace} \mathsf{IA} : \kappa(\mathbf{k}) = \{ b_{s1} - b_{\mathbf{K}} \mathscr{P}_2(\mu_k) \} \delta_{\mathrm{m}}(\mathbf{k})$$

Numerically fitted to a linear relation: $b_{s1} = -0.45 b_K - 0.035$

 \rightarrow used to perform Fisher matrix analysis (next)

Forecast results from all shape info.

Combining galaxy clustering with all shape information

Forecast results from all shape info.

Combining galaxy clustering with all shape information

c.f. Okumura & AT ('21) arXiv:2110.11127

Combining clustering + IA + kSZ observations

Summary

Galaxy/halo projected size carries ample cosmological information Trace part of the galaxy quadrupole image/shape (which has been so far ignored)

- It is spatially *fluctuating*
 - \rightarrow sensitive to large-scale structure & its tidal field
- It exhibits anisotropies:
 - \rightarrow combining conventional galaxy clustering data,

it greatly helps improving BAO & RSD measurements

• A more interesting thing happens for the primordial non-Gaussianity (Akitsu & AT, in progress)