Femtoscopic study of coupled-channel baryon-baryon interactions with S=-2 Akira Ohnishi (YITP, Kyoto U.), Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, T. Hatsuda

PANIC2021, Sep. 5-10, 2021, Online / Lisbon, Portugal

Introduction

- **Comparison with p\Xi^- and \Lambda\Lambda correlation function data**
- Unbound nature of N\(\Sigma\) confirmed ?
- Summary

Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, AO, T. Hatsuda, arXiv:2108.09644 [hep-ph]

Impact of S=-2 Baryon-Baryon Interactions (1)

- Is "H(uuddss)" bound, unbound, HAL Unbound ('20)or quasi-bound? ΞN It is plausible not to be bound below $\Lambda\Lambda$. Quasi-bound $^{4}\text{He}+\Lambda\Lambda$ Bound H in the SU(3)_f limit. $\Lambda\Lambda$ ~ 6.91 MeV Bag model: Jaffe, PRL38(1977)195. Nagara Bound LQCD: HALQCD('11), NPLQCD('11,'13), Mainz ('19). ⁶He ('01)~ 80 MeV But no discovery of bound H. No $M(\Lambda p\pi^{-})$ peak; $\Lambda \Lambda$ hypernucl.: Takahashi+ ('01); **Jaffe ('77)** Femtoscopy:STAR('15); ALICE('19); Morita+('15). Quasi-bound state below NE or Unbound ?
 - Resonance "H" from (K⁻, K⁺) ? KEK-E522 ('07)
 - LQCD at almost physical m_q → Unbound HAL QCD('20).

Impact of S= -2 Baryon-Baryon Interactions (2)

- ΛΛ and NΞ interactions are relevant to "Hyperon Puzzle"
 - A and Ξ are predicted to appear at (2-4) ρ_0 , and softened EOS cannot support 2 M_o neutron stars.
 - → Repulsive YNN interactions, Quark Matter, Modified Gravity ?
 - Precise ΛN , $\Lambda \Lambda$, $N\Xi$, and ΛNN interactions need to be known.
 - \clubsuit Repulsive ΞN interaction (I=1) may help support 2 $M_{\odot}~NS$

S=-2 Baryon-Baryon Interactions

- Theoretical Approaches
 - Phenomenological (Nijmegen, Jülich, Ehime, Quark model, ...)
 - Chiral EFT [Haidenbauer, Meissner, Petschauer ('16); Li, Hyodo, Geng ('18)]
 - Lattice QCD [Sasaki+ [HAL QCD] ('20)]
- Experimental Information
 - Double Λ and Ξ hypernuclei

Takahashi+('01); Nakazawa+('15); Hayakawa+[E07]('21); Yoshimoto+[E07]('21).

Femtoscopic study of hadron-hadron interactions
 [See also Valentina Mantovani Sarti (Wed), Laura Šerkšnytė (Sun)]
 Adamczyk+[STAR]('15, ΛΛ); Acharya+[ALICE]('19(ΛΛ), '19(NΞ), '20(NΞ));
 Morita, Furumoto, AO ('15, ΛΛ); Hatsuda, Morita, AO, Sasaki ('17, NΞ);
 Haidenbauer ('19, ΛΛ-NΞ); Haidenbauer+ ('20).

We study $p\Xi^-$ and $\Lambda\Lambda$ correlation functions in the coupled-channel framework (KPLLL formula) using S=-2 lattice baryon-baryon interaction from HAL QCD. [Kamiya+ (2108.09644)]

Coupled-channel NE-AA potential and correlation functions

NE-AA Potential from Lattice QCD

 NΞ-ΛΛ potential at almost physical quark masses (m_π=146 MeV) by HAL QCD Collaboration

K. Sasaki et al. [HAL QCD], NPA 998 ('20) 121737 (1912.08630)

- Significant attraction in (I,S)=(0,0) of NΞ.
- Weak attraction in $\Lambda\Lambda$ (Coupling with N Ξ causes $\Lambda\Lambda$ attraction).

A. Ohnishi @ PANIC2021, Sep.8, 2021, Online/Lisbon 6

NE-AA Potential from Lattice QCD

Low-energy scattering parameters

Nuclear physics convention

$$k \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}k^2 + \mathcal{O}(k^2)$$

total spin	baryon pair	a_0 [fm]	$r_{\rm eff}$ [fm]		
J = 0	$p\Xi^-$ $p\Xi^0$	$-1.22(0.13)(^{+0.08}_{-0.00}) - i1.57(0.35)(^{+0.18}_{-0.23})$ $-2.07(0.39)(^{+0.28}_{-0.28}) - i0.14(0.08)(^{+0.00}_{-0.23})$	$3.7(0.3)\binom{+0.1}{-0.1} - i2.7(0.2)\binom{+0.1}{-0.3}$ 1.5(0.3)(^{+0.0}) - i0.2(0.0)(^{+0.0})		
	$\Lambda \Delta$	$-0.78(0.22)(^{+0.00}_{-0.13})$	$5.4(0.8)(^{+0.1}_{-0.5})$		
J = 1	$p\Xi^-$	$-0.35(0.06)(^{+0.09}_{-0.07}) - i0.00$	$8.3(1.0)(^{+2.8}_{-1.2}) + i0.0(0.1)(^{+0.1}_{-0.0})$		
	$n\Xi^0$	$-0.35(0.06)(^{+0.09}_{-0.07})$	$8.4(1.0)(^{+2.7}_{-1.2})$		

• Re $(a_0) < 0 \rightarrow$ No bound state in $\Lambda\Lambda$ -N Ξ systems.

(except for Ξ^- atom)

■ There is a virtual pole around the NΞ threshold (3.93 MeV below nΞ⁰ threshold) on the irrelevant Riemann sheet, (+, -, +) [quasi-bound → (-,+,+)]

$$E_{\rm pole} = 2250.5 - i0.3 \,\,{\rm MeV}$$

sign of Im(eignen momentum)

Virtual Pole

- Virtual pole (single channel case)
 - = Eigen energy of the pole is below the threshold, but the wave function diverges at $r \rightarrow \infty$.

Lattice BB potential at almost physical quark masses (HAL QCD)

- With Coulomb potential and threshold mass difference, virtual pole appears on (+,-,+) Riemann sheet (w.f. of n±⁰ channel diverges).
- Atomic states are well separated from VP. (μα²/2n²=14.6 keV/n²)

Femtoscopic Study of Hadron-Hadron Interaction

- Correlation function (CF)
 - Koonin-Pratt formula

Koonin('77), Pratt+('86), Lednicky+('82)

$$C(\boldsymbol{p}_1, \boldsymbol{p}_2) = \frac{N_{12}(\boldsymbol{p}_1, \boldsymbol{p}_2)}{N_1(\boldsymbol{p}_1)N_2(\boldsymbol{p}_2)} \simeq \int d\boldsymbol{r} S_{12}(\boldsymbol{r}) |\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2$$

source fn. relative w.f.

- Source size from quantum stat. + CF (Femtoscopy) *Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)*
- Hadron-hadron interaction from source size + CF
 - CF of non-identical pair from Gaussian source
 R. Lednicky, V. L. Lyuboshits ('82); K. Morita, T. Furumoto, AO ('15)

$$C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(r) \left\{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \right\} \quad (\varphi_0 = \text{s-wave w.f.})$$

CF shows how much $|\varphi|^2$ is enhanced $\rightarrow V_{\mu\nu}$ effects !

A. Ohnishi @ PANIC2021, Sep.8, 2021, Online/Lisbon 9

 $oldsymbol{p}_1$

 p_2

Coupled-Channel Correlation Function

Correlation function with CC effects (KPLLL formula)
 –> sum of j-th channel contributions leading to j=1

with outgoing momentum q Lednicky, Lyuboshits, Lyuboshits ('98); Haudenbauer ('19)

$$C(\boldsymbol{q}) = \sum_{j} \omega_{j} \int d\boldsymbol{r} S_{j}(\boldsymbol{r}) |\Psi_{j}^{(-)}(\boldsymbol{r})|^{2}$$

$$\Psi_{j}^{(-)}(\boldsymbol{r}) = [e^{i\boldsymbol{q}\cdot\boldsymbol{r}} - j_{0}(qr)]\delta_{1j} + \psi_{j}^{(-)}(r)$$

$$\psi_{j}^{(-)}(q) \propto e^{-iqr}/r \text{ or } e^{-\kappa r}/r \ (r \to \infty)$$

 $\sum_{i=1}^{n} Outgoing Mom. q$ Mom. qin channelj=1 $<math display="block">\omega_j S_j(r) |\Psi_j^{(-)}(r)|^2$ Source Normalized weight Source fn.

(No Coulomb case)

- Effects of coupled-channel, strong & Coulomb pot., and threshold difference are taken into account in the charge base, pΞ⁻, nΞ⁰, ΛΛ.
 Y. Kamiya+, PRL('20, K⁻ p)
- Source size (R) and source weight (ω_i) need to be determined.

Theoretical p= - and AA Correlation Function

- pΞ⁻ correlation function
 - Strongly enhanced at low q by the strong interaction, and further enhanced by the Coulomb potential at q < 50 MeV/c</p>
 - ΛΛ source effect is small.
- ΛΛ correlation function
 - Suppressed by quantum statistics, but enhanced by the strong interaction at low q.
 - NΞ source effect is visible only around the thresholds.

Parameters in Correlation Function Data

 Actual data contains non-femtoscopic effects → Pair purity < 1. (jets, misidentified particles)

 $C_{\exp}(q; \mathbf{R}, \lambda, \mathbf{N}, \omega) = \mathbf{N}(q) \left[1 + \lambda (C_{\text{theory}}(q; \mathbf{R}, \omega) - 1)\right]$

- We adopt Pair purity (λ) from MC analysis results by ALICE.
- Source Weight (ω_j) is given by a simple statistical model. (Sensitivity is small.)
- Normalization with jet effects (N(q)=a+bq) is determined by the fit to the data.
- Source size (R) is determined by the fit to the data for pp 13 TeV collisions,

 $R_{p\Xi^{-}}(pp) \simeq 1.05 \text{ fm} \quad [R_{p\Xi^{-}}^{\text{ALICE}}(pp) = 1.02 \pm 0.05 \text{ fm}]$

and based on the scaling relation for p Pb 5.02 TeV collisions.

 $R_{p\Xi^-}(p\text{Pb})/R_{p\Xi^-}(pp) \simeq R_{pp}^{\text{ALICE}}(p\text{Pb})/R_{pp}^{\text{ALICE}}(pp) \ [R_{p\Xi^-}(p\text{Pb}) = 1.27 \text{ fm}]$

($\Lambda\Lambda$ and $p\Xi^-$ source sizes are assumed to be the same.)

p∃⁻ Correlation Function

- pΞ⁻ correlation function data implies attractive NΞ interaction.
 - Strong enhancement from pure Coulomb CF
 - $\Lambda\Lambda$ source effect is negligible. $n\Xi^0$ source effect is visible.
 - Calculated CF agrees with ALICE data.

Kamiya+ (2108.09644); Acharya+(ALICE), PRL('19), Nature ('20)

Comparison with other results

NA correlation function

- ΛΛ correlation function
 - Enhancement from pure quantum statistic CF
 - NΞ source effect is visible only around thresholds.
 - Calculated CF agrees with ALICE data. Analytic model (Lednicky-Lyuboshits formula) works well.

Kamiya+ (2108.09644); Acharya+[ALICE] ('19)

Comparison with other results

R Dependence of Correlation Function

Source size (R) dependence of C(q) is helpful to deduce the existence of a bound state.

Morita+('16, '20), Kamiya+('20), Kamiya+(2108.09644)

- With a bound state, C(q) is suppressed at small q when R ~ |a₀|.
 (w.f. has a node at r ~ |a₀| with a bound state.)
- Qualitative understanding by the analytic model (LL formula) [Lednickey, Lyuboshits ('82)] with the zero range approx. (r_{eff}=0)

R dependence of $p\Xi^-$ correlation function

- R dep. of calculated results → Enhanced region shrinks with larger R. No Dip.
- Larger R data from Au+Au seem to show similar behavior.

K. Mi+(STAR, preliminary), Au+Au 200 AGeV, APS2021. (No Dip at larger R)

= 200 GeV 40-80

p-Ξ ⊕ **p**-Ξ

Coulomb (r=2fm)

Coulomb (r=2.5fm)

Coulomb (r=3fm)

Coulomb (r=3.5fm)

A. Ohnishi @ PANIC2021, Sep.8, 2021, Online/Lisbon 20

= 200 GeV 0-409

D-E 🕀 D

Coulomb (r=3.5fm

Coulomb (r=4fm)

Coulomb (r=4.5fm)

Coulomb (r=5fm)

c.f. R dependence of pK⁻ correlation function

- Enhanced C(q) from pp collisions, and dip in heavy-ion collisions.
 - Typical behavior expected from LL formula + Coulomb with a bound state.

Kamiya+(PRL, '20)

These R dependence of C(q) supports again the KN bound state nature of Λ(1405).

S. Acharya+[ALICE], 2105.05683

Slejka+[*STAR*, *preliminal NPA982 (*'19)359.

Summary

- Correlation functions are helpful to constrain / examine hadron-hadron interactions as well as to deduce the existence of a bound state.
- We have calculated pΞ⁻ and ΛΛ correlation functions by using lattice NΞ-ΛΛ coupled-channel (CC) potential.
 - w/ effects of CC, Coulomb, threshold difference.
 - ALICE pΞ⁻ and ΛΛ correlation function data are consistent with the HAL QCD potential.
 - Source weight effect from conversion channel is not big, except for the cusps at NΞ thresholds in ΛΛ corr. fn. (Solving CC equation is still important.)
- Unbound nature of N\(\mathbf{N\)\mathbf{E}}\) will be supported by studying the source size dependence of the p\(\mathbf{E}^-\) correlation function. (Any way to confirm the virtual pole nature ?)

Thank you for attention !

Coauthors of Y. Kamiya et al. $(p\Xi^{-})$, arXiv:2108.09644.

Y. Kamiya K. Sasaki T. Fukui

T. Hyodo K. Morita K. Ogata

A. Ohnishi @ PANIC2021, Sep.8, 2021, Online/Lisbon 23

T. Hatsuda

To be, or not to be, that is the question.

p

u

S

Table 1. Leading $6q \ L = 0$ dibaryon candidates 12, their BB' structure and the CM interaction gain with respect of the lowest BB' threshold calculated by means of Eq. (2). Asterisks are used for the $\mathbf{10}_{\rm f}$ baryons $\Sigma^* \equiv \Sigma(1385)$ and $\Xi^* \equiv \Xi(1530)$. The symbol [i,j,k] stands for the Young tablaux of the SU(3)_f representation, with i arrays in the first row, j arrays in the second row and k arrays in the third row, from which $\mathcal{P}_{\rm f}$ is evaluated. The $\overline{\mathbf{10}}$ SU(3)_f representation is denoted here $\mathbf{10}^*$.

$-\mathcal{S}$	$\mathrm{SU}(3)_{\mathrm{f}}$	Ι	J^{π}	BB' structure	$\frac{\Delta \langle V_{\rm CM} \rangle}{M_0}$
0	[3,3,0] 10 *	0	3^{+}	$\Delta\Delta$	0
1	[3,2,1] 8	1/2	2^{+}	$\frac{1}{\sqrt{5}}(N\Sigma^* + 2\Delta\Sigma)$	-1
2	[2,2,2] 1	0	0^+	$\frac{1}{\sqrt{8}}(\Lambda\Lambda + 2N\Xi - \sqrt{3}\Sigma\Sigma)$	$^{-2}$
3	[3,2,1] 8	1/2	2^{+}	$\frac{1}{\sqrt{5}}(\sqrt{2}N\Omega - \Lambda \Xi^* + \Sigma^*\Xi - \Sigma \Xi^*)$	-1

A. Gal ('16); M. Oka ('88)

Η

Potentially measurable hh pairs

 Correlation function is useful to access hadron-hadron interactions as well as to deduce the existence of a bound state.
 Scatt.+Nuclei
 Scatt.+Mesic atom

Blue: Pairs we have studied, O: Experimentally measured

Source size dependence of correlation functions

■ pΞ–

Smooth dependence on R. (No bound state, Non-identical particles)

ΔΛ

- Complicated R dependence (Quantum statistics)
- No long-tail (q > 200 MeV/c) with R > 1.5 fm.

Non-Femtoscopic Parameters

Relevant parameters=R, λ, N=a+bq
 (ω's are almost irrelevant for pΞ⁻ and ΛΛ correlation functions.)

$$C_{\exp}(q; \mathbf{R}, \lambda, \mathbf{N}, \omega) = \mathbf{N}(q) \left[1 + \lambda (C_{\text{theory}}(q; \mathbf{R}, \omega) - 1)\right]$$

collision	pair	λ	a	$b \left[(\mathrm{MeV}/c)^{-1} \right]$	R [fm]
pp	$p\Xi^-$	1 15	1 15	0 15	1.05
(13 TeV)	$\Lambda\Lambda$	0.338 9	0.95	1.28×10^{-4}	1.00
pPb	$p\Xi^{-}$	0.513 14	1.09	-2.56×10^{-4}	1.27(+)
(5.02 TeV)	$\Lambda\Lambda$	0.239 9	0.99	0.29×10^{-4}	1.27

TABLE II. The pair purity λ , non-femtoscopic parameters a and b, and the effective source size R in the fitting function $C_{\text{th}}(q)$. The parameters a and b in pp ($\Lambda\Lambda$ pairs) and pPb ($p\Xi^-$ and $\Lambda\Lambda$ pairs) collisions and R in pp collisions are the actual fitting parameters. Numbers with references are taken from Refs. [9, 14, 15], and the number with (*) is estimated from other other parameters. See the text for details.

- [9] S. Acharya et al. [ALICE], Phys. Lett. B 797 (2019), 134822 [arXiv 1905.07209].
- [14] S. Acharya et al. [ALICE], Phys. Rev. Lett. 123 (2019), 112002 [arXiv 1904.12198].
- [15] S. Acharya et al. [ALICE], Nature 588 (2020), 232-238 [arXiv 2005.11495].

Kamiya+(2108.09644)

Correlation function from T-matrix

s-wave w.f. using the half-off-shell T-matrix (T_0)

J. Haidenbauer, NPA 981('19)1.

$$\widetilde{\psi}_{0}(k,r) = j_{0}(kr) + \frac{1}{\pi} \int dq \, q^{2} j_{0}(qr) \, \frac{1}{E - E_{1}(q) - E_{2}(q) + i\varepsilon} T_{0}(q,k;E)$$

$$\psi_{0}^{(-)}(k,r) = e^{-2i\delta_{0}} \widetilde{\psi}_{0}(k,r) \rightarrow \frac{e^{-i\delta_{0}}}{kr} \, \sin(kr + \delta_{0}) = \frac{1}{2ikr} \left(e^{ikr} - e^{-2i\delta_{0}}e^{-ikr}\right)$$

kr

Strong T-matrix + Coulomb potential

J. Haidenbauer, G. Krein, and T. C. Peixoto, EPJA 56 ('20)184; using the Vincent-Phatak method 2.5 [C.M. Vincent and S.C. Phatak, PRC10('74)391; B. Holzenkamp, K. Holinde and J. Speth, 2.0 NPA 500('89)485 (1989)]

Analytic model of correlation function

Asymptotic w.f. is described by the scattering amplitude f(q) (non-identical particle pair, short range int. (only s-wave is modified),

single channel, no Coulomb pot.)

$$\Phi^{(+)}(\mathbf{r}) = e^{i\mathbf{q}\cdot\mathbf{r}} - j_0(qr) + \varphi_0^{(+)}(r;q)$$

$$\varphi_0^{(+)}(r;q) \rightarrow \frac{e^{i\delta}\sin(qr+\delta)}{qr} = \frac{1}{2iqr}(Se^{iqr} - e^{-iqr}) = \frac{\sin qr}{qr} + f(q)\frac{e^{iqr}}{r}$$

$$\varphi_0^{(-)}(r;q) = S^{-1}\varphi^{(+)}(r;q) \left[S = \exp(2i\delta), f = (S-1)/2iq = [q\cot\delta - iq]^{-1}\right]$$

Correlation function in Lednicky-Lyuboshits (LL) formula

(with static Gaussian source, real δ) (Lednickey, Lyuboshits ('82))

$$C(q) = \int d\mathbf{r} S(r) \left| \Phi^{(-)}(\mathbf{r}) \right|^2 = 1 + \int d\mathbf{r} S(r) \left[\left| \varphi_0^{(-)}(\mathbf{r}) \right|^2 - (j_0(qr))^2 \right]$$
$$\simeq 1 + \int 4\pi dr S(r) \left[|f(q)|^2 + \frac{\sin qr}{q} \left\{ f(q) e^{iqr} + f^*(q) e^{-iqr} \right\} \right]$$

$$C_{\rm LL}(q) = 1 + \frac{|f(q)|^2}{2R^2} F_3\left(\frac{r_{\rm eff}}{R}\right) + \frac{2\text{Re}\,f(q)}{\sqrt{\pi}R} F_1(2qR) - \frac{\text{Im}\,f(q)}{R} F_2(2qR)$$

$$\left[f(q) = (q \cot \delta - iq)^{-1}, \ F_1(x) = \frac{1}{x} \int_0^x dt e^{t^2 - x^2}, \ F_2(x) = (1 - e^{-x^2})/x, \ F_3(x) = 1 - \frac{x}{2\sqrt{\pi}}\right]$$

Lednicky-Lyuboshits functions

Bird's-eye view of C(q)

Zero eff. range pot. $\rightarrow C(q)=F(R/a_0, qR)$

 $r_{\rm eff} = 0 \rightarrow q \cot \delta = -1/a_0 \rightarrow f(q) = (q \cot \delta - iq)^{-1} = -\frac{R}{R/a_0 + iqR}$

$$C(x,y) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} F_1(2x) - xF_2(2x) \right] \quad (x = qR, y = R/a_0)$$

Low momentum limit

$$C(x,y) \to \frac{1}{2} \left(\frac{1}{y} - \frac{2}{\sqrt{\pi}}\right)^2 + 1 - \frac{2}{\pi} \quad (F_1 \to 1, F_2 \to 0 \text{ at } x \to 0)$$

Correlation function (LL model) Enhanced C(q) at small q 1.5 2 with $a_0 < 0$ 1.8 C=0.5 1 $C_{\rm LL}(0) = 1 - \frac{2}{\sqrt{\pi}} \left(\frac{a_0}{R}\right) + \frac{1}{2} \left(\frac{a_0}{R}\right)^2$ 1.6 0.5 1.4 Bound R/a₀ 1.2 0 • $a_0 > 0 \rightarrow Size dependent C(q)$ Unbound C=1.5 -0.5 0.8 • C(q) > 1 at small R 0.6 -1 • C(q) < 1 at $R \sim a_0$ 0.4 r_{eff}=0 -1.5 0.2 (w.f. node at $r \sim a_0$) 0.5 1.5 2 0 qR

Bound state diagnosis by femtoscopy

- Source size dep. of CF tells the sign of the scattering length (a₀).
 - With attraction, Large CF at small R.
 - With a bound state (a₀>0), CF is suppressed at R ~ a₀

$ALICE+STAR = N\Omega$ Dibaryon

Correlation Function with Gaussian source

N Ω potential (J=2, HAL QCD, a_0 =3.4 fm) + Coulomb

Source Size Dep. of CF w/ Coulomb potential

Y. Kamiya+(2108.09644) (LL × Gamow factor)

Modern Hadron-Hadron Interactions

- Lattice QCD *hh* potential
 - V_{hh} is obtained from the Schrödinger eq. for the Nambu-Bethe-Salpeter (NBS) amplitude.
 - N. Ishii, S. Aoki, T. Hatsuda, PRL99('07)022001.
 - $\rightarrow \Omega\Omega$, N Ω , AA-N Ξ potentials at phys. quark mass are published
- Chiral EFT / Chiral SU(3) dynamics
- V_{hh} at low E. can be expanded systematically in powers of Q/2x.
 S. Weinberg ('79); R. Machleidt, F. Sammarruca ('16);
 Y. Ikeda, T. Hyodo, W. Weise ('12).
 NN, NY, YY, KN-πΣ-πΛ, ...
 Quark cluster models,
- Meson exchange models, More phenomenological models, ...

Let us examine modern hh interactions !

<u>____</u>

Relevance of *EN* **interaction to physics**

- H-particle: 6-quark state (uuddss) may be realized as a loosely bound state of ±N (I=0)
 K. Sasaki et al. (HAL QCD, '16,'17)
- Repulsive \(\exists N\) interaction (I=1) may help to support 2 M_{\omega} Neutron Star

Weissborn et al., NPA881 ('12) 62.

K. Sasaki et al. (HAL QCD Collab.), EPJ Web Conf. 175 ('18) 05010.

AA correlation and AA interaction

$p\Omega$ correlation

pK⁻ correlation

Other bound states ?

1.1

1.05

0.85

0.8

\checkmark $\Lambda\Lambda$ -N Ξ

- $C_{\Lambda\Lambda}(q)$ in AA(RHIC) and pp(LHC) are similar (No b.s. below $\Lambda\Lambda$).
- LQCD predicts a virtural pole near N Ξ threshold, which can be detected as the cusp in $C_{\Lambda\Lambda}(q)$.

NLO(600) potential predicts the same. (The fate of H particle)

K. Sasaki+[HAL QCD], NPA998('20)121737; Y. Kamiya+, in prep.; Haidenbauer('19).

KN

- $\Lambda(1405)$ is believed to be the bound state of KN, and "dip" is expected at $R \sim a_0$.
- However, Coulomb and coupled-channel effects modify the dip-like behavior. Kamiya+ (*20).

Correlation Function with Coupled-Channels Effects

J. Haidenbauer, NPA 981('19)1; R. Lednicky, V. V. Lyuboshits, V. L. Lyuboshits, Phys. At. Nucl. 61('98)2950.

Single channel, w/o Coulomb (non-identical pair)

$$C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(\boldsymbol{r}) \left[|\chi^{(-)}(r,q)|^2 - |j_0(qr)|^2 \right]$$

Single channel, w/ Coulomb

$$C(\boldsymbol{q}) = \int d\boldsymbol{r} S(\boldsymbol{r}) \left[|\varphi^{C,\text{full}}(\boldsymbol{q},\boldsymbol{r})|^2 + |\chi^{C,(-)}(\boldsymbol{r},\boldsymbol{q})|^2 - |j_0^C(\boldsymbol{q}\boldsymbol{r})|^2 \right]$$

Full free s-wave w.f. s-wave Coulomb w.f. with Coul. Coul. w.f.

Coupled channel, w/ Coulomb

$$C_{i}(\boldsymbol{q}) = \int d\boldsymbol{r} S_{i}(\boldsymbol{r}) \left[|\varphi^{C,\text{full}}(\boldsymbol{q},\boldsymbol{r})|^{2} + |\chi_{i}^{C,(-)}(\boldsymbol{r},\boldsymbol{q})|^{2} - |j_{0}^{C}(\boldsymbol{qr})|^{2} \right] \\ + \sum_{j \neq i} \omega_{j} \int d\boldsymbol{r} S_{j}(\boldsymbol{r}) |\chi_{j}^{C,(-)}(\boldsymbol{r},\boldsymbol{q})|^{2} \quad \text{s-wave w.f.} \\ \text{in j-th channel} \\ \text{Outgoing B.C. in the i-th channel, } \omega_{i} = \text{Source weight } (\omega_{i}=1)$$

