High Density EOS – Heavy-Ion Collisions, Compact Stars and Strangeness –

Akira Ohnishi (YITP, Kyoto U.)

Quarks and Compact Stars 2017 Feb.19-22, 2017, Kyoto, Japan

- Introduction
- **EOS** softening probed in heavy-ion collisions
- Compact star matter EOS and Strangeness
- Summary

Contents

Request from organizers (Muto) Review of dense matter & strangeness nuclear physics with emphasis on heavy-ion physics and QGP formation

Contents

Introduction,

EOS softening probed in heavy-ion collisions

Compact star matter EOS and Strangeness

Summary

Neutron star – Is it made of neutrons ?

Possibilities of various constituents in neutron star core

NS core = Densest stable matter existing in our universe.

QCD Phase Diagram

(p, T) during SN & BH formation

Shen EOS + hyperons

Ishizuka, AO, Tsubakihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

(ρ, T, Y_{e}) during SN, BH formation, BNSM

QCD phase diagram (Exp. & Theor. Studies)

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars

<u>AO, PTPS 193('12)1</u>

Highest Density Matter at J-PARC?

Central 1 fm³ cube.

How do heavy-ion collisions look like ?

Au+Au, 10.6 A GeV

Pb+Pb, 158 A GeV

JAMming on the Web http://www.jcprg.org/jow/

Contents & Conclusions

Request from organizers (Muto) Review of dense matter & strangeness nuclear physics with emphasis on heavy-ion physics and QGP formation

Contents

Introduction, EOS softening probed in heavy-ion collisions Compact star matter EOS and Strangeness Summary

- Conclusions
 - We may find a (first-order) QCD phase transition at √s_{NN}=(5-20)GeV (J-PARC energy) via collective flow analysis.
 - Massive NSs imply stiff EOS at isospin asymmetric dense matter, and suggest (at least) one of 3B repulsive force, transition to stiff quark matter, or modified gravity is necessary.

QCD phase transition

- QCD phase transition at top RHIC & LHC energies
 - Jet quenching, Nuclear Modification Factor (Energy loss), Statistical Hadron Production, Parton Collectivity (v,), ...
 - \rightarrow QGP formation
 - Crossover (lattice QCD)
- One of Next Grand Challenges
 =Detecting 1st or 2nd order phase transition in QCD

Nuclear Liquid-Gas Phase Transition

T. Furuta, A.Ono ('09)

Horn, Step and Dale

Non-monotonic behavior in K⁺/ π⁺ ratio (Horn), m_τ slope par. (Step or re-hardening), rapidity dist. width of π

QCD phase transition

- QCD phase transition at top RHIC & LHC energies
 - Jet quenching, Nuclear Modification Factor (Energy loss), Statistical Hadron Production, Parton Collectivity (v₂), ...
 - \rightarrow QGP formation
 - Crossover (lattice QCD)
- One of Next Grand Challenges
 =Detecting 1st or 2nd order phase transition in QCD

 - Critical Point → Large fluctuation of conserved charges
 - First-order phase transition Softening of EOS
 - \rightarrow Non-monotonic behavior of proton number moment (κσ²) and collective flow (dv₁/dy)

Net-Proton Number Moments & Directed Flow

Non-monotonic behavior of \kappa \sigma^2 and dv_1/dy. CP & FOPT signal ?

Two ways to probe QCD phase transition

What is directed flow ?

- v₁ or <p_x> as a function of y is called directed flow.
- Created in the overlapping stage of two nuclei
 - \rightarrow Sensitive to the EOS in the early stage.
- Becomes smaller at higher energies.

How can we explain non-monotonic dependence of dv_i/dy ? \rightarrow Softening or Geometry

$$v_1 = < p_x / p_T > = < \cos \phi >$$

Does the "Wiggle" signal the QGP ?

Hydro predicts wiggle with QGP EOS. Baryon stopping + Positive space-momentum correlation leads wiggle (w/o QGP)

Negative dv_1/dy around $\sqrt{s_{NN}} \sim 10$ GeV

■ No at around √s_{NN}~10 GeV in transport models.

V. P. Konchakovski, W. Cassing, Y. B. Ivanov, V. D. Toneev, PRC90('14)014903 **Does Directed Flow Collapse Signal Phase Tr. ?**

- Solution Negative dv_1/dy at high-energy ($\sqrt{s_{NN}} > 20$ GeV)
 - Geometric origin (bowling pin mechanism), not related to FOPT *R.Snellings, H.Sorge, S.Voloshin, F.Wang, N. Xu, PRL84,2803('00)*
- Solution Negative dv_1/dy at $\sqrt{s_{NN}} \sim 10$ GeV
 - Yes, in three-fluid simulations. → Thermalization ?
 Y. B. Ivanov and A. A. Soldatov, PRC91('15)024915
 - No, in transport models incl. hybrid.
 E.g. J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stoecker, PRC89('14)054913.
 Exception: B.A.Li, C.M.Ko ('98) with FOPT EOS

We investigate the directed flow at BES energies in hadronic transport model with / without mean field effects with / without softening effects via attractive orbit.

Hadron Transport Model

- Microscopic Transport Models
 - = Boltzmann Eq. with potential effects

E.g. Bertsch, Das Gupta, Phys. Rept. 160(88), 190 $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f - \nabla U \cdot \nabla_p f = I_{\text{coll}}$

$$I_{\text{coll}}(\mathbf{r}, \mathbf{p}) = -\frac{1}{2} \int \frac{d\mathbf{p}_2}{(2\pi)^3} d\Omega \ v_{12} \frac{d\sigma}{d\Omega} \ [ff_2(1-f_3)(1-f_4)) - (12 \leftrightarrow 34)]$$

UrQMD 3.4 (Frankfurt), PHSD Giessen (Cassing), GiBUU 1.6 Giessen (Mosel), AMPT (Texas A&M), JAM (Y. Nara)

Hadron-string transport model JAM

Hadronic cascade with resonance and string excitation Nara, Otuka, AO, Niita, Chiba, Phys. Rev. C61 (2000), 024901.

 Potential term → Mean field effects in the framework of RQMD/S Sorge, Stocker, Greiner, Ann. of Phys. 192 (1989), 266. Tomoyuki Maruyama et al., Prog. Theor. Phys. 96(1996), 263. Isse, AO, Otuka, Sahu, Nara, Phys.Rev. C 72 (2005), 064908.
 M. Ohnishi @ QCS2017, Feb. 22, 2017, Kyoto 22

Comparison with RHIC data on v₁

■ Pot. Eff. on the v_1 is significant, but dv1/dy becomes negative only at $\sqrt{s_{NN}} > 20$ GeV.

Hadronic approach does not explain directed flow collapse at 10-20 GeV even with potential effects.

JAM/M: only formed baryons feel potential forces JAM/Mq: pre-formed hadron feel potential with factor 2/3 for diquark, and 1/3 for quark JAM/Mf: both formed and pre-formed hadrons feel potential forces.

Y. Nara, AO, NPA 956 ('16), 284 (QM2015 proc.)

A. Ohnishi @ QCS2017, Feb. 22, 2017, Kyoto 24

Softening Effects via Attractive Orbit Scattering

Attractive orbit scattering simulates softening of EOS
 P. Danielewicz, S. Pratt, PRC 53, 249 (1996) H. Sorge, PRL 82, 2048 (1999).

$$P = P_f + \frac{1}{3V\Delta t} \sum_{(i,j)} \boldsymbol{q}_{ij} \cdot (\boldsymbol{r}_i - \boldsymbol{r}_j)$$
(Virial theorem)

- With attractive orbit, particle trajectories are bended toward denser region.
 - → Attractive orbit scattering simulates time evolution with softer EOS !

Let us examine the EOS softening effects, which cannot be explained in hadronic mean field potential, by using attractive orbit scatterings !

Y. Nara, H. Niemi, AO, H. Stöcker, PRC 94 ('16), 034906

Directed Flow with Attractive Orbits

Mean Field + Attractive Orbit

Nara, Niemi, AO, Stöcker ('16)

MF+*Attractive Orbit make dv*/*dy negative at* $\sqrt{s_{NN}} \sim 10$ *GeV*

Softening of EOS by Attractive Orbits

Pressure in simulated EOS ~ EOS-Q (e.g. Song, Heinz ('08))

Softening: Where and How much ?

Compact star matter EOS and Strangeness

Neutron star – Is it made of neutrons ?

Possibilities of various constituents in neutron star core

NS core = Densest stable matter existing in our universe.

Hyperons in Dense Matter

- What appears at high density ?
 - Nucleon superfluid (³S₁, ³P₂), Pion condensation, Kaon condensation, Baryon Rich QGP, Color SuperConductor (CSC), Quarkyonic Matter,

Hyperons

Tsuruta, Cameron (66); Langer, Rosen (70); Pandharipande (71); Itoh(75); Glendenning; Weber, Weigel; Sugahara, Toki; Schaffner, Mishustin; Balberg, Gal; Baldo et al.; Vidana et al.; Nishizaki, Yamamoto, Takatsuka; Kohno, Fujiwara et al.; Sahu, Ohnishi; Ishizuka, Ohnishi, Sumiyoshi, Yamada; ...

Neutron Star Masses

- NS masses in NS binaries can be measured precisely by using some of GR effects via doppler shifts.
 - Perihelion shift+Einstein delay
 → M = 1.442 ± 0.003 M_☉
 (Hulse-Taylor pulsar)
 Taylor, Weisenberg ('89)
- **Many NSs have** $M \sim 1.4 M_{\odot}$.

Massive Neutron Star Puzzle

- **Observation of massive neutron stars (M ~ 2 M_{\odot})**
 - PSR J1614-2230 (NS-WD binary), 1.97 \pm 0.04 M_{\odot}

Demorest et al., Nature 467('10)1081 (Oct.28, 2010). "Kinematical" measurement (Shapiro delay, GR) + large inclination angle

• PSR J0348+0432 (NS-WS binary), 2.01 \pm 0.04 M_{\odot}

Bruckner-Hartree-Fock theory with Hyperons

- Microscopic G-matrix calculation with realistic NN, YN potential and microscopic (or phen.) 3N force (or 3B force).
 - Interaction dep. (V18, N93, ...) is large → Need finite nuclear info. E.Hiyama, T.Motoba, Y.Yamamoto, M.Kamimura / M.Tamura et al.
 - NS collapses with hyperons w/o 3BF.

Z.H.Li, H.-J.Schulze, PRC78('08), 028801.

What did we miss ?

- Hyperon potential in nuclear matter ?
 - $U_{\Lambda}(\rho_0) \sim -30$ MeV, $U_{\Sigma}(\rho_0) > +20$ MeV, $U_{\Xi}(\rho_0) \sim -14$ MeV
- Hyperon-Hyperon potential ?
 - If vacuum ΛΛ potential is much more attractive than Nagara event implies, ΛΛΝ potential must be very repulsive.
- Kaon potential in nuclear matter ?
- Three-baryon (3B) interaction ?
- Quark matter core ?
- Modified gravity ?

Σ or Ξ potential in nuclei ?

- New analysis of Σ production reaction: ⁶Li (π⁻, K⁺) Σ⁻⁵He (Honda, Harada)
 → U_Σ ~ +30 MeV (consistent)
- New Ξ hypernuclei → B.E. = 9 MeV & 1 MeV (Takahashi (A01), Nakazawa, Kanatsuki, Yamamoto) → Deeper than previous estimate !

A. Ohnishi @ QCS2017, Feb. 22, 2017, Kyoto

37

AA potential ?

■ Nagara fit $\rightarrow a_0(\Lambda\Lambda) = -0.575$ fm or -0.77 fm

Hiyama, Kamimura, Motoba, Yamada, Yamamoto ('02), Filikhin, Gal ('02)

New approach: $\Lambda\Lambda$ correlation from HIC (Morita) \rightarrow -1.25 fm < $a_0(\Lambda\Lambda)$ < 0 (Consistent with Nagara)

Exp: Adamczyk et al. (STAR Collaboration), PRL 114 ('15) 022301. Theor.:Morita et al., T.Furumoto, AO, PRC91('15)024916.

Remaining possibilities

- Three-baryon (3B) interaction ?
 - "Universal" 3B repulsion Nishizaki, Takatsuka, Yamamoto ('02), Tamagaki ('08), Yamamoto, Furumoto, Yasutake, Rijken ('13)
 - Repulsive ANN potential (or density dep. AN pot.) Lonardoni, Lovato, Gandolfi, Pederiva ('15), Togashi, Hiyama, Yamamoto, Takano ('16), Tsubakihara, Harada, AO ('16)
 - Medium modification of baryons (Quark Meson Coupling model) J.Rikovska-Stone, P.A.M.Guichon, H.H.Matevosyan, A.W.Thomas ('07), Miyatsu, Yamamuro, Nakazato ('13)

Quark matter NS core ?

First order phase transition

L. Bonanno, A. Sedrakian, Astron. Astrophys. 539 (2012) A16; M. Bejger, D. Blaschke, P. Haensel, J. L. Zdunik, M. Fortin, arXiv:1608.07049.

- Crossover transition to quark matter Masuda, Hatsuda, Takatsuka ('12)
- Modified Gravity Astashenok et al. ('14), M.-K. Cheoun's talk

Hyperon Puzzle

Lonardoni, Lovato, Gandolfi, Pederiva ('15),

QMC, Miyatsu, Yamamuro, Nakazato ('13)

Yamamoto, Furumoto, Yasutake, Rijken ('13)

Togashi, Hiyama, Takano, Yamamoto ('16).

40

How can we discriminate 3B force ?

- Precise measurement and calc. of A separation energy (J-PARC, JLab) and Few-body hypernuclei
 E.g. E. Hiyama, Y. Kino, M. Kamimura, PPNP51('03)223.
 - $\rightarrow \Lambda$ potential depth, shape and A-dep.
- Collective flow of Hyperons
- "microscopic" 3-body force
 - Chiral EFT *Haidenbauer et al. ('13)* → we need more data to fix LECs
 - Lattice 3B *Doi et al. (HAL QCD)('12)* → much CPU at Phys. point, but doable
 - Quark model 3BF Nakamoto, Suzuki ('16)
 → 3B Pauli blocking effects are small
 - Quark model 3B force with KMT AO, Kashiwa, Morita

What is the origin of repulsive 3B force

Short range (r < 0.6 fm) core of 2B force vector boson exch., Pomeron exch., quark exclusion + one gluon exch., ...

We may need quark-gluon DOF to understand 3B repulsion. → Quark Meson Coupling, Lattice QCD 3B force (HAL QCD), Quark Cluster model (Nakamoto)

From 3-quark int. to 3B force

KMT interaction

Kobayashi, Maskawa ('70), 't Hooft ('76)

$$\mathcal{L}_{=}g_D (\det \Phi + \text{h.c.}) , \quad \Phi_{ij} = \bar{q}_j(1 - \gamma_5)q_i$$

- Resuponsible for U(1)_A anomaly
- 3-body int. among u,d,s quarks
- g_D is fixed by η-η' mass diff.
 → g_D= -9.29 Hatsuda, Kunihiro ('94)
 -12.36 Rehberg, Klevanski, Hufner ('96)
- Repulsive in ΛΛ system
 → Pushes up H particle energy. *Takeuchi, Oka ('91)*

Does the anomaly support NS ?

3B potential from KMT interaction

KMT 3B Potential

44

3B potential from KMT: Repulsive enough ?

Summary

- Dense matter EOS is important in nuclear physics and astrophysics.
 - In compact star phenomena (neutron stars, supernovae, black hole formation, binary neutron star mergers), very dense matter would be created, and non-nucleonic hadrons and quarks may admix.
 - In heavy-ion collisions at $\sqrt{s_{_{NN}}}$ =(5-20) GeV, very dense (and partially equilibrated) matter would be formed.
- Recent observation of the directed flow collapse (dv₁/dy < 0) seems to indicate softening of the EOS at high densities. This softening may signal a first-order QCD phase transition.
- Massive NSs imply stiff EOS at isospin asymmetric dense matter, and suggest (at least) one of 3B repulsive force, transition to stiff quark matter, or modified gravity is necessary.
- Can we understand the above two in a consistent manner ?

