Symmetry energy in dense matter and its relation to phase boundary

Akira Ohnishi (YITP)

Symmetry Energy workshop, Nov. 10-12, 2011, Kyoto, Japan

- Introduction
- QCD phase diagram in asymmetric nuclear matter and black hole formation
- Symmetry energy dependence of dense matter EOS
- Summary

QCD Phase diagram and Nuclear Matter EOS

Phase diagram and EOS

= Two important aspects of Nuclear Matter

- Dense nuclear matter has rich physics
 - → Many-body theory, Exotic compositions, CEP, Astrophysical applications, ...

Nuclear matter EOS

Ŧ

= Subjects in Nuclear, Quark-Hadron, Particle, Astro, and Condensed Matter Physics !

Symmetry Energy

Recent data suggest that EOS becomes softer in asymmetric nuclear matter.

$$K = K_{sym} + K_{asy} \delta^2$$
, $K_{asy} \sim -550 \,\text{MeV}$
 $E_{sym} \simeq 31.6 \,(\rho / \rho_0)^{1.05}$

- Isoscalar Giant Monopole Resonance (ISGMR) of Sn isotopes
 - ISGMR in Isotope chain (¹¹²Sn ~ ¹²⁴Sn) is systematically studied.

T. Li, U. Garg, et al., PRC81('10), 034309.

Symmetry Energy

Neutron Star Composition

Red Shift

MR curve

R

Μ

Ohnishi, Sym. E., Nov.10-12, 2011, YITP, Kyoto, Japan 5

ρ

 ρ_{B}

Sym. E.

$1.97 \pm 0.04 M_{\odot}$ Neutron Star

signature. We calculate the pulsar mass to be $(1.97 \pm 0.04)M_{\odot}$, which rules out almost all currently proposed²⁻⁵ hyperon or boson condensate equations of state (M_{\odot} , solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks¹².

Symmetry Energy at High Density

- **Symmetric matter pressure is zero at** ρ_0 .
 - \rightarrow A large part of pressure in neutron star matter at ~ ρ_0 comes from symmetry energy.
- Symmetry energy helps to enhance electron chemical potential.
 - → How does it affect to pion condensation and transition to quark matter ?
- In this work, we study the role of symmetry energy at high density from the comparison of

the hadronic EOS (Relativistic Mean Field; RMF) and

chiral effective model (NJL, PNJL, PQM, ...) results.

Let me advertize our recent work on ...

Quark Matter in Compact Stars

- Probable in Neutron Star (Cold, dense, asymmetric) E.g. N. Glendenning, "Compact Stars"; F. Weber, Prog. Part.Nucl.Phys.54('05)193
- Suggestions in Supernovae (Warm, mildely dense (~1.8 ρ₀))
 T. Hatsuda, MPLA2('87)805; I. Sagert et al., PRL102 ('09) 081101.
- May be in Neutron star merger (Very dense)
- How about Dynamical black hole formation

 → Very Hot (~90 MeV), dense(~5ρ₀), Asym. (Y_p~ (0.1-0.3))
 M. Liebendorfer et al., ApJS 150('04)263; K. Sumiyoshi, et al., PRL97('06) 091101;
 K.Sumiyoshi, C.Ishizuka, AO, S.Yamada, H.Suzuki, ApJL690('09),L43

Dynamical Black Hole Formation

Gravitational collapse of heavy (e.g. 40 M_{\odot}) progenitor \rightarrow BH

• v heating is not enough \rightarrow failed supernova

radius [km]

Model Details

BH formation calculation

Sumiyoshi, Yamada, Suzuki, Chiba, PRL 97('06)091101.

- v radiation 1D (spherical) Hydrodynamics
- v transport is calculated exactly by solving the Boltzmann eq.
- \blacklozenge Gravitational collapse of 40 M_{\odot} star
- Initial condition: WW95 S.E.Woosley, T.A.Weaver, ApJS 101 ('95) 181
- Shen EOS (npeµ)
- QCD effective models
 - NJL, PNJL, PNJL with 8 quark int., PQM
 - N_f=2
 - Vector coupling $\rightarrow G_v/G_s$ (g_v/g_s in PQM)=0, 0.2

Chiral Effective Models

- Approaches to Phase Diagram
 - Lattice QCD: Reliable at small μ (μ << T), but has the sign problem at large μ
 - Chiral Effective models: NJL, PNJL, PQM Nambu, Jona-Lasinio ('61), Fukushima('03), Ratti, Thaler, Weise ('06),

B.J.Schafer, Pawlowski, Wambach ('07); Skokov, Friman, E.Nakano, Redlich('10) Spontaneous breaking & restoration of chiral symmetry Polyakov loop extension → Deconf. transitions

Chiral Effective Models ($N_f=2$)

- Lagrangian (PQM, as an example)
 - $L = \overline{q} \Big[i \gamma^{\mu} \underline{D}_{\mu} g_{\sigma} (\underline{\sigma} + i \gamma_{5} \tau \cdot \pi) \Big] q + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma + \frac{1}{2} \partial^{\mu} \pi \cdot \partial_{\mu} \pi \underbrace{U_{\sigma} (\sigma, \pi)}_{\text{chiral}} \underbrace{U_{\Phi} (\Phi, \overline{\Phi})}_{\text{Polyakov}}$ $F_{\text{eff}} \equiv \Omega / V = U_{\sigma} (\sigma, \pi = 0) + U_{\Phi} (\Phi, \overline{\Phi}) + \underbrace{F_{\text{therm}}}_{\text{therm}} + \underbrace{U_{\text{vac}} (\sigma, \Phi, \overline{\Phi})}_{\text{vac}}$ $particle \text{ exc. } \mathbf{q \text{ zero point}}$
 - $U_{\sigma} \sim \phi^4$ theory, $U_{\phi} \sim -\log$ (Haar Measure)
 - Parameters are fixed by fitting vacuum hadron masses (U_{σ}) and lattice data $(\Phi(T) \rightarrow U_{\Phi})$
 - Vector coupling is not known well \rightarrow Comparison of $\mathbf{g}_{\mathbf{v}}/\mathbf{g}_{\mathbf{s}}=0, 0.2$ $L_{V}=-g_{v}\overline{q}\gamma_{\mu}(\omega^{\mu}+\boldsymbol{\tau}\cdot\boldsymbol{R}^{\mu})q-\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}-\frac{1}{4}\boldsymbol{R}_{\mu\nu}\cdot\boldsymbol{R}^{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{1}{2}m_{\rho}^{2}R_{\mu}R^{\mu}$
 - 8 Fermi interaction *T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro ('10)* $G_{\sigma 8} \left[(\bar{q}q)^2 + (\bar{q}i\gamma_5\tau q)^2 \right]^2$

3D phase diagram and BH formation

- **Isospin chemical potential** $\delta \mu = (\mu_d \mu_u)/2 = (\mu_n \mu_p)/2$
 - Smaller "Effective" number of flavors \rightarrow smaller T_{CP}
- BH formation process → Quark matter formation & CP sweep
 - Highest μ_B just ~ 1300 MeV > μ_c (1000-1100 MeV in eff. models)
 - Highest T ~ 90 MeV > T_{CP} (at $\delta\mu$ ~50 MeV)

Swept Region of Phase Diagram during BH formation

- CP location in Symmetric Matter
 - Lattice QCD μ_{CP}=(400-900) MeV
 - Effecitve models
 μ_{CP}=(700-1050) MeV
- CP in Asymmetric Matter (E.g. δμ=50 MeV)
 - T_{CP} decreases at finite $\delta\mu$.
 - \rightarrow Accessible (T, μ_B) region during BH formation

M.A.Stephanov, Prog.Theor.Phys.Suppl.153 ('04)139; FK02:Z. Fodor, S.D.Katz, JHEP 0203 (2002) 014 LTE:S. Ejiri et al., Prog.Theor.Phys.Suppl. 153 (2004) 118; Can: S. Ejiri, PRD78 (2008) 074507 Stat.:A. Andronic et al., NPA 772('06)167

How about Neutron Stars ?

- Neutron Star matter in RMF
 - Solve equilibrium condition at T=0 $\delta\mu = \mu_e/2$, $\rho_c = 0$ (v less, no charge)
 - Various RMFs predict similar δμ values
 - max. δμ ~ 100 MeV
- Phase boundary at T=0 in eff. models
 - First order phase transition disappears at δμ = (60-80) MeV → Possibility of cross over in NS

Density dependence of Symmetry Energy

- RMFs have small ambiguity in Esym. Is it true ?
 - RMF Esym is determined to fit finite nuclear BE, thus reflects average values in the ρ_B < ρ₀ region.
 - Nuclear effective potential (g-matrix) suggests S-curve behavior of Esym, while RMF gives Esym almost linear in ρ_B.
 - → RMF may overestimate Esym at high density.

Effects of Symmetry Energy Change on Phase Transition

- Simple try: Reduce g_ρ (ρ-N coupling)
 by a factor 0.9.
 - No re-fit of nuclear BE
 - Not connected to low-density (nuclear mixed) EOS (i.e. Do not believe the results.)
- Light neutron star radii sensitively depends on the symmetry energy strength.
 - Pressure at around ρ₀ is dominated by symmetry energy.

Phase transition with reduced Nuclear Sym. Energy

Isospin chemical potential

- Smaller Esym leads to smaller δμ.
- Dependence is not large, but moves in the region of gv/gs=0-0.2.

Summary

- Critical point temperature would decrease at finite isospin chemical potential, $\delta\mu = (\mu_d \mu_u)/2$.
 - Quark matter formation and critical point sweep are expected in black hole formation processes.
 - There is also a possibility for the first order phase boundary to disappear in neutron stars because of large δμ.
- Symmetry energy strength at high density is relevant in low-mass neutron star radius (already known) and phase transition.
 - Reduced SymE \rightarrow Smaller $\delta\mu$ in NS \rightarrow Possibility of transition order change.
- There are many subjects to be discussed
 - Construction of Hadron-Quark matter EOS with CP (c.f. J. Steinheimer; D. Blaschke), and its application.
 - S-shape dep. of symmetry energy, 1.97 M_{\odot} neutron star, ...

Thank you for your attention !

Collaborators

- H. Ueda (Kyoto U.), T.Z.Nakano (Kyoto U./YITP),
- M. Ruggieri (YITP), K. Sumiyoshi (Numazu),
- K. Tsubakihara (Hokkaido U.), C. Ishizuka (Tokyo U. of Sci.),
- S. Yamada (Waseda), H. Suzuki (Tokyo U. Sci.),

