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We investigate the nuclear fragmentation and atomic cluster formation by means of the

recently proposed quantal Langevin treatment. It is shown that the e�ect of the quantal

uctuation is in the opposite direction in nuclear fragment and atomic cluster size distri-

bution. This tendency is understood through the e�ective classical temperature for the

observables.

1 Introduction

Molecular dynamics presents a powerful tool for elucidating both statistical and dynamical prop-

erties of mesoscopic systems. While quantitative insight can be obtained in many cases, the foun-

dation and interpretation of such approaches can be problematic when quantum systems are ad-

dressed, since the energy uctuations are necessarily present in wave packet wave functions whose

e�ects are neglected in molecular dynamics.

We have shown this quantal energy uctuations signi�cantly a�ect the statistical properties

of nuclei [1, 2], and that e�ect can be included in dynamical treatments by means of a quantal

Langevin force. This quantal Langevin force distributes the ensemble according to the probabilities

hexp(��

^

H)i and h�(E �

^

H)i in the canonical and microcanonical cases, respectively, within the

harmonic approximation [2], while the probabilities are exp(��h

^

Hi) and �(E � h

^

Hi) with the

normal treatment.

In this short report, we apply this quantal Langevin model to the nuclear fragmentation and

the atomic cluster formation of noble gases. These two processes have been extensively studied by

using molecular dynamics, although the role of quantum e�ects is di�erent. While atomic nuclei

are highly quantal objects, atomic clusters are believed to be described by classical dynamics.

2 Quantal Langevin Model

2.1 Quantal Langevin Equation

We �rst give a condensed description of the recently introduced quantal Langevin model for the

situation when the system can be regarded as being in thermal equilibrium at a given temperature.

The treatment seeks to take account of the energy uctuations present in a system being

described in terms of many-body wave packets. As we have already discussed in detail in Ref.

[2], this inherent energy dispersion modi�es the statistical weight relative to the naive the classical

form,

W

�

(Z) � hZj exp(��

^

H)jZi 6= exp(��H) : (1)

Here H = hZj

^

HjZi is the expectation value of the Hamiltonian in the given wave-packet state jZi

and thus the last quantity represent the usual classical statistical weight. The complex parameter
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g is related to the phase space coordinates, z

n

= r

n

=2�r + ip

n

=2�p, where

�r and �p are widths of wave packet. By invoking the harmonic approximation, it is possible to

obtain a good description of the statistical weight by means of a simple \free energy",

F

�

(Z) � � logW

�

(Z) =

H

D

(1� exp(��D)) ; (2)

where D = �

2

E

=E

�

is the e�ective level spacing. (The energy of the wave packet relative to its

ground state is denoted by E

�

and �

2

E

is the associated variance.)

The relaxation towards this approximate quantal equilibrium can be described by the following

Fokker-Planck equation for the distribution �(Z) of wave-packet parameters,
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where q

i

represents either r

n

or p

n

. It is easy to check that the statistical equilibrium distribution,

�

eq

= exp(�F

�

), is a stationary solution to the above Fokker-Planck equation. Moreover, when the

classical statistical weight is employed (i.e. when F

C

�

= �H), the drift and the di�usion coe�cients

of the Fokker-Planck equation satisfy the usual Einstein relation, corresponding to � = 1 in (4).

On the other hand, when the quantal statistical weight obtained with the harmonic approximation

is used, eq. (2), the relation is modi�ed. For example, if the e�ective level spacing D does not

depend strongly on the wave-packet parameters, the drift coe�cient reduced by the factor �,
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; � =

1� exp(��D)

�D

: (4)

Since � is smaller than unity, the resulting Fokker-Planck equation gives smaller friction, thus in

e�ect relatively larger uctuations will arise.

It is convenient to solve the Fokker-Planck transport equation by means of a Langevin method.

Within the framework of QMD the Langevin equation becomes

_
p = f � ��M

p

� (v � u) � �M

p

� u + g

p

� �

p

; (5)

_
r = v + ��M

r

� f + g

r

� �

r

; (6)

v =

@H

@p

; f = �

@H

@r

; M

p

= g

p

� g

p

; M

r

= g

r

� g

r

: (7)

Here r and p are the phase-space centroid parameters for the wave packet, � is used to denote

random numbers drawn from a normal distribution with a variance equal to two, and u is a local

collective velocity. In these equations, we have omitted the di�usion-induced drift term and that

part of the mobility tensor that connects r and p.

2.2 Thermal Distortion and Observation

In addition to modifying the statistical weight, the energy uctuation also modi�es the meaning of

wave packet ensemble, since it causes a thermal distortion of the spectral strength distribution of the

energy eigencomponents within each wave packet. The distortion operator exp(��

^

H=2) reduces

the expectation value of the Hamiltonian in the particular state jZi. The thermal distortion is

calculated by replacing the time t by the imaginary time i� in the equation of motion. The

resulting \evolution" is then described by a cooling equation,

dp
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) ;
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2
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f

n

; (8)

with which the state should be propagated until � = �h�=2. Here, v is again replaced by v � u in

order to leave the collective (or cluster) motion una�ected.
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Figure 1: Nuclear (left) and cluster (right) mass distribution at given temperatures in a box. Solid

circles and open triangles show the results of the simulation with the quantal and classical Langevin

force. In nuclear case, fragment grandcanonical calculation is also shown (solid line).

3 Application to Fragment Formation Processes

In this section, we show the calculated results of nuclear fragmentation [3] and atomic cluster

formation [4] processes by means of Langevin models with and without quantal uctuations. In a

Langevin model without quantal uctuations, the classical Einstein relation is kept (� = 1), and

the thermal distortion does not exist.

In Fig. 1, we show the nuclear fragment and atomic cluster mass distributions at given tem-

peratures. In the nuclear case, we put 40 nucleons in a box with periodic boundary condition,

and quantal or classical (normal) Langevin force is included in the Quantum Molecular Dynamics

(QMD) model. In the atomic case, the dynamics of 100 argon atoms in a box interacting via

Lennard-Jones potential is simulated.

It is clear that the quantal uctuation e�ect on the atomic cluster mass distribution is opposite

to that on nuclear fragmentation. Namely, the inclusion of the quantum Langevin force tends to

produce more heavy fragments in the nuclear case, and vice versa in atomic cases.

These features are intuitively understood by considering the corresponding e�ective classical

temperature. The e�ective temperature can be estimated by means of the Einstein relation as the

square of the di�usion coe�cient divided by the drift coe�cient. In the case of atomic clusters,

the distances of atoms are much larger than the wave packet width, then the thermal distortion

does not modify the cluster con�guration. Then the corresponding e�ective temperature can be

obtained from Eq. (5),

T

e�

=

�T

��

=

T

�

= D=(1� e

�D=T

) > T : (9)

This expectation is indeed borne out, as shown in Fig. 2 where we compare the cluster mass

distribution obtained with the quantal model at T = 0:5� to the result of the classical treatment

carried out at the corresponding e�ective temperature T

e�

= 0:62�. The quantitative similarity

between the two distributions is remarkable and supports the above discussion.
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Figure 2: The cluster mass distribution obtained with either the quantal Langevin model at T =

0:5� (solid circles) or the classical Langevin model at the corresponding e�ective temperature T

e�

=

0:62� (open triangles), at the density � = 0:025 �

�3

.

On the other hand, the thermal distortion strongly modify the nucleon con�guration in nuclear

fragmentation, and the above discussion does not hold. In order to illustrate this feature, we

consider here the evolution of the distorted momentum (i.e. the solution to Eq. (8)) which is given

by

p

0

i

(t) � p

i

(t; � =

�h

2T

) = e

�D=2T

p

i

(t) : (10)

Thus, in the rest frame of the nuclear fragment, the distorted momenta of the constituent nucleons

are governed by a modi�ed Langevin equation,

_

p

0

= e

�D=2T

f � ��M

2

� p

0

+ e

�D=2T

p

�TM � � : (11)

We can again invoke the Einstein relation and extract an e�ective temperature for the intrinsic

cluster motion,

T

0

e�

=

e

�D=T

�T

��

= D=(e

D=T

� 1) < T : (12)

It has been shown that calculations with classical molecular dynamics at this equivalent temperature

T

0

e�

yields results that are very similar to the exact quantal results for the real temperature T , for

non-interacting particles in a harmonic potential [2, 5, 6, 7].

In nuclear fragmentation, the normal Langevin model at this e�ective temperature T

0

e�

gives a

similar fragment mass distribution to the quantal Langevin model at T , except the region around

the critical temperature. At around the critical temperature, the system is mechanically unstable,

and a small uctuation induces a large di�erence after the thermal distortion. At higher and lower

temperatures than the critical one, the system is mechanically stable, and the above discussion

approximately holds.

4 Summary

In the present report, we have applied a recently developed quantal Langevin model to systems of

nucleons and argon atoms in thermal equilibrium. The basic features of the quantal Langevin model

can be summarized as larger uctuations(� � 1) and the thermal distortion. The combination of

these two points appears as di�erent e�ects in nuclear fragmentation and atomic cluster formation.

In the atomic case, the distortion e�ects are small and the e�ective classical temperature becomes

higher than the actual temperature. Namely, quantum uctuations gives a steeper slope in the size



distribution. In the nuclear case, however, the distortion strongly modi�es nucleon con�gurations,

then the quantum uctuation enhances fragment yield.

As it was pointed out at this meeting, the quantal uctuation e�ect shown in this work seems

to be too large in the atomic case, since the distance between atoms is much larger than the width

of the wave packet and the classical dynamics is believed to be valid. However, a small width

in r-space leads to a large width in p-space. Therefore, the associated energy uctuation can be

non-negligible. In our estimate, the "level spacing" is D � 0:2265 �, where � is the depth of

the Lennard-Jones potential. Compared with the critical (classical) temperature at low densities

(� 0:6�), this value is far from negligible. This may be related to the treatment of cluster intrinsic

degrees of freedom in Ref. [8]. Ikeshoji et al. treat the cluster-intrinsic degrees of freedom in a

di�erent way from the cluster-translational motion. Therefore, we expect that there is still room

for taking account for the quantal uctuation in atomic dynamics.
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