小さな炉心の原子炉によるステライル ニュートリノ探索の現象論

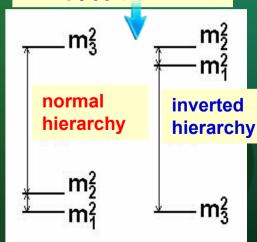
首都大理工·安田修

日本物理学会 第67回年次大会

2012年3月24日 関西学院大学

参考文献

arXiv:1107.4766 [hep-ph], 1110.2579 [hep-ph]


1.1 3世代 / 振動の枠組み

混合行列

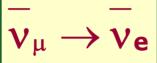
混合角 θ12/ θ23/ θ13 CP 位相 δに依存

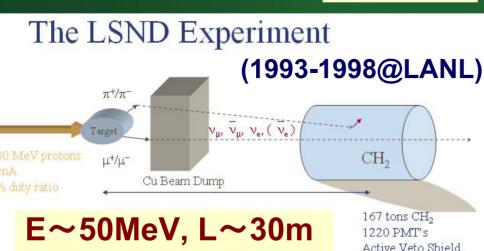
$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

両方の質量パター ンが許容されている

1.2 現時点までにわかっていること

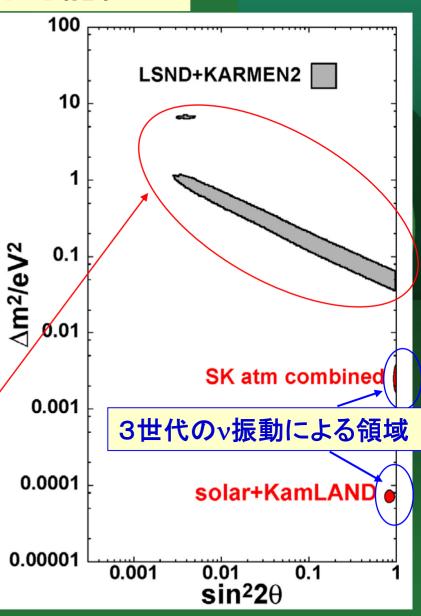
$$\theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} \, \text{eV}^2$$


$$\theta_{23} \cong \frac{\pi}{4}$$
, $|\Delta m_{32}^2| \cong 2.5 \times 10^{-3} \, \text{eV}^2$



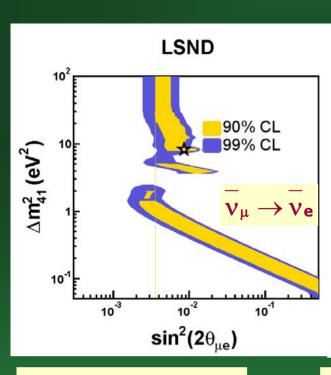
$$\theta_{13} \cong 0.15 \pm 0.01$$

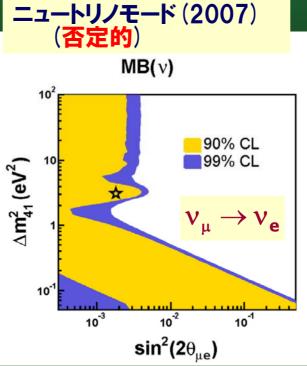
1.3 3世代間の∨振動を拡張する可能性

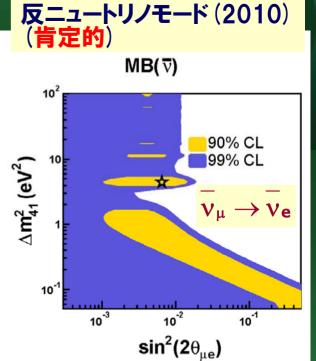

● LSND実験の結果

 $\Delta m^2 \cong O(1)eV^2$ $\sin^2 2\theta \cong O(10^{-2})$

これは3世代間のv振動 では説明不可能




1.4ステライルニュートリノシナリオに対する評判の時間変化


● MiniBooNE実験(2002-, FNAL)

LSNDを追試するための実験なはずが、結論はどっちつかずになっている

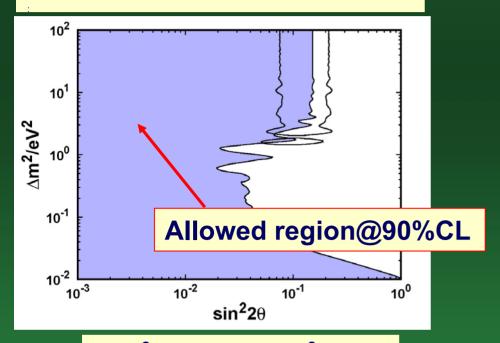
 $E\sim 1GeV$, $L\sim 1km$, $(L/E)_{MB}=(L/E)_{LSND}$

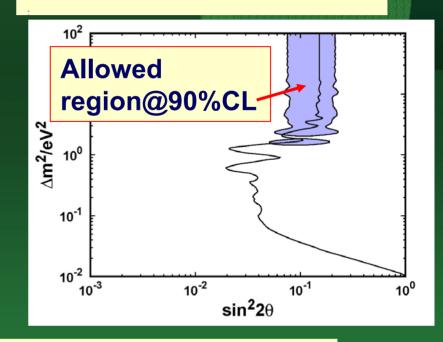
1995 LSNDは本当か?

2007 LSNDは間違っていた!

2010 LSNDはあっていた?

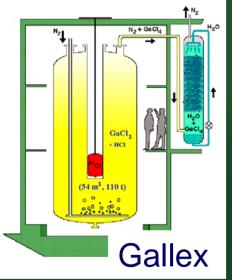
● 原子炉ニュートリノ異常


最近原子炉 $_{\nu}$ のフラックスに対する再評価が出て、これまでのデータがむしろ $\bar{\nu}_e o \bar{\nu}_e$ の欠損を示唆していると解釈されるようになった


(新フラックス) = (旧フラックス)×1.03

Bugey(原子炉 $\bar{\nu}_e \rightarrow \bar{\nu}_e$): 否定的 with old flux

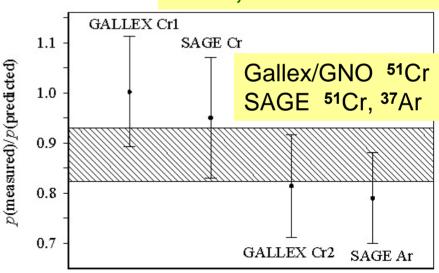
Bugey(原子炉)+etc: 肯定的 with new flux?

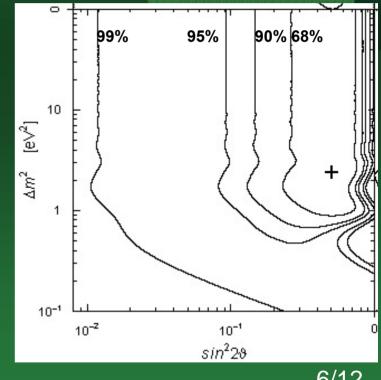

Δm²₄₁ = O(1) eV² の領域には∨振動はない

△m²₄₁ = O(1) eV ²の領域 に∨振動があるかもしれない

ガリウム異常

ガリウム太陽 V 実験の較正




$$R \equiv \frac{\text{p(measured)}}{\text{p(predicted)}} = 0.88 \pm 0.05(1\sigma)$$

Giunti-Laveder, 1006.3244v3 [hep-ph]

ガリウム太陽 ∨ 実験の較正の結果 はactive-sterile v振動によるveの 消失の兆候と解釈することが可能

SAGE, nucl-ex/0512041

1.5 4世代ニュートリノ混合の現象論

- ●太陽 v ・KamLAND (原子炉 v)
 - $\Rightarrow \Delta m_{21}^2 = 8 \times 10^{-5} \text{ eV}$
- ●大気 v · K2K(加速器 v) ⇒ $|\Delta m_3^2| = 2.5 \times 10^{-3} \text{ eV}^2$
- LSND/MB、原子炉∨異常、Ga異常
 → Δm²₄₁ ≅ 1eV²

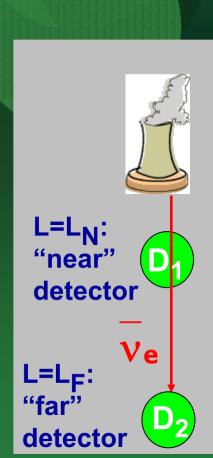
Δm²が3つ ある4世代 パターン

 m_{4}^{2} (3+1) -(2+2) -スキーム スキーム

CERNのLEP実験('89-'00) から弱い相互作用を する軽いニュートリノは3つしかない→第四のニュート リノはステライルニュートリノ (v s)とせざるを得ない

 $(v_e, v_\mu, v_\tau, v_s)$

現在では太陽V+大気Vから 完全に排除されている

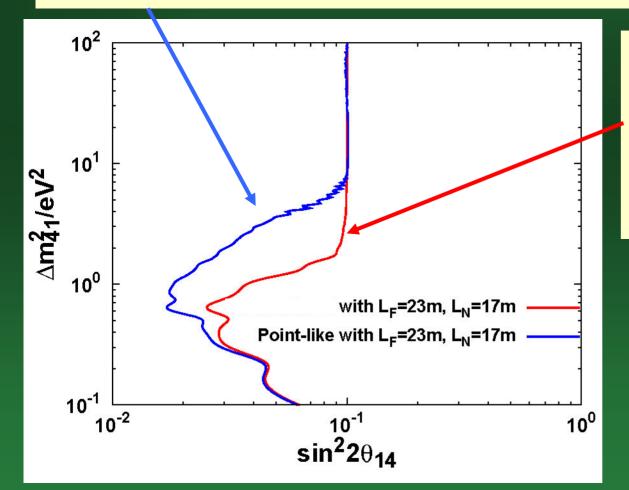

この講演では(3+1)スキームを仮定する

2. 実験原子炉ニュートリノの混合角度 θ 14への感度

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

至近距離の近距離L_Nと遠距離L_Fに測定器を置き、 L_NとL_Fについて感度を最適化

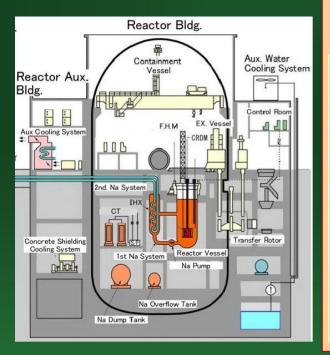
<E> \sim 4MeV, L=10m→ナイーブには Δ m² \sim 1eV²程度の感度は期待できる



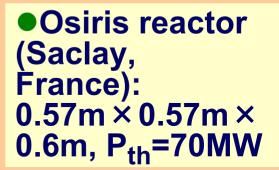
2.1 商業炉の場合 (D=4m, h=4mの円筒形を仮定)

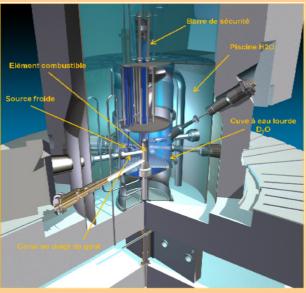
最適な距離の組み合わせは L_N=17m, L_F=23m

青線: point-likeな炉心を持つと仮定した仮想的な場合


→ 感度は実際の場合より良い

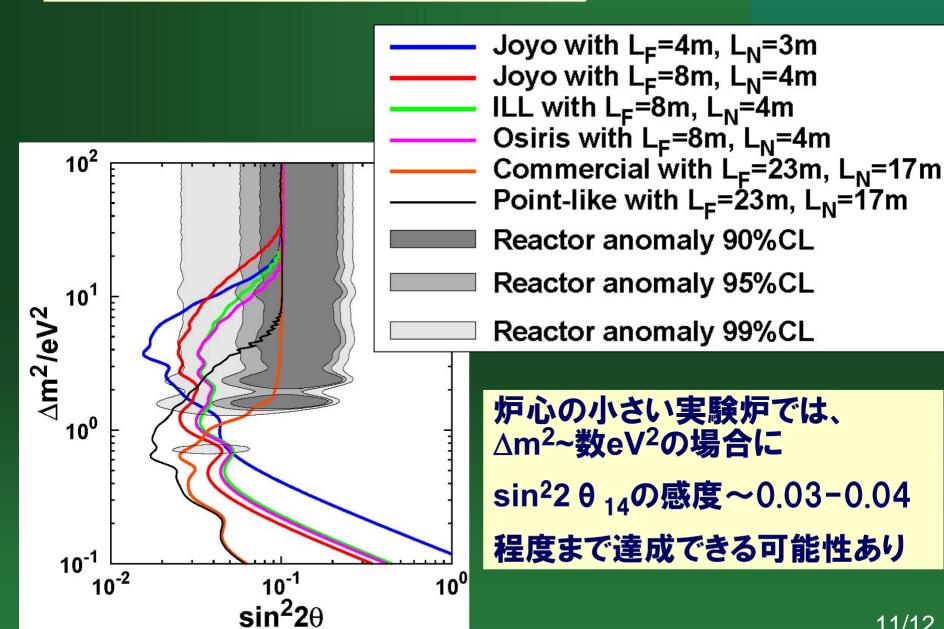
赤線:実際の商業炉 →炉心の拡がりが無 視できず、 △m²~2eV²の場合、 感度が劣化


2.2 小さな炉心を持つ実験炉


● 常陽(茨城県大 洗): D=0.8m, h=0.5m, P_{th}=140MW

Nucifer project

●ILL reactor (Grenoble, France):D=0.4m, h=0.8m, P_{th}=58MW



Power density~500MW/m³

cf. ~50MW/m³ for commercial reactors

小さな炉心を持つ実験炉における感度

3. まとめ

- 原子炉∨フラックスの再評価により、質量二乗差
 △m²~O(1eV²) のステライル∨振動のシナリオが再度注目されている。
- △m²>1eV² に対して原子炉∨実験から質量二乗差の情報を得るには、炉心の拡がりの効果を避けるため、小さな炉心の原子炉を使う必要がある。
- 研究炉は一般的に炉心が小さく、それらの施設における の測定により、LSND/MiniBooNE、原子炉/異常、ガリウム 異常のテストができる可能性がある。

Backup slides

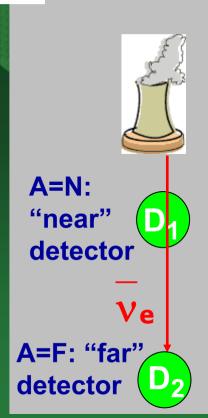
2. Analysis of a reactor neutrino oscillation experiment with one reactor & two detectors

$$\chi^{2} = \min_{\alpha's} \left\{ \sum_{A=N,F} \sum_{i=1}^{n} \frac{1}{(t_{i}^{A} \sigma_{i}^{A})^{2}} \left[m_{i}^{A} - t_{i}^{A} (1 + \alpha + \alpha^{A} + \alpha_{i}) - \alpha_{\text{cal}}^{A} t_{i}^{A} v_{i}^{A} \right]^{2} + \sum_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{\text{dB}}} \right)^{2} + \left(\frac{\alpha_{\text{cal}}^{A}}{\sigma_{\text{cal}}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{\text{Db}}} \right)^{2} + \left(\frac{\alpha}{\sigma_{\text{DB}}} \right)^{2} \right\}.$$

OY, arXiv: 1107.4766 [hep-ph]

m^A_i: Measured numbers of events

t^A_i: Theoretical prediction


v^A_i: Variation due to energy calibration error

$$(t_i^A \sigma_i^A)^2 = t_i^A + \left(t_i^A \sigma_{\mathrm{db}}^A\right)^2$$

statistical errors

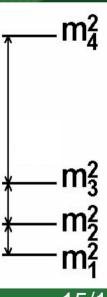
systematic errors

In the present case $\sigma_{\text{stat}} > \sigma_{\text{sys}}$: statistical errors are more important

Assumed systematic errors: those of Bugey experiment

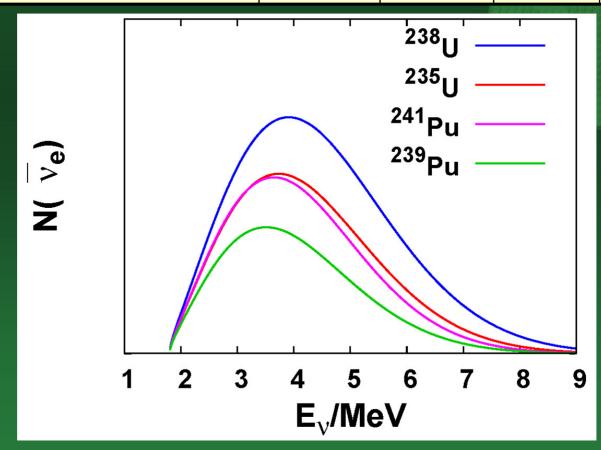
 σ_{DB} : correlated wrt detectors, correlated wrt bins = 3%

 σ_{Db} :correlated wrt detectors, uncorrelated wrt bins = 2%


 σ_{dB} : uncorrelated wrt detectors, correlated wrt bins = 0.5%

 σ_{db} : uncorrelated wrt detectors, uncorrelated wrt bins = 0.5%

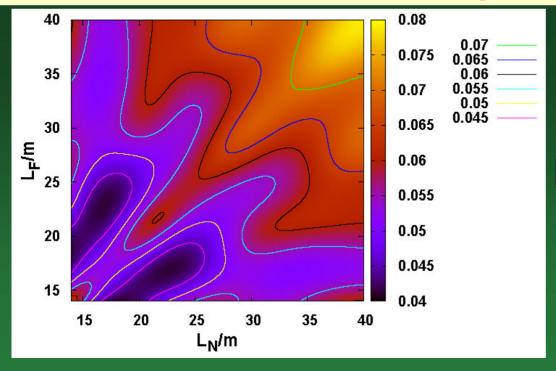
 σ_{cal} : energy calibration error for each bin = 0.6%


Formula for oscillation probability

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Composition of Thermal Neutron Reactor & Fast Neutron Reactor

	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu
Thermal Neutron Reactor (w/ H ₂ O)	53.8%	32.8%	7.8%	5.6%
Fast Neutron Reactor	37.1%	51.3%	7.3%	4.3%

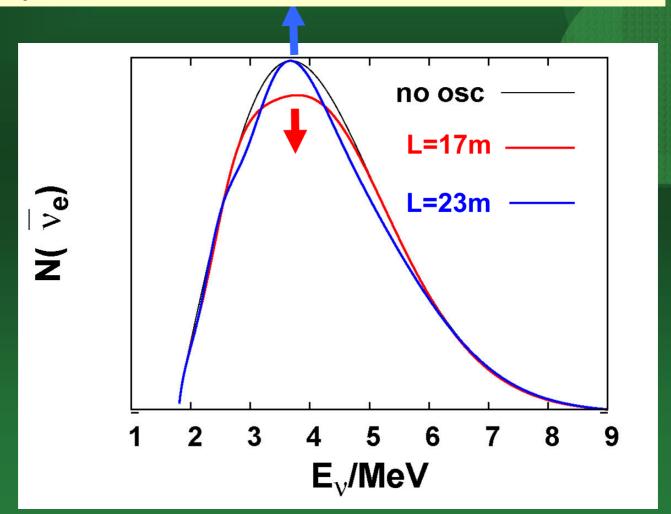

(1) Commercial reactors

Assumed parameters (a la Bugey)

- Power: 2.8 GW
- Size of the core: Diameter=4m, Height=4m

Power density~50MW/m³

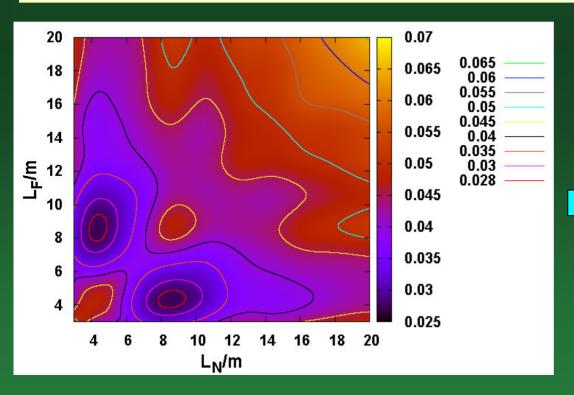
Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2=1eV^2$



Optimized baseline lengths: L_N ,=17m, L_E =23m

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

The difference at $\langle E \rangle \sim 4 \text{MeV}$ is most significant for L_N ,=17m L_F =23m


Joyo (A fast neutron reactor)

Assumed parameters

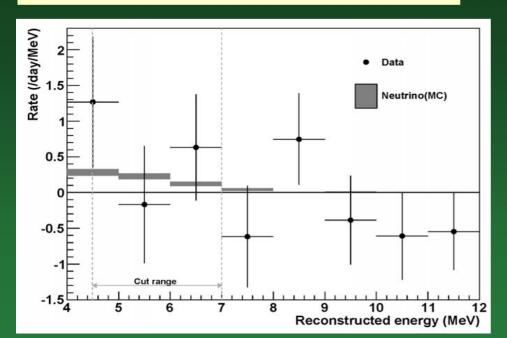
Power: 0.14 GW

• Size of the core: Diameter=0.8m, Height=0.5m

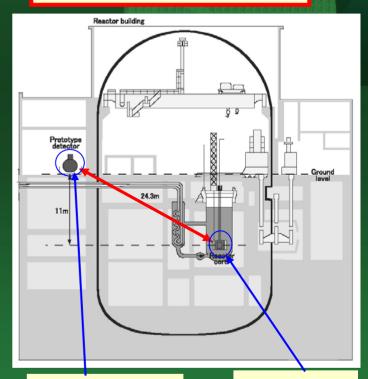
Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2=1eV^2$

Optimized baseline lengths: L_N,=4m

L_F=8m


A Study of Reactor v Monitoring at Experimental Fast Reactor JOYO

H.Furuta et al., arXiv:1108.2910v1 [hep-ex]


L=24.3m; about 150 vp → e⁺n reactions/day

The measured \vee event rate from reactor on-off comparison was $1.11\pm1.24(stat.)\pm0.46(syst.)$ events/day.

The statistical significance of the measurement was not enough.

Their motivation: to detect v from a fast reactor (not motivated by v_s)

Prototype detector

Reactor core