ニュートリノ振動研究の現状と展望

首都大理 安田修

2020年3月18日

シンポジウム「宇宙と素粒子の残された謎の解明に向けた、次世代ニュートリノ観測・陽子崩壊実験」 ②日本物理学会年会

1. Introduction

- 2. 3 flavor v oscillation
- 3. Scenarios beyond the standard 3 v oscillation
- 4. Summary

1. Introduction

Framework of 3 flavor v oscillation

Mixing matrix

Functions of mixing angles $\theta_{12}, \, \theta_{23}, \, \theta_{13},$ and CP phase δ

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

All 3 mixing angles have been measured (2012):

$$v_{\text{solar}}$$
+KamLAND (reactor) $\theta_{12} \cong \frac{\pi}{6}$, $\Delta m_{21}^2 \cong 8 \times 10^{-5} \text{ eV}^2$

$$v_{atm}$$
+K2K,MINOS(accelerators) $\theta_{23} \cong \frac{\pi}{4}$, $|\Delta m_{32}^2| \cong 2.5 \times 10^{-3} \text{ eV}^2$

$$oldsymbol{ heta_{13}}\cong\pi$$
 / 20

Motivation for precise measurement of oscillation parameters

From symmetry arguments, all kind of predictions have been made for oscillation parameters:

◆Quark-lepton complementarity Minakata-Smirnov, PR D70 (2004) 073009

$$\theta_{12}$$
+ θ_{C} = $\pi/4$

◆T' symmetryEby-Frampton, PR D86 (2012) 117304

$$\pi/4 - \theta_{23} = 2^{-1/2} \theta_{13}$$

◆Asymmetric TriBiMaximal TextureRahat-Ramond-Xu, PR D98 (2018) 055030

$$\delta_{CP} = \pm 1.32\pi$$

Quark mixing has been measured to the precision of O(0.01°):

CKM angles @1o (PDG)

$$\theta_{12}$$
 = 12.975 \pm 0.026 deg

$$\theta_{23}$$
 = 2.415 ± 0.044 deg

$$\theta_{13}$$
 = 0.204 ± 0.010 deg

Lepton mixing which is measured to date

Lepton mixings @ 1σ

Capozzi, Lisi, Marrone, Palazzo, arXiv:1804.09678

$$\theta_{12}$$
 = 33.46 + 0.87 – 0.88 deg

$$\theta_{23} = 47.9 + 1.1 - 4.0 \text{ deg}$$

$$\theta_{13}$$
 = 8.41 + 0.18 – 0.14 deg

To test a hypothesis such as $\pi/4 - \theta_{23} = 2^{-1/2} \theta_{13}$, | lepton mixing should be measured at least to order O(0.1°)

TA LA WITH THE DOLL

In particular, the precision of θ_{23} is a problem

Status of 3v fit Lisi@Prospects of Neutrino Physics (IPMU, 2019/4)

NH(NO), $\delta \sim 3\pi/2$ is preferred over IH(IO), $\delta = 0$

Next task is to measure Mass Hierarchy (NH or IH), Octant (Higher Octant or Lower Octant) and δ (CP)

Experiments under construction / consideration

- T2HK(JP, JPARC-->HK) L=295km, E~0.6GeV
- DUNE (US, FNAL-->Homestake, SD), L=1300km, E~2GeV
- T2HKK(JP, JPARC-->Korea) L=1100km, E~1GeV

$$(\overline{\nu}_{\mu}) \xrightarrow{(\overline{\nu}_{\mu})} + (\overline{\nu}_{\mu}) \xrightarrow{(\overline{\nu}_{\mu})} \rightarrow (\overline{\nu}_{e})$$

These experiments are expected to measure sign(Δm^2_{31}), $\pi/4$ - θ_{23} and δ

Experiments under construction / consideration

T2HK

- Extension of T2K (large #(events))
- 1.3MW ∨ beam ⇒ Hyperkamiokande
- (3 times 2K) (10 times SK)
- Measurement of CP phase δ

v_{atm} **@HK**

- 186 (\times 2) kton fiducial volume (2 \times 8.3 \times SK)
- Optically separated into
 - Inner Detector 40,000 (x2) PMTs (2x4x5K)
 - 40% Coverage (same as SK)
 - Outer Detector 12,000 (x2) PMTs (2x6x5K)
- ID Photosensors will be high QE
 - Single photon detection : 24% (2 × SK)

T2HKK (under consideration)

Extension of T2HK

(L=295km, 187 kton fiducial volume)

+ (L=1100km, 187 kton fiducial volume)

v:anti-v = 1:3

Total exposure: 27 x 10²¹ POT

Off axis Angle = 1.5° is the best (w/ max #(events))

2. 3 flavor v oscillation

Issue in measurement of δ at T2HK: Degeneracy in the appearance probabilities

hierarchy - δ Prakash et al, PRD 86, 033012 ('12)

Due to uncertainty in δ , the appearance probabilities has finite width. In the overlap region, δ has two possible values.

Hierarchy degeneracy vatm@HK

Hierarchy separation is excellent for cos⊕ = -0.9 (L=11500km)

• Sensitivity of T2HK, v_{atm} @HK & their combination

Fukasawa-Ghosh-OY, NPB918 ('17) 337

Sensitivity of T2HK, v_{atm} @HK & their combination

3. Scenarios beyond standard 3 v oscillation

Motivation for research on New Physics

Just like at B factories, high precision measurements of v oscillation in future experiments can be used to probe physics beyond SM by looking at deviation from SM+m_v (beyond the PMNS paradigm).

→ Research on New Physics is important.

Test of the PMNS paradigm

Rather than looking for arbitrary possibilities of New Physics, here we discuss possible hints of the scenarios which have been discussed in the past.

List of popular NP in v oscillation phenomenology

	Scenario beyond SM+m _v	Experimental indication?	Phenomenological constraints on the magnitude of the effects
ſ	• Light sterile ν (ν_{s})	Maybe	O(10%)
The second	Non Standard Interactions in propagation	Maybe	e-τ: O(100%) Others: O(1%)
4	Non Standard Interactions at production / detection	×	O(1%)
	Unitarity violation due to heavy particles	×	O(0.1%)

In this talk, we will focus on these two because of potential experimental hints

In the past we have had some anomalies

- v_{solar} KamLAND: Δm^2_{21} \longrightarrow NSI or v_s $\Delta m^2 = O(10^{-5}) \text{ eV}^2$
- LSND-MiniBooNE anomaly, Reactor anomaly, Gallium anomaly

 V_s $\Delta m^2 = O(1) eV^2$

3.1. v_s

3.1.1 Features of light sterile $v(v_s)$

Interactions of active & sterile v

$$A_e = \sqrt{2}G_FN_e$$

	ν _e	ν_{μ}, ν_{τ}	ν _s
СС		×	×
NC	✓	✓	×
V	$A_e + A_n$	A _n	0

$$\mathbf{A}_{n} = -(1/\sqrt{2})\mathbf{G}_{F}\mathbf{N}_{n}$$

Matter effect in the presence of sterile v

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{array} \right) = \left[U \left(\begin{array}{cccc} E_1 & 0 & 0 & 0 \\ 0 & E_2 & 0 & 0 \\ 0 & 0 & E_3 & 0 \\ 0 & 0 & 0 & E_4 \end{array} \right) U^{-1} + \left(\begin{array}{cccc} A_e + A_n & 0 & 0 & 0 \\ 0 & A_n & 0 & 0 \\ 0 & 0 & A_n & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \right] \left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{array} \right)$$

$$U = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, 0) R_{14}(\theta_{14}, \delta_{14}) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0)$$

extra mixing angles

3v mixing angles

The term which is proportional to identity can be ignored

$$U \equiv \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \qquad A_{e} \equiv \sqrt{2}G_{F}N_{e},$$

$$A_e \equiv \sqrt{2G_F N_e}$$

$$A_n \equiv -\frac{G_F N_n}{\sqrt{2}}$$

 v_s has matter effect different from others

3.1.2 Accelerator v (T2HK, T2HKK)

Choubey-Dutta-Pramanik, Eur.Phys.J. C78 ('18) 339

$$\Delta m_{41}^2 = 1.7 \text{ (eV}^2)$$

LSND region @ 90%CL

Combined accelerator v can cover some of the LSND region @ 90%CL

$$P(\nu_{\mu} \to \nu_{e}) = 4 \text{Re} \left[U_{e3} U_{\mu 3}^{*} (U_{e3}^{*} U_{\mu 3} + U_{e4}^{*} U_{\mu 4}) \right] \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right) + \cdots$$

HK Sensitivity to θ_{34} (θ_{24}) is (is not much) improved compared to SK 90% CL (solid) 99% CL (dashed)

3.2 NSI in propagation

3.2.1 Features of NSI in propagation

Phenomenological New Physics considered in this talk: 4-fermi Non Standard Interactions:

$$\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \, \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \, \bar{f} \gamma_{\mu} f'$$

neutral current non-standard interaction

Modification of matter effect

$$i\frac{d}{dt}\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U \operatorname{diag}(E_{1}, E_{2}, E_{3}) U^{-1} + A \begin{pmatrix} 1 \\ \epsilon_{\mu e} & \epsilon_{\mu \mu} & \epsilon_{\mu \tau} \\ \epsilon_{\tau e} & \epsilon_{\tau \mu} & \epsilon_{\tau \tau} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

$$A \equiv \sqrt{2}G_F N_e$$
 $N_e \equiv \text{electron density}$

Gonzalez-Garcia, Maltoni, JHEP 1309 (2013) 152

In solar v analysis, Δm_{31}^2 -> infinity, H -> H^{eff}, the problem is reduced to the 2 flavor case:

$$H^{\text{eff}} = \frac{\Delta m_{21}^2}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix}$$

$$+ \begin{pmatrix} c_{13}^2 A & 0 \\ 0 & 0 \end{pmatrix} + A \sum_{f=e,u,d} \frac{N_f}{N_e} \begin{pmatrix} -\epsilon_D^f \\ \epsilon_N^{f*} \\ \epsilon_N^f \end{pmatrix} \begin{pmatrix} \epsilon_N^f \\ \epsilon_D^f \end{pmatrix}$$

$(\epsilon^f_D, \epsilon^f_N)$ are related by $\epsilon^f_{\alpha\beta}$:

$$\begin{array}{lll} \epsilon_{D}^{f} & = & c_{13}s_{13}\mathrm{Re}\left[e^{i\delta_{\mathrm{CP}}}\left(s_{23}\epsilon_{e\mu}^{f} + c_{23}\epsilon_{e\tau}^{f}\right)\right] - \left(1 + s_{13}^{2}\right)c_{23}s_{23}\mathrm{Re}\left[\epsilon_{\mu\tau}^{f}\right] \\ & - \frac{c_{13}^{2}}{2}\left(\epsilon_{ee}^{f} - \epsilon_{\mu\mu}^{f}\right) + \frac{s_{23}^{2} - s_{13}^{2}c_{23}^{2}}{2}\left(\epsilon_{\tau\tau}^{f} - \epsilon_{\mu\mu}^{f}\right) & \mathbf{f} = \mathbf{e}, \, \mathbf{u} \, \, \mathbf{or} \, \, \mathbf{d} \\ \epsilon_{N}^{f} & = & c_{13}\left(c_{23}\epsilon_{e\mu}^{f} - s_{23}\epsilon_{e\tau}^{f}\right) + s_{13}e^{-i\delta_{\mathrm{CP}}}\left[s_{23}^{2}\epsilon_{\mu\tau}^{f} - c_{23}^{2}\epsilon_{\mu\tau}^{f*} + c_{23}s_{23}\left(\epsilon_{\tau\tau}^{f} - \epsilon_{\mu\mu}^{f}\right)\right] \end{array}$$

Tension between solar v & KamLAND data comes from little observation of upturn by SK & SNO

Gonzalez-Garcia, Maltoni, JHEP 1309 (2013) 152

In solar v analysis, $(\mathcal{E}_D, \mathcal{E}_N)$ was used:

$$U = R_{23}(\theta_{23}, 0)R_{13}(\theta_{13}, \delta_{13})R_{12}(\theta_{12}, 0)$$

$$\left(\epsilon'_{\alpha\beta}\right) \equiv R_{13}^{-1}(\theta_{13}, \delta_{13}) R_{23}^{-1}(\theta_{23}, 0) \left(\epsilon_{\alpha\beta}\right) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13})$$

$$\equiv \begin{pmatrix} \epsilon'_{11} & \epsilon'_{12} & \epsilon'_{13} \\ \epsilon'_{21} & \epsilon'_{22} & \epsilon'_{23} \\ \epsilon'_{31} & \epsilon'_{32} & \epsilon'_{33} \end{pmatrix} = \begin{pmatrix} \frac{\epsilon'_{11} + \epsilon'_{22}}{2} - \epsilon_D & \epsilon_N & \epsilon'_{13} \\ 2 & & \frac{\epsilon'_{11} + \epsilon'_{22}}{2} + \epsilon_D & \epsilon'_{23} \\ \epsilon'_{31} & & \epsilon'_{32} & \epsilon'_{33} \end{pmatrix}$$

-> Also for analysis of v_{atm} & LBL, (ϵ_D , ϵ_N) will be used instead of $\epsilon_{\alpha\beta}$.

3.2.2 Comparison of sensitivity T2HKK, DUNE, vatm@HK

Comparison of sensitivity T2HKK, DUNE, vatm@HK

Sensitivity v_{solar}@HK

Kajita @ NOW2016

ν_{solar}@HK will tell us whether deviation form the PMNS paradigm exists

Day-night asymmetry sensitivity

Spectrum upturn discovery sensitivity

4. Summary

- In the standard 3 flavor V scenario, the 3 mixing angles have been roughly determined, and we have some indication for $\Delta m^2_{31} > 0$, $\theta_{23} > \pi/4$, $\delta \neq 0$.
- T2HK & v_{atm} @HK will determine Mass Hierarchy and Octant (unless $|\pi/4-\theta_{23}|$ is small) and δ .
- T2HK, v_{atm} @HK, v_{solar} @HK, T2HKK are expected to constrain the two scenarios, which may be suggested by experiments, beyond the standard 3 flavor v scenario: v_s & NSI in propagation.

Parametrization of the 4x4 matrix

 $U = R_{34}(\theta_{34}, 0) R_{24}(\theta_{24}, \delta_3) R_{23}(\theta_{23}, 0) R_{14}(\theta_{14}, \delta_1) R_{13}(\theta_{13}, \delta_2) R_{12}(\theta_{12}, 0)$

$$\begin{cases} U_{e1} &= c_{12}c_{13}c_{14} \\ U_{e2} &= c_{13}c_{14}s_{12} \\ U_{e3} &= c_{14}s_{13}e^{-i\delta_2} \\ U_{e4} &= s_{14}e^{-i\delta_1} \\ U_{\mu 4} &= c_{14}s_{24}e^{-i\delta_3} \\ U_{\tau 4} &= c_{14}c_{24}s_{34} \\ U_{s4} &= c_{14}c_{24}c_{34} \end{cases}$$

Present bounds on θ_{24} & θ_{34}

T2K, PRD99 ('19) 071103

Constraints on $\varepsilon_{\alpha\beta}$ for expts on Earth

Davidson et al., JHEP 0303:011,2003; Berezhiani, Rossi, PLB535 ('02) 207; Barranco et al., PRD73 ('06) 113001; Barranco et al., arXiv:0711.0698

Biggio et al., JHEP 0908, 090 (2009) w/o 1-loop arguments

F. Little N.

Constraints are weak

$$\begin{pmatrix}
|\epsilon_{ee}| \lesssim 4 \times 10^{0} & |\epsilon_{e\mu}| \lesssim 3 \times 10^{-1} \\
|\epsilon_{\mu\mu}| \lesssim 7 \times 10^{-2} & |\epsilon_{\mu\tau}| \lesssim 3 \times 10^{0} \\
|\epsilon_{\mu\tau}| \lesssim 3 \times 10^{-1} \\
|\epsilon_{\tau\tau}| \lesssim 2 \times 10^{1}
\end{pmatrix}$$

Tension between solar v & KamLAND can be solved by NSI Gonzalez-Garcia, Maltoni, JHEP 1309 (2013) 152

Best fit value of solar-KL

$$(\epsilon_D^u, \epsilon_N^u) = (-0.22, -0.30)$$

$$(\epsilon_D^d, \epsilon_N^d) = (-0.12, -0.16)$$

Best fit value of global fit

$$(\epsilon_D^u, \epsilon_N^u) = (-0.140, -0.030)$$

$$(\epsilon_D^d, \epsilon_N^d) = (-0.145, -0.036)$$

Sensitivity of HK: (1) Complex |EN| for NH

$$(\epsilon_D^u, \epsilon_N^u) = (-0.22, -0.30)$$

Best fit point of solar & KamLAND for f=u: significance:38σ

$$(\epsilon_D^d, \epsilon_N^d) = (-0.12, -0.16)$$

Best fit point of solar & KamLAND for f=d: significance:11σ

$$(\epsilon_D^u, \epsilon_N^u) = (-0.140, -0.030)$$

Best fit point of glolal analysis for f=u: significance:5σ

Sensitivity of HK: (1) Complex $|\varepsilon_N|$ for IH

$$(\epsilon_D^u, \epsilon_N^u) = (-0.22, -0.30)$$

Best fit point of solar & KamLAND for f=u: significance:35σ

$$(\epsilon_D^d, \epsilon_N^d) = (-0.12, -0.16)$$

Best fit point of solar & KamLAND for f=d: significance:8σ

$$(\epsilon_D^u, \epsilon_N^u) = (-0.140, -0.030)$$

Best fit point of glolal analysis for f=u: significance:1.4σ

Sensitivity of HK: (2) Real $|\varepsilon_N|$

Allowed regions and significance are similar to the case for complex ε_N

HK Vatm

(NH, Real ε_N)

$$(\epsilon_D^u, \epsilon_N^u) = (-0.22, -0.30)$$

Best fit point of solar & KamLAND : significance:38s for

HK v_{atm} has sensitivity to some region of the

V_{solar} anomaly

$$(\epsilon_D^u, \epsilon_N^u) = (-0.140, -0.030)$$

Best fit point of glolal analysis : significance:5σ

$$(\epsilon_D^d, \epsilon_N^d) = (-0.145, -0.036)$$

Best fit point of glolal analysis for f=d: significance:5σ

$$(\epsilon_D^d, \epsilon_N^d) = (-0.12, -0.16)$$

Best fit point of solar & KamLAND for f=d: significance:11σ

Accelerator v (T2HKK)

Ghosh & OY, arXiv:1709.08264

Dependence of T2HKK on θ_{23} (true) & δ (true)

