Search for sterile neutrinos at reactors

Osamu Yasuda Tokyo Metropolitan University

16 December, 2011

1. Introduction

Sterile neutrino oscillations at reactors Summary

Based on OY,

arXiv:1107.4766 [hep-ph], 1110.2579 [hep-ph]

1. Introduction

1.1 ν oscillation

Mass eigenstates

$$i\frac{d}{dt}\begin{pmatrix}\mathbf{v}_1\\\mathbf{v}_2\end{pmatrix} = \begin{pmatrix}\mathbf{E}_1 & \mathbf{0}\\\mathbf{0} & \mathbf{E}_2\end{pmatrix}\begin{pmatrix}\mathbf{v}_1\\\mathbf{v}_2\end{pmatrix}$$

$$\mathsf{E}_{j} \equiv \sqrt{\vec{p}^{2} + m_{j}^{2}}$$

Flavor eigenstates

$$\begin{pmatrix} \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix}$$

$$U \equiv \begin{pmatrix} U_{\mu 1} & U_{\mu 2} \\ U_{\tau 1} & U_{\tau 2} \end{pmatrix}$$

Probability of flavor conversion

$$P(v_{\mu} \rightarrow v_{\tau}) = sin^2 2\theta sin^2 \left(\frac{\Delta E L}{2}\right)$$

$$\Delta E = E_2 - E_1 \cong \frac{m_2^2 - m_1^2}{2E} = \frac{\Delta m^2}{2E}$$

1.2 Framework of 3 flavor v oscillation

DCHOOZ (reactor) +T2K+MINOS+others

New

$$\theta^{}_{13}\cong 0.14^{\,+0.02}_{\,-0.03}$$

Both hierarchy

patterns are

4/21

1.4 Hints for beyond N_v =3 oscillation

Note the time dependence of reputation of v_s scenarios! $_{6/21}$

Reactor v anomaly

Mention et al, 2011

Recent reevaluation of reactor v flux suggests affirmative interpretation of $\bar{\nu}_e \rightarrow \bar{\nu}_e$ oscillation

Gallium anomaly

Gallium radioactive source experiments

 $R \equiv$

 $\frac{p(\text{measured})}{p(\text{predicted})} = 0.88 \pm 0.05(1\sigma)$

SAGE

Giunti-Laveder, 1006.3244v3 [hep-ph]

Results of the Ga radioactive source calibration experiments may be interpreted as an indication of the disappearance of v_e due to active-sterile oscillations.

(2 ± 1) cohomo

$$\begin{array}{l} \textbf{(3+1)-scheme} \\ \hline P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) &= 1-4|U_{e4}|^{2}(1-|U_{e4}|^{2})\sin^{2}(\Delta m_{41}^{2}L/4E) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) &= 1-4|U_{\mu4}|^{2}(1-|U_{\mu4}|^{2})\sin^{2}(\Delta m_{41}^{2}L/4E) \\ P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) &= 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}(\Delta m_{41}^{2}L/4E) \\ \hline \textbf{sin}^{2} 2\theta_{\textbf{Bugey}} > 4|\textbf{U}_{e4}|^{2}(1-|\textbf{U}_{e4}|^{2}) \cong 4|\textbf{U}_{e4}|^{2} \\ \hline \textbf{sin}^{2} 2\theta_{\textbf{LSND}} &= 4|\textbf{U}_{e4}|^{2}|\textbf{U}_{\mu4}|^{2} (1-|\textbf{U}_{\mu4}|^{2}) \cong 4|\textbf{U}_{\mu4}|^{2} \\ \hline \textbf{U}_{\alpha4} : \text{ an element of 4x4 mxing matrix} \\ \hline \textbf{sin}^{2} 2\theta_{\textbf{LSND}}(\Delta m^{2}) < \frac{1}{4}\sin^{2} 2\theta_{\textbf{Bugey}}(\Delta m^{2})\sin^{2} 2\theta_{\textbf{CDHSW}}(\Delta m^{2}) \\ \hline \textbf{must be satisfied (Okada-OY,'97; Bilenky-Giunti-Grimus, '98)} \\ \hline \textbf{But there is no overlap between LSND and left side of Bugey+CDHSW} 21 \\ \hline \textbf{M}_{a1} = 1 \\ \hline \textbf{M}_{a2} = 1 \\ \hline \textbf{M}_{a2} = 1 \\ \hline \textbf{M}_{a3} = 1 \\ \hline \textbf{M}_{a3} = 1 \\ \hline \textbf{M}_{a3} = 1 \\ \hline \textbf{M}_{a4} = 1 \\$$

reactor v anomaly + gallium anomaly

→ (3+1)-scheme may fit to the data (LSND+MB+other short baseline expts.) better with new flux than before (with old flux).

 \rightarrow It is important to confirm sterile v oscillations

- A ten kilocurie scale anti-v source (¹⁴⁴Ce, ¹⁰⁶Ru) ve → ve M. Cribier et al., arXiv:1107.2335
- A proposal for a β-beam $ν_e \rightarrow ν_e$ Agarwalla-Huber-Link, JHEP 1001:071,2010
- v oscillation experiments at a reactor with a small core → Present work arXiv:1107.4766 [hep-ph]

 $\nu_e \rightarrow \nu_e$

2. Analysis of a reactor neutrino oscillation experiment with one reactor & two detectors

Assumed systematic errors: those of Bugey experiment

- σ_{DB} : correlated wrt detectors, correlated wrt bins = 3%
- σ_{Db} :correlated wrt detectors, uncorrelated wrt bins = 2%
- σ_{dB} :uncorrelated wrt detectors, correlated wrt bins = 0.5%
- σ_{db} :uncorrelated wrt detectors, uncorrelated wrt bins = 0.5%
- σ_{cal} :energy calibration error for each bin = 0.6%

Formula for oscillation probability $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$ m_4^2 m_4^2 m_4^2 m_4^2

(1) Commercial reactors

Assumed parameters (a la Bugey)

- Power: 2.8 GW
- Size of the core: Diameter=4m, Height=4m

Power density~50MW/m³

Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2 = 1eV^2$

14/21

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

The difference at <E> ~ 4MeV is most significant for L_N ,=17m L_F =23m

Sensitivity of Commercial reactors to $sin^2 2\theta_{14}$ at L_N,=17m L_F=23m

The case of a hypothetical reactor with a point-like core \rightarrow better sensitivity

(2) Research Reactors with a small core

Joyo (Ibaraki, Japan): D=0.8m, h=0.5m, P_{th}=140MW

ILL reactor
 (Grenoble,
 France):D=0.4m,
 h=0.8m,
 P_{th}=58MW

Eine de sécurité lièment combustible Source froide Coure a source de source Double de sourc

Osiris reactor (Saclay, France):
0.57m × 0.57m ×
0.6m, P_{th}=70MW

Nucifer project

Power density~500MW/m³

cf. ~50MW/m³ for commercial reactors

17/21

Joyo (A fast neutron reactor)

Assumed parameters

- Power: 0.14 GW
- Size of the core: Diameter=0.8m, Height=0.5m

Optimization w.r.t. baseline lengths L_N, L_F for \Delta m^2=1eV²

Sensitivity of Joyo to $sin^22\theta_{14}$ at L_N,=4m, L_F=8m

Less power is compensated by closer distance

A reactor with a small core prevents smearing effect

(2-2) ILL & Osiris

ILL (Institut Laue-Langevin near Grenoble) research reactor Power=58 MW, Diameter=40cm, Height=80cm

Osiris (in the French Atomic Energy Commission (CEA) centre at Saclay) Power=70 MW, Size=57cmx57cmx60cm

20/21

In the nucifer project, optimization w.r.t baselines is not planned. \rightarrow Great if the detectors are placed very close to a reactor!

3. Summary

- Because of the recent re-evaluation of the reactor v flux, scenarios of sterile v oscillations with \Delta m²~O(1eV²) are reviving.
- To get a useful information from the spectrum analysis of reactor v for ∆m²>1eV², a reactor with a small core is necessary to avoid the smearing effect.
- Research reactors have a small core in general, and measurements of v from those may be able to offer a test of LSND/MiniBooNE.

Backup slides

For any value of $|U_{s1}|^2 + |U_{s2}|^2$, fit to sol+atm data is bad.

MiniBooNE ²	The data is still					
R. Van der Water@Neutrino2010 confusing						
mode	E<475MeV	E>475MeV				
$\nu_{\mu} \rightarrow \nu_{e}$	An unexplained 3σ electron excess	Inconsistent w/ LSND @ 90%CL				
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	A small 1.3σ electron excess	Consistent w/ LSND @ 99.4%CL				

A ten kilocurie scale anti-v source (144Ce, 106Ru)

Cribier et al., arXiv:1107.2335v1 [hep-ex]

anti-v source placed in a liquid scintillator detector (e.g., KamLAND)

Proposal of a β **-beam**

Agarwalla-Huber-Link, JHEP 1001:071,2010

$$v_i^A = \lim_{\alpha_{\rm cal}^A \to 0} \frac{1}{\alpha_{\rm cal}^A t_i^A} \left[\frac{N_p T}{4\pi L_A^2} \int dE \int_{(1+\alpha_{\rm cal}^A)E_i}^{(1+\alpha_{\rm cal}^A)E_{i+1}} dE' R(E_e, E') \epsilon(E) F(E) \sigma(E) - t_i^A \right]$$

$$t_i^A \equiv \frac{N_p T}{4\pi L_A^2} \int dE \int_{E_i}^{E_{i+1}} dE' R(E_e, E') \epsilon(E) F(E) \sigma(E)$$

In Eqs. (4) and (5), N_p is the number of target protons in the detector, T denotes the exposure time, L_A is the baseline for the detector A, F(E) is the flux of $\bar{\nu}_e$, and $\sigma(E)$ is the cross section of the inverse β decay $\bar{\nu}_e + p \rightarrow n + e^+$. E is the energy of the incident $\bar{\nu}_e$ and it is related to the positron energy E_e and the masses m_n , m_p of a neutron and a proton by $E = E_e + m_n - m_p = E_e + 1.3$ MeV. E' is the measured positron energy and we will assume that the energy resolution is given by $8\%/\sqrt{E}$, i.e., $R(E_e, E') = R(E - m_n + m_p, E')$ is a Gaussian function which describes the energy resolution and is given by $R(E_e, E') = (1/\sqrt{2\pi\sigma}\sigma) \exp[-(E_e - E')^2/2\sigma^2]$, where $\sigma = 0.08\sqrt{(E_e + m_e)/\text{MeV}} = 0.08\sqrt{(E - 0.8/\text{MeV})/\text{MeV}}$. Our strategy is to assume no

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

Asymmetry at <E> ~ (4 \mp 1)MeV is most significant for L_N,=4m L_F=8m

Fuels must be distant ⇒ the volume must be larger

	Kinetic energy of neutron	Moderator	Coolant	Power density
Thermal Neutron Reactor (w/ H ₂ O)	~0.02eV	H ₂ O	H ₂ O	~O(10MW/m ³)
Fast Neutron Reactor	~2MeV	None	Na	~O(100MW/m ³)

Fuels can be closer ⇒ the volume can be smaller

29/21

Joyo Fast Research Reactor

Operated by JAEA P_{th}=140MW Frequent On/Off

Reactor Bldg.

A Study of Reactor ν Monitoring at Experimental Fast Reactor JOYO

H.Furuta et al., arXiv:1108.2910v1 [hep-ex]

The measured v event rate from reactor on-off comparison was 1.11 ± 1.24 (stat.) ± 0.46 (syst.) events/day.

The statistical significance of the measurement was not enough.

Their motivation: to detect v from a fast reactor (not motivated by v_s)

Operation history of Joyo

How to measure Pu/U ratio by v

(simplified discussion)

suekane JAEA-IAEA

- * Practical Reason: Research Reactor is easier to access.
- * Scientific Interest:
 v from fast reactor has not been measured.
- * Technological Interest *v* spectum from U and Pu can be measured
 separately by combining with the data from
 Light Water Reactor

However, the thermal power is small (1/20 of San-Onofre) and it is challenging to detect ν at Joyo.

07.11.14

suekane JAEA-IAEA

Composition of Thermal Neutron Reactor & Fast Neutron Reactor

	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu
Thermal Neutron Reactor (w/ H ₂ O)	53.8%	32.8%	7.8%	5.6%
Fast Neutron Reactor	37.1%	51.3%	7.3%	4.3%
	4 5 E _v /Me	²³⁸ U - ²³⁵ U - ²⁴¹ Pu - ²³⁹ Pu - 6 7	89	-25/2