oscillation in high energy cosmic

Osamu Yasuda Tokyo Metropolitan University

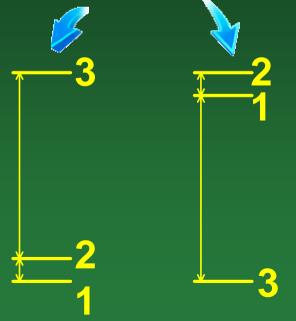
7-24-03 at ICRR

1. Status of oscillation

1.1 N =3:
$$_{atm}^{+}$$
 solar
$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{1} & U_{2} & U_{3} \end{pmatrix} \cong \begin{pmatrix} c_{12} & s_{12} \\ -s_{12}/\sqrt{2} & c_{12}/\sqrt{2} & 1/\sqrt{2} \\ s_{12}/\sqrt{2} & -c_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

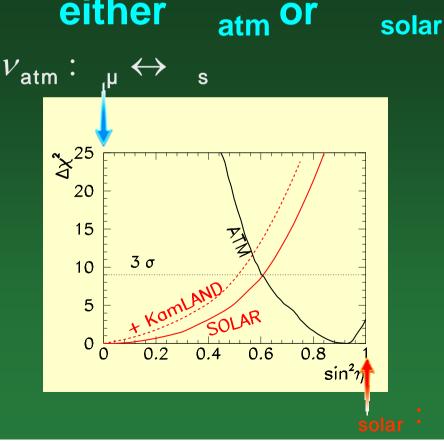
Both hierarchies are allowed

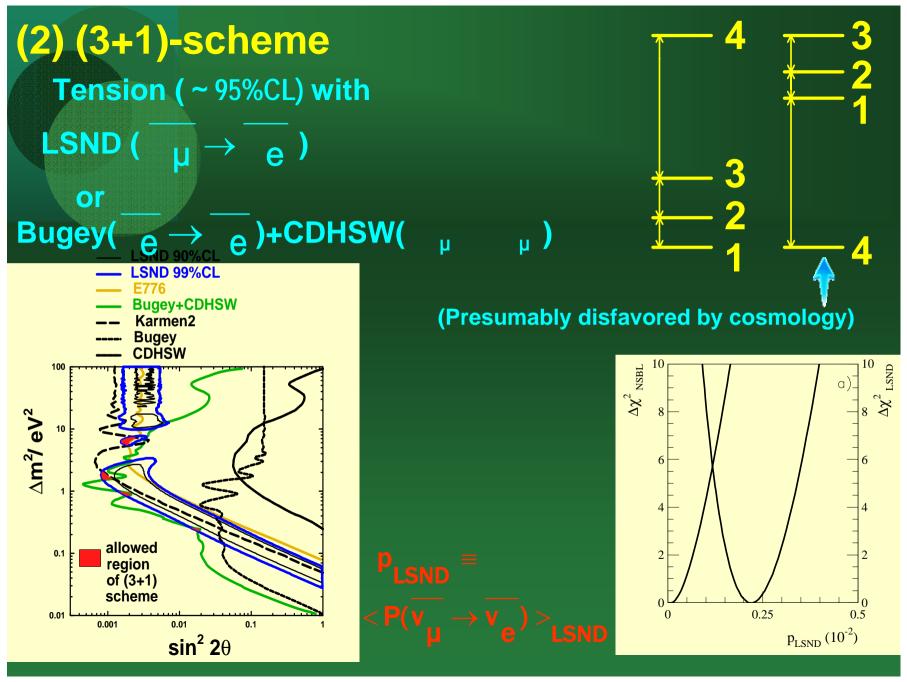
$$\theta_{12} \cong \pi / 6$$
 $|\varepsilon| \leq \sqrt{0.1} / 2$
 $\Delta m_{21}^2 = 7 \times 10^{-5} eV^2$
 $|\Delta m_{32}^2| = 3 \times 10^{-3} eV^2$



1.2 N =4: atm^+ solar + LSND

(1) (2+2)-scheme: almost excluded (>3.4) because it contradicts either or solar



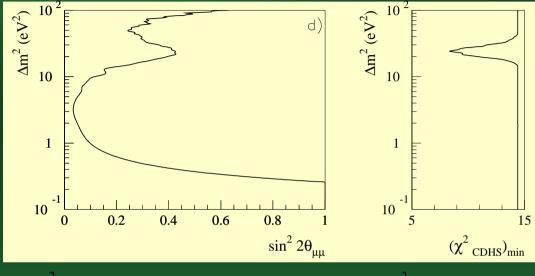


comment on (3+1)-scheme

Taking advantage of artifacts of statistics:

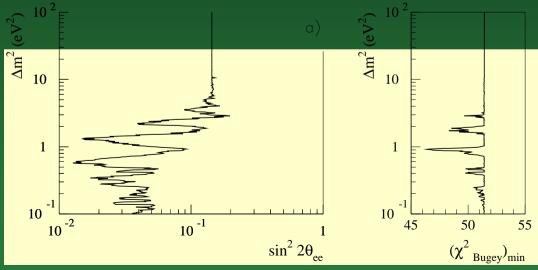
CDHSW(µ µ)
Local minimum of

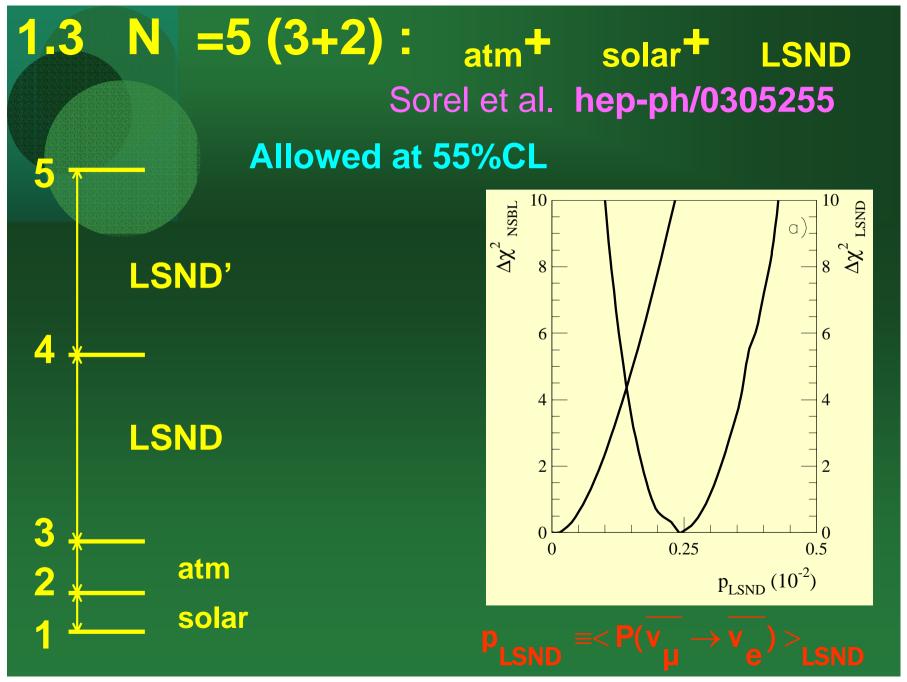
² at m² 20 eV²



Bugey($_{e} \rightarrow _{e}$)
Local minima of 2 at 2 at 2 0.45,0.9,

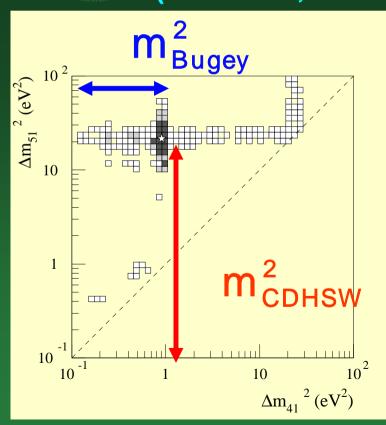
1.6,1.7 eV²

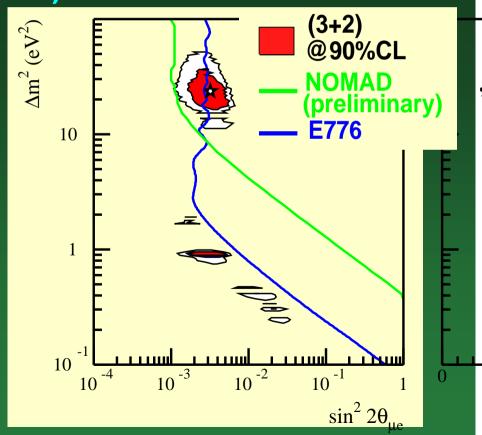




comments on (3+2)

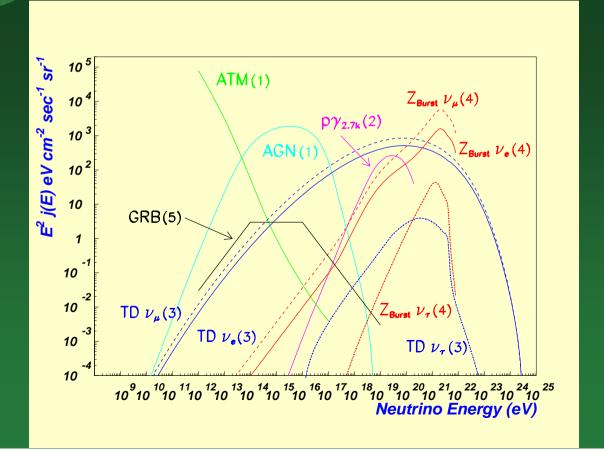
Taking advantage of artifacts of statistics near the boundary of allowed region of E776 and possibly outside of allowed region of preliminary result of NOMAD (V. Valuev, HEP 2001)





2.Effects of oscillation on high energy cosmic

2.1 Flux of high energy cosmic



2.2 flux

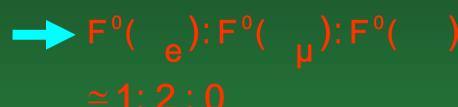
Triangle representation of flux:

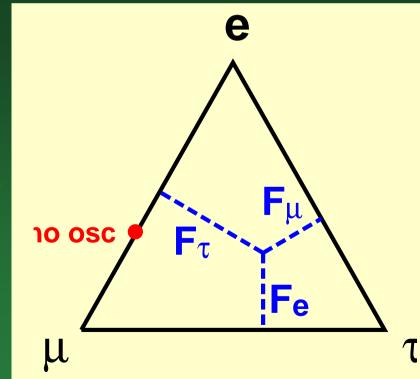
Precise normalization is not known

the ratio of different flavors is important quantity to observe

Initial flux:

Just like in atm, the source of is decay





In standard N = 3, when L

$$P(_{e} \leftrightarrow _{e}) \cong 1 - \frac{1}{2} \sin^{2} 2$$
 solar

P(
$$_{e} \leftrightarrow _{\mu}$$
) \cong P($_{e} \leftrightarrow _{\mu}$) $\cong \frac{1}{4} \sin^{2} 2$ $_{solar}$

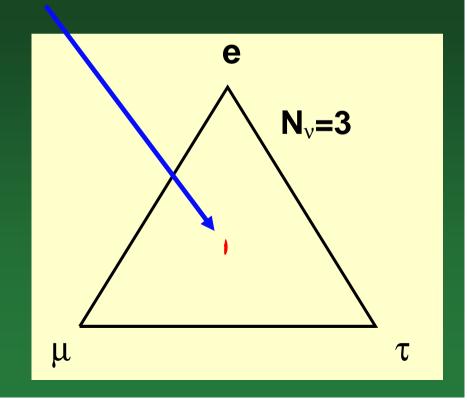
P(
$$_{\mu} \leftrightarrow _{\mu}$$
) \cong P($_{\mu} \leftrightarrow$) $\cong \frac{1}{2} - \frac{1}{8} \sin^2 2$ solar

$$F(v_e) = 1 \cdot (1 - \frac{1}{2} \sin^2 2) + 2 \cdot \frac{1}{4} \sin^2 2$$
 solar = 1

$$F(\nu_{\mu}) = 1 \cdot \frac{1}{4} \sin^2 2$$
 solar $+ 2 \cdot (\frac{1}{2} - \frac{1}{8} \sin^2 2$ solar $) = 1$

$$F(v) = 1 \cdot \frac{1}{4} \sin^2 2$$
 solar $+ 2 \cdot (\frac{1}{2} - \frac{1}{8} \sin^2 2$ solar $) = 1$

Deviation from 1:1:1 is small



2.3 Standard flux+ decay

Beacom et al. PRL90:181301,2003

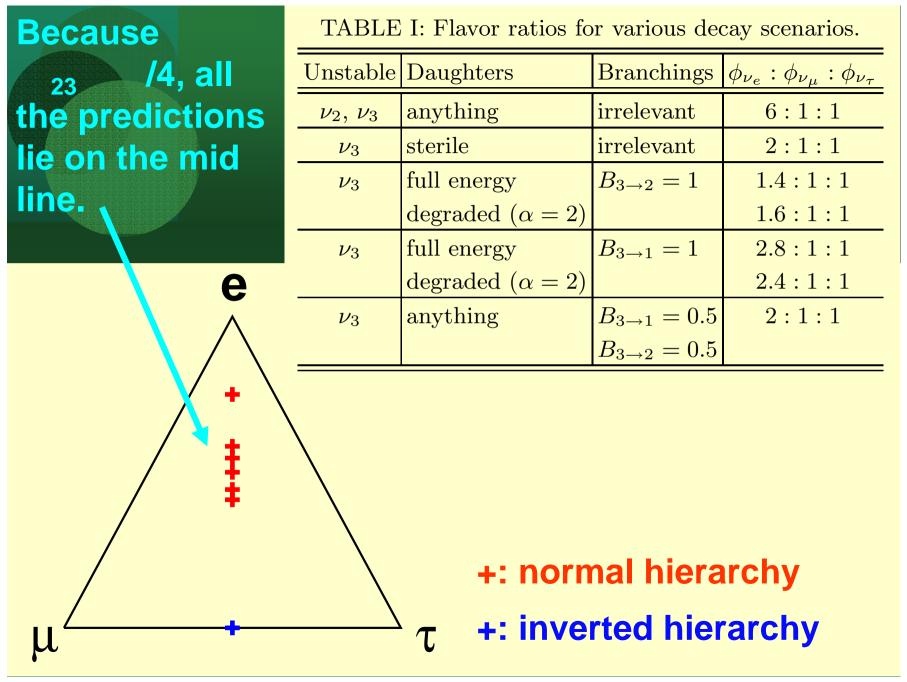
Assume 2-body decay for simplicity:

$$F() = \sum_{i} F^{0}() |U_{i}|^{2} |U_{i}|^{2} e^{-L/i}$$

$$\rightarrow \sum_{i(\text{stable})} F^{0}() |U_{i}|^{2} |U_{i}|^{2}$$

$$|U_{\mu j}|$$
 $|U_{j}|$ \longrightarrow $F(_{\mu})$ $F(_{})$

Only the ratio of F() could be different



2.4 Standard flux + pseudo-Dirac

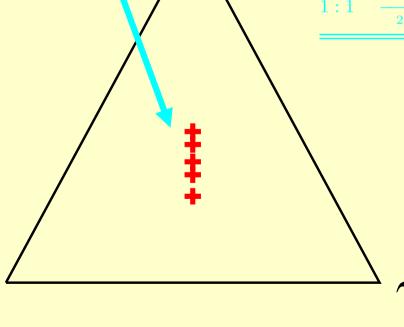
Beacom et al. hep-ph/0307151

This may be 0 or ½, depending on L<<E/m or L>> E/ m²

Because 23 44, all the predictions lie on the mid line.

TABLE I: Flavor ratios ν_e : ν_{μ} for various scenarios. The numbers j under the arrows denote the pseudo-Dirac splittings, δm_j^2 , which become accessible as L/E increases. Oscillation averaging is assumed after each transition j. We have used $\theta_{\rm atm} = 45^{\circ}$, $\theta_{\rm solar} = 30^{\circ}$, and $U_{e3} = 0$.

	1:1	$\xrightarrow{3}$	4/3:1	$\xrightarrow{2,3}$	14/9:1	$\overrightarrow{1,2,3}$	1:1
1e. \	1:1	$\xrightarrow{1}$	2/3:1	$\xrightarrow{1,2}$	2/3:1	$\xrightarrow{1,2,3}$	1:1
е	1:1	$\xrightarrow{2}$	14/13:1	$\xrightarrow{2,3}$	14/9:1	$\xrightarrow{1,2,3}$	1:1
	1:1	$\xrightarrow{1}$	2/3:1	$\xrightarrow{1,3}$	10/11:1	$\xrightarrow{1,2,3}$	1:1
	1:1	$\xrightarrow{3}$	4/3:1	$\xrightarrow{1,3}$	10/11:1	$\xrightarrow{1,2,3}$	1:1
	1:1	$\xrightarrow{2}$	14/13:1	$\xrightarrow{1,2}$	2/3:1	$\xrightarrow{1,2,3}$	1:1



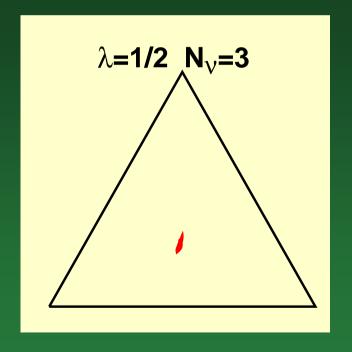
Observation of cosmic is the only known way to probe m² 10⁻¹⁰eV²

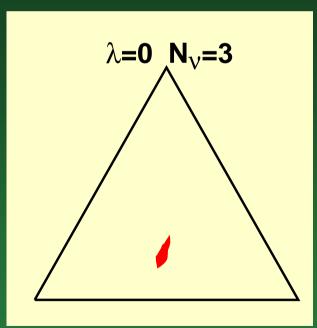
2.5 Non-standard flux + N = 3

Assume hypothetically

$$F^{0}(_{e}):F^{0}(_{\mu}):F^{0}(_{)}=\frac{1}{3}:1-\frac{1}{3}:0$$

Then even prediction with N =3 is distinct from the standard case:

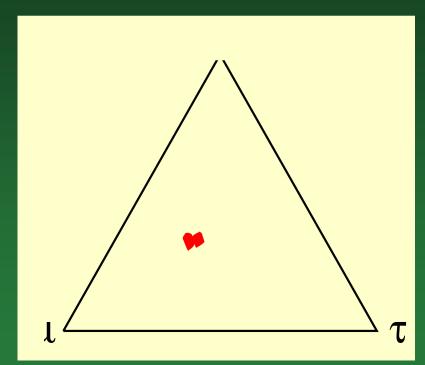




2.6 sterile scenarios

```
To have deviation from midline (F(_{\mu})=F(_{\mu})), (2+2)-like sterile scenario may be necessary. (some fraction of _{\mu} s in (2+2)) (3+1)- and (3+2)-schemes give almost the same prediction as N =3
```

Even though (2+2)scheme is now disfavored, it may be worth taking a look:



3. Conclusions

```
If F_0(_{\rm e}): F_0(_{\rm \mu}): F_0(_{\rm b})=1:2:0, then N =3 scenario predicts
```

F(
$$_{e}$$
): F($_{\mu}$): F()=1:1:1.

There are scenarios (decay, pseudo-Dirac) which have predictions quite different from 1:1:1.

If the initial flux is not 1:2:0, then observed flux would be also different from 1:1:1.

To have deviation from F($_{\mu}$): F()=1:1, some exotic scenario, such as (2+2)-sterile scheme, seems to be necessary.