Phenomenology of neutrinos for current and future experiments

Tokyo Metropolitan University

Osamu Yasuda

JPS meeting 23 March 2008@Kinki Univ.

- **1. Introduction**
- 2. Future accelerator/reactor expts.
- 3. Deviation from the standard scenario
- 4. Summary

1. Introduction

Framework of 3 flavor v oscillation

Mixing matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Functions of mixing angles $\theta_{12}, \theta_{23}, \theta_{13}, and CP$ phase δ

Information we have obtained so far:

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \cong \begin{pmatrix} C_{12} & S_{12} & \epsilon \\ -S_{12}/\sqrt{2} & C_{12}/\sqrt{2} & 1/\sqrt{2} \\ S_{12}/\sqrt{2} & -C_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

 Both mass
 hierarchies
 are allowed

θ₁₃:only upper bound is known δ:undetermined

Next task is to measure θ_{13} , sign(Δm_{31}^2) and δ .

• A word on theory: Theoretical prediction for θ_{13}

Albright, Chen: Phys.Rev.D74:113006,2006

Depending on the mass hierarchy, the predictions differ.

Plentinger, Seidl, Winter: Nucl.Phys.B791:60-92,2008

Systematic generation of v mass matrices by extended QLC

 Parameter space analysis based on realizations
 Large θ₁₃ preferred
 Compared to the GUT literature: Some realizations with very small sin²2θ₁₃ ~ 3.3 10⁻⁵

1981 textures !!!

All kinds of values of θ_{13} are predicted by theory, and it doesn't look like illuminating.

→ Theory is not yet developed enough to say something on mass & mixing of quarks & leptons.

Reference hep-ex/040204	$\sin \theta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5\cdot10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8\cdot 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	$0.01 \dots 0.06$	$4\cdot 10^{-4}$ 0.01
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	$0.08 \dots 0.4$	$0.03 \dots 0.5$
Ohlsson, Seidl [56]	$0.07 \ldots 0.14$	$0.02 \dots 0.08$
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	$0.08 \dots 0.20$	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	$0.01 \dots 0.05$	$4\cdot 10^{-4}$ 0.01
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$>1.6\cdot10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement		
Mohapatra, Parida, Rajasekaran [67]	0.08 0.1	$0.03 \dots 0.04$

2. Future accelerator and reactor experiments

Most realistic way to measure θ_{13} , sign(Δm_{31}^2) and δ is long base line experiments by accelerators or reactors.

One issue has to be taken into account for precise measurements:

Parameter degeneracy

Parameter degeneracy Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign(Δm_{31}^2) and δ is difficult because of the 8-fold parameter degeneracy. $\Delta m_{31}^2 > 0$ $\Delta m_{31}^2 < 0$ 2.5 $\theta_{23} <$ $1/\sin^2\theta_{23}$ 2 $\theta_{23} > 45^{\circ}$ 1.5 0.002 0.004 0.006 0.008 0.01 0 $\sin^2 2\theta_{13}$ intrinsic (δ , θ_{13}) degeneracy $\Delta m_{31}^2 \leftrightarrow \Delta m_{31}^2$ degeneracy $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ degeneracy

To solve parameter degeneracy, combine the following:

(A) LBL measurement at $|\Delta m_{31}^2|L/4E = \pi/2$ \rightarrow hyperbola shrinks to a straight line (B) reactor measurement of θ_{13} $\overline{\nu}_e \rightarrow \overline{\nu}_e$ \rightarrow depends only on θ_{13} (C) LBL measurement of $\nu_{\mu} \rightarrow \nu_e$ (or $\nu_e \rightarrow \nu_{\mu}$) with different L/E

(D) measurement of $V_e \rightarrow V_T$

Future accelerator LBL experiments

To perform precise measurements of θ_{13} and δ , one has to have a lot of numbers of events to improve statistical errors.

 \rightarrow We need high intensity beam

Future LBL exp. (under construction / proposed)

superbeam →Kobayashi's talk T2K phase I (2009-, 0.75MW, E~1GeV, L=295km) T2K phase II (4MW+HK, E~1GeV, L=295km) T2KK (JAERI→HK&Korea, E~1GeV, L=295km&1000km) NOvA (FNAL \rightarrow Ash River (MN), E ~ 2GeV, L=810km) VBLNO (BNL→Homestake, E~2GeV, L>2500km) SPL (CERN \rightarrow Frejus, E \sim 0.25GeV, L=130km) neutrino factory (E_v<50GeV, L~3000km) beta beam (E,=0.5-1.5GeV, L~130km)

sensitivity to the CP phase δ of future experiments

ISS report: arXiv:0710.4947 [hep-ph]

T2KK vs. NOvA; CP

Minakata@2nd T2KK workshop ('06)

3. Deviation from standard 3 flavor framework

Just like at B factories, high precision measurements of v oscillation can be used also to probe physics beyond SM by looking at deviation from SM+massive v.

Here I will discuss the following topics:
(1) New physics (NP) (exotic interactions)
(2) Violation of unitarity (like at a B factory)
(3) Sterile neutrinos

(1) New physics (NP) (exotic interactions)

Flavors are not necessarily conserved in these interactions: $\alpha = \beta \& \alpha \neq \beta$

(i) Effects of New Physics at source and detector

Deviation from the standard form is small: Grossman (PLB359:141,1995)

 $|(U^{s}-1)_{\alpha\beta}| < O(10^{-2}), |(U^{d}-1)_{\alpha\beta}| < O(10^{-2})$

(ii) New Physics effects in propagation

1. Constraints from various v experiments: Davidson et al (JHEP 0303:011,2003)

 $0 \le |\epsilon_{e\tau}| \le 1 + \epsilon_{ee} \qquad -1 \le \epsilon_{ee} \le 1.5$

2. Constraints from atmospheric neutrinos: Friedland-Lunardini (Phys.Rev.D72:053009,2005)

 ϵ_{ee} , $\epsilon_{e\tau}$, $\epsilon_{\tau\tau} \sim 0(1)$ are consistent with v_{atm} data, provided

Deviation could be large

$$\epsilon_{\tau\tau} \sim \frac{\left|\epsilon_{e\tau}\right|^2}{1+\epsilon_{ee}}$$

In general:

Potentially expected New Physics effects in propagation

 $P(v_{\mu} \rightarrow v_{e})$

 $P(v_e \rightarrow v_\mu)$

Confusion in the presence of New Physics

Unitarity violation is similar to NP effects at production and at detection \rightarrow becomes important when L is smaller

$$P(v_{\alpha} \rightarrow v_{\beta}) \rightarrow \left[(1+\eta) \text{Uexp} \left[-i \text{ diag} \left(E_{j} \right) \right] \text{U}^{-1} (1+\eta)^{-1} \right]_{\beta \alpha} \right]^{2}$$

$$\eta \equiv (NN^{\dagger} - 1) / 2$$

U^s →1+η/2, U^d→1+η/2

Neutrino factory with a baseline L=130km

Fernandez-Martinez, Gavela, Lopez-Pavon, OY, Phys.Lett.B649:427-435,2007

(3A) Sterile neutrinos assuming LSND

Schwetz-Mangold@nufact07

$$\varphi_{54}^{best} = 1.64\pi$$

$$\Delta m^2_{41} = 0.89 \text{ eV}^2$$

 $\Delta m^2_{51} = 6.49 \text{ eV}^2$

 $\chi^2_{\rm min} = 94.5/(107-7)$

 χ^2 /ndf = 146.7/156 gof=69% $\varphi_{54}^{best} = 1.74\pi$

 (3+2) schemes

 offer the possiblity of CP violation to reconcile LSND and MiniBooNE,

- but there is tension between appearance and disappearance data (3σ , 4σ for MB300)

$$\overline{v}_e \rightarrow \overline{v}_e$$
: Bugey $v_\mu \rightarrow v_\mu$: CDHSW

So from the global fit, (3+2) is probably not a promising scheme...

(3B) Sterile neutrinos w/o assuming LSND

Without assuming LSND and imposing all the negative constraints one can still consider (3+1)-scheme

Donini, Maltoni, Meloni, Migliozzi, Terranova, JHEP 0712:013,2007

 θ_{14} , θ_{24} , θ_{34} : angles which appear only in 4v scenario

Potentially expected effects of sterile neutrinos at longer baseline

Dighe, Ray: Phys.Rev.D76:113001,2007

4. Summary

A brief review was given on the known parameters in SM+massive v. Efforts to determine the unknown parameters (θ_{13} , δ , sign(Δm^2_{31})) in the future experiments were described.

The future neutrino experiments with high precision will be able to see deviation from SM such as non-standard interactions, unitarity violation, sterile neutrinos, etc.

Beyond SM+massive v, there are still a lot of things to be worked out: sensitivities to NP, optimization to NP, degeneracy in the presence of NP, etc.

Accelerator and reactor experiments are complementary not only in SM+massive v but also in Beyond SM+massive v.