Neutrino oscillation phenomenology

Tokyo Metropolitan University

Osamu Yasuda

INO-KEK meeting 27 November 2007@KEK

Contents

- 1. Introduction
- 2. Future long baseline experiments
- 3. Deviation from the standard scenario
- 4. Summary

1. Introduction

Framework of 3 flavor v oscillation

$$\begin{array}{c} \textbf{Mixing matrix} \\ \begin{matrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{matrix} = \begin{pmatrix} \nu_{e1} & \nu_{e2} & \nu_{e3} \\ \nu_{\mu 1} & \nu_{\mu 2} & \nu_{\mu 3} \\ \nu_{\tau 1} & \nu_{\tau 2} & \nu_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Functions of mixing angles $\theta_{12}, \theta_{23},$ θ_{13} , and CP phase δ

Information we have obtained so far:

$$V_{solar} + KamLAND (reactor) \longrightarrow \theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} \text{ eV}^2$$

$$V_{atm} + K2K, MINOS (accelerators) = \theta_{23} \cong \frac{\pi}{4}, |\Delta m_{32}^2| \cong 2.5 \times 10^{-3} \text{ eV}^2$$

CHOOZ (reactor)
$$|\theta_{13}| \le \sqrt{0.15}/2$$

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \cong \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & \mathbf{\epsilon} \\ -\mathbf{S}_{12} / \sqrt{2} & \mathbf{C}_{12} / \sqrt{2} & 1 / \sqrt{2} \\ \mathbf{S}_{12} / \sqrt{2} & -\mathbf{C}_{12} / \sqrt{2} & 1 / \sqrt{2} \end{pmatrix}$$

- θ_{13} :only upper bound is known
- δ :undetermined

Next task is to measure θ_{13} , sign(Δm_{31}^2) and δ .

• Theoretical prediction for θ_{13}

Chen: ISS 3rd plenary ('06) @ RAL

 10^{-1}

 $\sin^2\vartheta_{13}$

10-2

1 ∩ −¹

Texture

Winter: nufact07 @ Okayama

Systematic generation of v mass matrices by extended QLC

- Parameter space analysis based on realizations
- ► Large θ_{13} preferred
- Compared to the GUT literature:
 Some realizations with very small sin²2θ₁₃ ~3.3 10⁻⁵

(Plentinger, Seidl, Winter, hep-ph/0612169)

All kinds of values of θ_{13} are predicted by theory, and it doesn't look like illuminating.

→ Theory is not yet developed enough to say something on mass & mixing of quarks & leptons.

Reference hep-ex/040204	$\sin\theta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold $SO(10)$		
Asaka, Buchmüller, Covi [41]	0.1	0.04
$SO(10) + flavor\ symmetry$		
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8 \cdot 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	$0.01 \dots 0.06$	$4 \cdot 10^{-4} \dots 0.01$
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	0.08 0.4	0.03 0.5
Ohlsson, Seidl [56]	$0.07 \dots 0.14$	0.02 0.08
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	0.08 0.20	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	$0.01 \dots 0.05$	$4 \cdot 10^{-4} \dots 0.01$
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement		
Mohapatra, Parida, Rajasekaran [67]	$0.08 \ \ 0.1$	0.03 0.04

2. Future LBL (Long BaseLine experiments)

Most realistic way to measure θ_{13} , sign(Δm^2_{31}) and δ is long base line experiments by accelerators or reactors.

→Matter effect contributes in LBL in most cases

- Two points to be taken into account for precise measurements:
 - (1) Correlation of errors
 - (2) Parameter degeneracy

(1) Correlation of errors

If uncertainties of other parameters (such as density of matter $\rho \propto A$) mimic the dependence on δ , then we cannot determine δ (correlation of errors)

→We have take into account the uncertainties of other parameters to reject " δ =0"

$$\Delta \chi^2 = \sum_{j} \frac{\left[N_j(\delta) - N_j(\delta = 0) \right]^2}{\sigma_j^2}$$

$$\Delta\chi^2 = \min_{\overline{\theta_{k\ell}}, \overline{\Delta m_{k\ell}^2}, \overline{A}} \sum_j \frac{\left[N_j(\delta; \overline{\theta_{k\ell}}, \overline{\Delta m_{k\ell}^2}, \overline{A}) - N_j(\delta = 0; \theta_{k\ell}, \Delta m_{k\ell}^2, A)\right]^2}{\sigma_j^2}$$

(Example) There is correlation of errors at a neutrino factory:

$$E_{\mu}$$
 =50GeV, L=3000km

correlation of errors in ρ and δ is serious for $\sin^2 2\theta_{13} \sim 0.1$

sensitivity to $\sin^2 2\theta_{13}$ of a ν factory is poor for $\sin^2 2\theta_{13} \sim 0.1$

correlation of errors in ρ and δ is not serious for $\sin^2 2\theta_{13} < 0.01$

(2) Parameter degeneracy

Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign(Δm^{2}_{31}) and δ is difficult because of the 8-fold parameter degeneracy.

 $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ degeneracy

 $\Delta m_{31}^2 \leftrightarrow -\Delta m_{31}^2$ degeneracy

If parameter degeneracy exists, then the errors of the parameters become unnecessarily large.

Resolution of parameter degeneracy is important.

Future LBL experiments

To perform precise measurements of θ_{13} and δ , one has to have a lot of numbers of events to improve statistical errors.

→We need high intensity beam

Candidates for high intensity beam in the future:

• (conventional) superbeam
$$\left\{ \begin{array}{l} \pi^+ \to \mu^+ + v_\mu \\ \pi^- \to \mu^- + v_\mu \end{array} \right. \overline{v_\mu}$$

neutrino factory

μ in a storage ring

beta beam

RI in a storage ring

$$\left\{ \begin{array}{l} \boldsymbol{\mu}^{+} \rightarrow \boldsymbol{e}^{+} + \boldsymbol{V}_{\boldsymbol{e}} + \boldsymbol{V}_{\boldsymbol{\mu}} & \boldsymbol{v}_{\boldsymbol{e}} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}} \\ \boldsymbol{\mu}^{-} \rightarrow \boldsymbol{e}^{-} + \boldsymbol{V}_{\boldsymbol{e}} + \boldsymbol{V}_{\boldsymbol{\mu}} & \boldsymbol{v}_{\boldsymbol{e}} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}} \\ \end{array} \right. \\ \left\{ \begin{array}{l} {}^{6}_{}\text{He} \rightarrow {}^{6}_{}\text{Li} + \boldsymbol{e}^{-} + \boldsymbol{V}_{\boldsymbol{e}} \\ {}^{18}_{}\text{Ne} \rightarrow {}^{18}_{}\text{F} + \boldsymbol{e}^{+} + \boldsymbol{V}_{\boldsymbol{e}} \end{array} \right. \\ \left. \begin{array}{l} {}^{6}_{}\text{He} \rightarrow {}^{6}_{}\text{Li} + \boldsymbol{e}^{-} + \boldsymbol{V}_{\boldsymbol{e}} \\ \boldsymbol{v}_{\boldsymbol{e}} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}} \end{array} \right. \\ \left. \begin{array}{l} {}^{18}_{}\text{Ne} \rightarrow {}^{18}_{}\text{F} + \boldsymbol{e}^{+} + \boldsymbol{V}_{\boldsymbol{e}} \end{array} \right. \\ \left. \begin{array}{l} {}^{7}_{}\text{C} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}} \\ \boldsymbol{v}_{\boldsymbol{e}} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}} \end{array} \right.$$

Future LBL exp. (under construction / proposed)

superbeam
 T2K phase I (2009-, 0.75MW, E~1GeV, L=295km)
 T2K phase II (4MW+HK, E~1GeV, L=295km)

T2KK (JAERI→HK&Korea, E~1GeV, L=295km&1000km)

NOvA (FNAL→ Ash River (MN), E~2GeV, L=810km)

VBLNO (BNL→DUSEL*, E~2GeV, L>2500km)

(*Deep Underground Science and Engineering Laboratory: Homestake(SD), Icicle Creek(WA), San Jacinto(CA), Soudan(MN), Kimballton(VA), Henderson(CO))

SPL (CERN→Frejus, E~0.25GeV, L=130km)

- neutrino factory (E_v<50GeV, L~3000km)
- beta beam (E_v=0.5-1.5GeV, L~130km)

Proposed reactor experiments (E~4MeV, L~2km)

Double CHOOZ (France), Daya Bay (China), Reno (Korea), Angra (Brazil)

sensitivity to the CP phase δ of future experiments

error of δ

T2HK = Tokai to HyperKamiokande

arXiv:0710.4947 [hep-ph]

T2KK vs. NOvA; CP

Minakata@2nd T2KK workshop ('06)

June 2005 ~ Aug. 2006

http://www.hep.ph.ic.ac.uk/iss/

- Evaluate the physics case for the facility
- Study options for the accelerator complex and neutrino detection systems
- ◆Physics Group Y. Nagashima
- **♦ Detector Group A. Blondel**
- **◆Accelerator Group M. Zisman**

- ▶Theory Subgroup S.F. King
- ▶Phenomenology Subgroup OY
- >Experiment Subgroup K. Long
- ≻Muon Subgroup L. Roberts

- ➤Theory Subgroup Model building for neutrino mass & mixing
- ➤Phenomenology Subgroup
 Deviation from SM with massive neutrinos
- Experiment Subgroup
 Estimation of sensitivity and resolution of degeneracy for ν factories and β beams

Final report of Physics Group: arXiv:0710.4947 [hep-ph]

International Design Study of the Neutrino Factory

2007 ~

http://www.hep.ph.ic.ac.uk/ids/

- **◆**Accelerator Group
- **♦** Detector Group
- **◆**Physics and Performance Evaluation Group

Tentative plan of PPEG

- provide sensitivity estimates as requested
- track new developments like low E NF
- understand optimization in the context of non-standard physics
- establish a physics case for all values of θ_{13}
- keep track of competitors to the NF
- near detector, both at a SB and NF
- status of cross-sections
- muon physics

3. Deviation from standard 3 flavor framework

- (1) New physics (NP) (exotic interactions)
- (2) violation of unitarity (like at a B factory)
- (3) Sterile neutrinos

(1) New physics (NP) (exotic interactions)

Flavors are not necessarily conserved:

Effects of New Physics on v oscillations

$$A \equiv \sqrt{2}G_F N_e$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \begin{bmatrix} U^{d} \tilde{U} \exp\left\{-i \operatorname{diag}(\tilde{E}_{j})L\right\} \tilde{U}^{-1} \left[U^{s} \right]^{-1} \right|^{2}$$
with
$$U \operatorname{diag}(E_{j}) U^{-1} + \mathcal{A}_{SM} + \mathcal{A}_{NP} \equiv \tilde{U} \operatorname{diag}(\tilde{E}_{j}) \tilde{U}^{-1}$$

with

$$|(U^{s}-1)_{\alpha\beta}| < O(10^{-2})$$

 $\left(\begin{array}{c}
\nu_e^s \\
\nu_\mu^s\end{array}\right) = U^s U_{MNS} \left(\begin{array}{c}
\nu_1 \\
\nu_2\end{array}\right)$

$$\epsilon_{\text{ee}}, \epsilon_{\text{e\tau}}, \epsilon_{\tau\tau} \sim O(1)$$

$$A \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

opagation

detection $|(U^{d}-1)_{\alpha\beta}| < O(10^{-2})$

$$(U^d)^\dagger_{\omega eta} \, G_F$$
 $u_\omega \, \,
u_eta^d$

(i) Effects of New Physics at source and detector

Deviation from the standard form is small:

Grossman (PLB359:141,1995)

$$|(U^{s}-1)_{\alpha\beta}| < O(10^{-2}), |(U^{d}-1)_{\alpha\beta}| < O(10^{-2})$$

- (ii) New Physics effects in propagation
 - 1. Constraints from various v experiments:

Davidson et al (JHEP 0303:011,2003)

$$\begin{pmatrix}
-3 \lesssim \epsilon_{ee} \lesssim 2 & |\epsilon_{e\mu}| \lesssim 0.5 & |\epsilon_{e\tau}| \lesssim 1.5 \\
|\epsilon_{e\mu}| \lesssim 0.5 & |\epsilon_{\mu\mu}| \lesssim 0.05 & |\epsilon_{\mu\tau}| \lesssim 0.15 \\
|\epsilon_{e\tau}| \lesssim 1.5 & |\epsilon_{\mu\tau}| \lesssim 0.15 & |\epsilon_{\tau\tau}| \lesssim 6
\end{pmatrix}$$

2. Constraints from atmospheric neutrinos:

Friedland-Lunardini (Phys.Rev.D72:053009,2005)

 \mathcal{E}_{ee} , $\mathcal{E}_{e\tau}$, $\mathcal{E}_{\tau\tau} \sim 0(1)$ are consistent with v_{atm} data, provided

$$\epsilon_{\tau\tau} \sim \frac{|\epsilon_{e\tau}|^2}{1 + \epsilon_{ee}}$$
 $0 \le |\epsilon_{e\tau}| \lesssim 1 + \epsilon_{ee}$ $-1 \lesssim \epsilon_{ee} \lesssim 1.5$

$$0 \le |\epsilon_{e\tau}| \lesssim 1 + \epsilon_{ee}$$

In general:

NP effects at production and at detection becomes important when L is smaller

$$|\epsilon_{\alpha\beta}|$$
 < O(10⁻²)

$$P(v_{\alpha} \to v_{\beta}) \to \left[U^{d}(U^{s})^{-1} \right]_{\beta \alpha}^{2}$$
 i.e., no BG from osc. in the limit of L \to 0

Experiments with a shorter baseline are advantageous

NP effects in propagation becomes important when L is larger

 $\mathcal{E}_{\alpha\beta}$ can be of O(1)

because AL $\varepsilon_{\alpha\beta} \sim \varepsilon_{\alpha\beta}$ (L/2000km)

Experiments with a longer baseline (e.g., INO) are advantageous

MINOS (v_e appearance)

L=730km

T2KK (v_e appearance)

NK,HS,OY, hep-ph/0606013

v factory (golden channel)

√ factory (silverchannel)

NK,HS,OY, hep-ph/0606013

(2) Unitarity violation due to heavy ν

 $U \rightarrow N$ (non-unitary)

NN[†] –1: deviation from unitarity

mostly from rare decays

$$|NN^{\dagger}| \approx \begin{pmatrix} 0.994 \pm 0.005 & <7.1 \cdot 10^{-5} & <1.6 \cdot 10^{-2} \\ <7.1 \cdot 10^{-5} & 0.995 \pm 0.005 & <1.0 \cdot 10^{-2} \\ <1.6 \cdot 10^{-2} & <1.0 \cdot 10^{-2} & 0.995 \pm 0.005 \end{pmatrix}$$

90% C.L.

Constraints on unitary violation are strong:

| $(NN^{\dagger}-1)_{lphaeta}$ |< $O(10^{-2})$

Minimal case: Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, JHEP 0610:084,2006.

Non-minimal case: Abada, Biggio, Bonnet, Gavela, Hambye, arXiv:0707.4058 [hep-ph]

Even stronger constraints → more difficult to detect

Unitarity violation is similar to NP effects at production and at detection → becomes important when L is smaller

$$P(v_{\alpha} \rightarrow v_{\beta}) \rightarrow \left[(1+\eta) \text{ Uexp } [-i \text{ diag } (E_j)] \text{ U}^{-1} (1+\eta)^{-1} \right]_{\beta \alpha}^{2}$$

$$\eta \equiv (NN^{\dagger} - 1)/2$$
 $|\eta_{\alpha\beta}| < O(10^{-2})$

$$\mid \eta_{lphaeta}\mid <$$
 O(10 $^{ extsf{-2}}$)

$$U^s \rightarrow 1+\eta/2, \ U^d \rightarrow 1+\eta/2$$

Experiments with a shorter baseline are advantageous

Neutrino factory with a baseline L=130km

Fernandez-Martinez, Gavela, Lopez-Pavon, OY, Phys.Lett.B649:427-435,2007

(3A) Sterile neutrinos assuming LSND

$$\Delta m_{\rm sol}^2 \sim 10^{-4} \, \rm eV^2$$

$$\Delta m_{\rm atm}^2 \sim 10^{-3} \, {\rm eV}^2$$

$$\Delta m_{\rm sol}^2 \sim 10^{-4} \, {\rm eV}^2 \, \Delta m_{\rm atm}^2 \sim 10^{-3} \, {\rm eV}^2 \, \Delta m_{\rm LSND}^2 \sim O(1) \, {\rm eV}^2$$

LSND(
$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$
): affirmative

MiniBOONE(
$$\nu_{\mu} \rightarrow \nu_{e}$$
): negative

difference between v & anti-v may offer a promising fit

(3+2)-scheme w/ CP phase δ

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu 4}|^{2} \sin^{2} \phi_{41}$$

$$+ 4 |U_{e5}|^{2} |U_{\mu 5}|^{2} \sin^{2} \phi_{51}$$

$$+ 8 |U_{e4}U_{\mu 4}U_{e5}U_{\mu 5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

with the definitions

$$\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} \,,$$

$$\delta \equiv \arg \left(U_{e4}^* U_{\mu 4} U_{e5} U_{\mu 5}^* \right).$$

Schwetz-Mangold@nufact07

$$\phi_{54}^{best} = 1.64 \,\pi$$

$$\Delta m_{41}^2 = 0.89 \text{ eV}^2$$
 $\Delta m_{51}^2 = 6.49 \text{ eV}^2$
 $\chi_{\min}^2 = 94.5/(107 - 7)$

Karagiorgi@nufact07

$$\chi^2/ndf = 146.7/156$$

gof=69%
 $\phi_{54}^{best} = 1.74 \pi$

- (3+2) schemes
 - offer the possiblity of CP violation to reconcile LSND and MiniBooNE,
 - but there is tension between appearance and disappearance data (3σ , 4σ for MB300)

(3B) Sterile neutrinos w/o assuming LSND

Without assuming LSND and imposing all the negative constraints one can still consider (3+1)-scheme

"3+1 sterile neutrinos at the CNGS" Donini, Maltoni, Meloni, Migliozzi, Terranova, arXiv:0704.0388v2 [hep-ph]

 θ_{14} , θ_{24} , θ_{34} : angles which appear only in 4v scenario

"Signatures of heavy sterile neutrinos at long baseline experiments" Dighe, Ray, arXiv:0709.0383 [hep-ph]

In either case (3A) or (3B), sterile neutrino oscillations will exhibit enhancement/suppression for v or anti- v, and experiments with a longer baseline (such as INO) are expected to have good sensitivity to sterile neutrinos.

3. Summary

- A brief review was given on the known parameters in SM+massive ν . Efforts to determine the unknown parameters $(\theta_{13}, \delta, \text{sign}(\Delta m^2_{31}))$ in the future experiments were described.
- The future neutrino experiments with high precision will be able to see deviation from SM such as non-std. interactions, unitarity violation, sterile neutrinos, etc.
- Experiments with longer baselines (such as INO) are advantageous to search for NP in propagation and sterile neutrinos.