Reactor measurements of θ_{13} and complementarity to LBL experiments

Osamu Yasuda

(registered also as Osamy Tashuda in the program)

Tokyo Metropolitan University

Happy birthday, Paul!

Contents

- **1. Introduction**
- 2. Parameter degeneracy in ν oscillation
- 3. Kashiwazaki-Kariwa plan
- Lower bound on sensitivity to sin²2 θ₁₃ in reactor experiments and speculation on its improvement

Ref:

2.,3. H. Minakata, H. Sugiyama, O.Y., F. Suekane, K. Inoue, Phys.Rev.D68:033017,2003;
H. Sugiyama, O.Y., F. Suekane, G.A. Horton-Smith, to appear
4. H. Sugiyama, O.Y., to appear

• solar $\mathbf{v} \cdot \text{KamLAND}$ $\Rightarrow \Delta m_{21}^2 = 7 \times 10^{-5} \text{ eV}, \sin^2 2 \theta_{12} \cong 0.9$ • atmospheric $\mathbf{v} \cdot \text{K2K}$ $\Rightarrow |\Delta m_{32}^2| = 2 \times 10^{-3} \text{ eV}^2, \sin^2 2 \theta_{23} \cong 1.0$ • CHOOZ $\Rightarrow \sin^2 2 \theta_{13} < 0.2$

Next things to determine: Θ_{13} and δ (CP phase)

• Naïve argument on measurement of θ_{13}

P (
$$v_{\mu} \rightarrow v_{e}$$
) \cong s²₂₃sin² 2 θ_{13} sin² $\left(\frac{\Delta m_{32}^{2}L}{4E}\right)$ + correction s
 θ_{13} can be deduced

Naïve argument on measurement of δ

$$\begin{split} P\left(\nu_{\mu} \rightarrow \nu_{e}\right) - P\left(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}\right) &= 2Jsin\left(\frac{\Delta m_{21}^{2}L}{4E}\right)sin\left(\frac{\Delta m_{32}^{2}L}{4E}\right)sin\left(\frac{\Delta m_{31}^{2}L}{4E}\right)\\ J &\equiv \frac{sin\,\delta\,sin2\,\theta_{12}sin2\,\theta_{13}sin2\,\theta_{23}}{} \end{split}$$

δ can be deduced

2. Parameter degeneracy

Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign (Δm_{32}^{2}) and δ is difficult because of the 8-fold parameter degeneracy.

• intrinsic (δ, θ_{13}) degeneracy • $\Delta m_{31}^2 \Leftrightarrow -\Delta m_{31}^2$ degeneracy • $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy

3. KAShiwazaki-KAriwa plan (KASKA)

kaska = faint or very little (in Japanese)

Kashiwazaki-Kariwa nuclear power plant (in Niigata pref.) 24 GW_{th}: the largest in the world

Collaborators so far: Tohoku U. (2) Niigata U. (4) Tokyo Met. U. (3) Tokyo Inst. Tech. (1) Rikkyo U. (1)

To cancel the correlated error, more than 1 detector is required.

7reactors+3detectors→ sensitivity of sin²2θ₁₃ \cong 0.02 L_{far}=1.3km, L_{near}~0.4km

contour plot of $\sin^2 2\theta_{13}$ with 20 ton-yr, $\sigma_{sys}=0.6\%$

Sensitivity to $\sin^2 2 \theta_{13}$ at KASKA

Sensitivity at JPARC $(\sin^2 2 \theta_{13} \sim 10^{-3})$ is far better but reactor experiments are complementary. Although KASKA consists of multiple reactors, extra ambiguity does not arise.

4. Lower bound on sensitivity to $\sin^2 2 \theta_{13}$ in reactor experiments and possibility of its improvement

 σ_u =0.6%: extrapolation from Bugey+CHOOZ (σ_u <0.6% seems to be hard to achieve.)

case with N reactors + (N+1) detectors

$$(\sin^{2} 2 \theta_{13})_{\text{limit}}^{\text{sys only}}$$

$$\cong \frac{\sqrt{2.7} \sqrt{1+1/N} \sigma_{u}}{D(L_{far}) - D(L_{near})}$$

$$\ge \frac{\sqrt{2.7} \sqrt{1+1/N} \sigma_{u}}{0.8} \quad (\text{equality} : L_{far} = 1.8 \text{km}, L_{near} = 0 \text{km})$$

$$= 2.0 \sigma_{u} \quad (\text{if } N \gg 1)$$

$$= 0.012 \quad (\text{if } \sigma_{u} = 0.6\%)$$

$$\longrightarrow \text{ With N reactor} + (N+1) \text{ detectors,} \text{ sensitivity cannot be better than } 0.012!$$

Possible way to improve sensitivity (theorist's personal speculation)

If one puts n near detectors and n far detectors with the same σ_u , then theoretically sensitivity becomes:

$$\begin{split} & \text{min} \left(\sin^2 2 \ \theta_{13} \right)_{\text{limit}}^{\text{sys only}} = 2.8 \ \sigma_u \\ & \text{min} \left(\sin^2 2 \ \theta_{13} \right)_{\text{limit}}^{\text{sys only}} = 2.8 \ \sqrt{\frac{1}{n}} \ \sigma_u \end{split}$$

Assumption: σ_u is independent of n. (Is it correct?)

Conclusion

• Measurements of θ_{13} by reactors are free of ambiguities of the parameter degeneracy, and may enable us to resolve the ambiguity which occurs in the LBL experiment.

• Sensitivity to $\sin^2 2\theta_{13} \sim 0.02$ is obtained with a 24.3 GW_{th} reactor, 40 t·yr, σ_{sys} = 0.6% (KASKA). This is close to the naïve lower bound of $(\sin^2 2\theta_{13})_{limit}^{sys only}$.

Sensitivity may be improved by increasing the numbers of near and far detectors.

 \rightarrow Dependence of σ_u on the numbers has to be carefully studied.