ニュートリノの現象論

首都大学東京理工学研究科物理学専攻 安田修

2014年7月12日(土)@名古屋大学

CRCタウンミーティング

1. 序

- v振動
- パラメーター縮退
- 2. 標準的3世代シナリオ
- 混合角度
- 質量パターン
- CP位相
- 3. 非標準的シナリオ
- ステライル v
- 非標準的相互作用
- ユニタリー性の破れ

4. まとめ

1. 序 1.1 ニュートリノ振動(真空中の2世代の場合)

4

1.2 ニュートリノ振動(3世代の場合)

3×3直交行列の3つの回転角 $\theta_{12}, \theta_{13}, \theta_{23}$ とCP非保存位相 δ 、 $\Delta m_{21}^2, \Delta m_{32}^2$ がパラメーター

1.4 パラメーター縮退 $(\sin^2 2\theta_{13}, 1/s^2_{23})$ CP非保存位相δを決定するた 平面の図(P=一定& めにE,L一定の長基線v実験で 戸=一定で与えられ $\mathbf{P} \equiv \mathbf{P}(\mathbf{v}_{\mathbf{\mu}} \rightarrow \mathbf{v}_{\mathbf{e}}), \ \overline{\mathbf{P}} \equiv \mathbf{P}(\overline{\mathbf{v}_{\mathbf{\mu}}} \rightarrow \overline{\mathbf{v}_{\mathbf{e}}})$ る線は2次曲線) の両方を決定しても一般に δ は IH 一意的に決まらない OY, New J.Phys. 6 → 2³重縮退 1/S²3 (2004) 83 octant degeneracy $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ (Fogli-Lisi, '96) 2 intrinsic degeneracy (δ , θ_{13}) (Burguet-Castell et al, '01) 0 sign degeneracy $\Delta m_{31}^2 \leftrightarrow$ $sin^2 2\theta_{13}$ $-\Delta m_{31}^2$ (Minakata-Nunokawa, '01)

1.5ニュートリノ振動以外の実験 m _{ee}						disfavoured by 0№B	
(i)無 v 二重 β 崩壊実験 ¹⁰⁻¹							
m _{ee} =[Σ (U_{ej}	<mark>)²m_jex</mark>	<mark>(i¢j) </mark>	/m _{ee} / in eV	10-2	$m_{23}^2 < 0$	disfavou
Rodejoha	Inn@N	OW2012	INANA		10-3	$m_{23}^2 > 0$	red by c
Experiment	lsotope	Status	Start of data-taking	Sensitivity $\langle m_{ u} angle$ [eV]	10	00% CL (1 dof)	osmolog
GERDA	⁷⁶ Ge	∨2014 in progress	~ 2012	0.29 - 0.57 0.06-0.16	10 ⁻⁴ 10	0^{-4} 10^{-3} 10^{-2} 10^{-1}	ج ۱
CHODE	130-	R&D	~ 2015	0.012-0.030	1	lightest neutrino mass in eV	(m)
COOKE	Te	in progress	~ 2013	0.018-0.037		mm	(III _j)
MAJORANA	⁷⁶ Ge	in progress R&D	~ 2013 ~ 2015	0.06-0.16		Strumia-Viss	ani:
EXO	¹³⁶ Xe	v2014		0.19 - 0.45			
SuperNEMO	⁸² Se	R&D	~ 2015 $\sim 2013-15$	0.02-0.05			
KamLAND-Zen	¹³⁶ Xe	v2014	2010 10	0.14 - 0.28		Sale Aler	
	150	R&D	\sim 2013-15	0.02-0.046	10 200	And selection of	
SNO+	Nd	In progress	~ 2014	0.09-0.18	100	X YYX X	7/34

L FE

.

●Planckの結果(2013/3)

2013年3月20日に Planckの結果(CMB+銀 河団)からΣm_v>0という 主張が出てはいるが、他 のパラメーターを調節す ればΣm_v=0でも観測値 の説明は可能なはず

→慎重に解釈すべき

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_v$ from: *Planck* CMB data alone (black dotted line); *Planck* CMB + SZ with 1 - b in [0.7, 1] (red); *Planck* CMB + SZ + BAO with 1 - b in [0.7, 1] (blue); and *Planck* CMB + SZ with 1 - b = 0.8 (green).

Planck 2013 results. XX, Cosmology from Sunyaev– Zeldovich cluster counts, arXiv:1303.5080v1

2. 標準的3世代シナリオ

2.1 混合角

対称性の議論から、レプトン混合角の間、或はクォーク・ レプトン混合角の間にさまざまな予言がなされている

Quark-lepton complementarity Minakata, Smirnov, PR D70 (2004) 073009

$$\theta_{12} + \theta_{C} = \pi/4$$

T' symmetry Eby, Frampton, arXiv:1112.2675v4 [hep-ph]

 $\pi/4 - \theta_{23} = 2^{-1/2} \theta_{13}$

クォークの混合角はO(0.1°)の精度で測定されている

CKM angles @90%CL (PDG) $\theta_{12} = 12.57 \pm 0.12 \text{ deg}$ $\theta_{23} = 2.36 \pm 0.11 \text{ deg}$ $\theta_{13} = 0.21 \pm 0.04 \text{ deg}$

レプトンの混合角の測定値@90%CL

Tortola@ICHEP2014

 $\theta_{12} = 34.6 \pm 1.0 \text{ deg}$ $\theta_{23} = 49 + 1.9 - 6.6 \text{ deg}$ = 49 + 1.5 - 2.2 deg $\theta_{13} = 8.3 + 0.3 - 0.2 \text{ deg}$

$\sin^2 \theta_{12} / 10^{-1}$	3.23±0.16	5%
$\frac{\sin^2 \theta_{23}}{10^{-1}}$ (NH) $\frac{\sin^2 \theta_{23}}{10^{-1}}$ (IH)	$5.67^{+0.32}_{-1.15}\\5.73^{+0.25}_{-0.38}$	7.3% 6.8%
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	$2.10^{+0.14}_{-0.09}$	5.4%
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	$2.16^{+0.10}_{-0.12}$	5.2%

L=50kmの原子炉v実験(JUNO, Reno-50)では 精密な測定が可能であると期待されている

Zhan @ ICHEP2014

	Current	JUNO
Δm² ₁₂	3%	0.6%
Δm ² ₂₃	5%	0.6%
sin ² θ_{12}	6%	0.7%
sin ² θ_{23}	10%	N/A
sin ² θ_{13}	14% → 4%	~ 15%

At T2K

 $\delta sin^2 2\theta_{23} = 1\% \rightarrow \delta sin^2 \theta_{23} = 10\%$ for $\theta_{23} = \pi/4$

2.2 質量パターン

(i)GUT等の模型構築への指針 (ii)CP非保存測定への影響: T2HK でCP非保存を 測定するには(非常に幸運な場合を除き)質量パ ターンを決定しておくことが必要

(iii)無∨二重β崩壊実験への影響: IHならば近未来 にシグナルの観測が可能

(ii)CP非保存測定への影響: T2HK でCP非保存を 測定するには(非常に幸運な場合を除き)質量パ ターンを決定しておくことが必要

T2K では | Δm_{31}^2 |L/4E=π/2 ⇒ sinδ(intrinsic) =sinδ'(intrinsic)

T2K ではsign degeneracy が一番深 刻: sin $\delta=0 \Rightarrow$ sin δ '(sign)=O(1) \neq 0

(iii)無 v 二重 β 崩壊実験への 影響: IHならば近未来にシグ ナルの観測が可能										
m _{ee} = Σ	C(U _{ej})	²m _j exl	p(iφ _j)	/m _{ee} / in eV	10-2		1		2	disfavour
Rodejoha	nn@N	OW2012		111	10-3	-	$m_{23}^2 > 0$			ed by (
Experiment	lsotope	Status	Start of data-taking	Sensitivity $\langle m_{ u} angle $ [eV]	10					cosmolo
GERDA	76 Ge	v2014		0.29 - 0.57	10-4	99% CL (1	dof)			gy
		in progress	\sim 2012	0.06-0.16	10	0-4 10-	3	10-2	10-1	
		R&D	\sim 2015	0.012-0.030		lıg	htest neut	rino mas	ss m e∨	
CUORE	130 Te	in progress	\sim 2013	0.018-0.037					min	(\mathbf{m}_{i})
		_		0.03-0.066						
MAJORANA	76 Ge	in progress	\sim 2013	0.06-0.16			Stru	ımia-	Viss	ani:
		R&D	\sim 2015	0.012-0.030			hep	-ph/()606()54
EXO	136 Xe	v2014		0.19 - 0.45			1.68			
		R&D	~ 2015	0.02-0.05						
SuperNEMO	⁸² Se	R&D	\sim 2013-15	0.04-0.096					Visio	
KamLAND-Zen	¹³⁶ Xe	v2014		0.14 - 0.28						
		R&D	\sim 2013-15	0.02-0.046						
SNO+	150 Nd	in progress	~ 2014	0.09-0.18		XXXX				16/2

L PE

.

. . .

将来における質量パターン決定の見通し

Ref. Bertolucci et al, arXiv:1208.0512

2.3 CP位相 δ→模型構築への指針

- Examples based on $G_f \times CP$
- Should have 3-dimensional rep. to fit 3 gen.
- Predict CP phases: one class $\rightarrow \theta_{23} = 45^0; \delta_{CP} = \pi/2$

(Z_2xCP ; Grimus, Lavoura; S_4xCP ; R. N. M., Nishi; $Z_2 \times Z_2 xCP$; Gupta, Joshipura, Patel; S_4xCP : Feruglio, Hagedorn, Ziegler; Antusch, Gross, Maurer, Sluka'12)

- Other examples:
- $A_4: \ \delta_{CP} \simeq 26^0 68^0$ (Ishimori, Ma)
- SU(5)xT': 84⁰ (Meroni, Petcov,..); 227⁰ (Chen, Mahanthappa);
- A₄: 270⁰ (Branco et al'12); 70⁰ (Hernandez, Smirnov'12)

Mohapatra @ Neutrino Telescopes 2013

3. 非標準的シナリオ

将来の大強度∨長基線実験では、標準的シナリオから のずれの探索が可能→ずれの発見は標準的枠組を超え る物理のヒントを与える

- ステライル∨探索の動機
 →ステライル∨存在を示唆する実験結果がある
- 非標準的相互作用探索の動機
- ユニタリー性の破れ探索の動機

肯定的実験結果は ないが、その発見 は標準的枠組を 超える物理のヒン トを与える

3.1.1 **質量O(eV)のステライル**v (v_s)

質量0(eV)のステライル∨探索の動機は 主として現象論的

- ●LSND anomalyの検証
- ●Reactor anomalyの検証
- ●Galium anomalyの検証

●宇宙論的観測におけるステライル∨示唆の可能性

理論的に必然的にステライルvが予言されて いる訳ではない

MiniBooNE(2002-, FNAL) LSNDを追試するための実験

原子炉ニュートリノ異常

Mention et al, 2011

最近原子炉vのフラックスに対する再評価が出て、これまでのデータがむしろ $\bar{\nu}_e \rightarrow \bar{\nu}_e$ の欠損を示唆していると解釈されるようになった

(新フラックス)= (旧フラックス)×1.03

● ガリウム異常

ガリウム太陽 ∨ 実験の較正

$R \equiv \frac{p(\text{measured})}{p(\text{predicted})} = 0.88 \pm 0.05(1\sigma)$

Giunti-Laveder, 1006.3244v3 [hep-ph]

ガリウム太陽 v 実験の較正の結果 はactive-sterile v振動によるv_eの 消失の兆候と解釈することが可能

●最近の宇宙の観測(CMB+LSS)→ニュートリノの数>3?

●最近の宇宙の観測(Planck2013)→ v_s振動は死んだか?

Mirizzi, Mangano, Saviano, Borriello, Giunti, Miele, Pisanti, arXiv:1303.5368

→仮にPlanckの否定的結果が最終的に確定しても、レプトンの 非対称性等のためv_sが熱平衡に達していない可能性は残っている

3.1.2 **質量O(keV)のステライル**v (v_s)

銀河団のX線観測でE~3.5 keVの輝線が見つかっている

Bulbul, Markevitch, Foster, Loewenstein, Randall, arXiv:1402.2301 Boyarsky, Ruchayskiy, lakubovskyi, Franse, arXiv:1402.4119

もしかしてRHv (= v_s)が通常のvと の混合を通して崩壊したものか?

Boyarsky, Ruchayskiy, lakubovskyi, Franse, arXiv:1402.4119

29/34

理論的に必要だと思われているRHvがステライルvならば経済的

"The v MSM, Dark Matter and Neutrino Masses", Asaka, Blanchet, Shaposhnikov, PL B631 (2005) 151

$$\delta \mathcal{L} = \overline{N}_I i \partial_\mu \gamma^\mu N_I - f_{I\alpha}^\nu \Phi \overline{N}_I L_\alpha - \frac{M_I}{2} \overline{N}_I^c N_I + h.c.$$

しかし、模型構築の際、以下の問題を解決する必要がある: (i) この場合のRHvが通常想定されている質量スケール (~10¹⁰GeV)に比べてなぜそんなに軽いか? (ii) 通常のvとの混合がなぜ小さいか? (iii) DMとして通用するだけの長寿命を持てるか?

→上記を解決する模型は提案されている:

Ishida, Jeong, Takahashi, Phys.Lett. B732 (2014) 196

3.2 非標準的相互作用

●生成・検出中の非標準的相互作用

 $\mathcal{L}_{\text{eff}} = G_F \,\epsilon^{ff'}_{\alpha\beta} \,\bar{\nu}_{\alpha} \gamma^{\rho} \ell_{\beta} \bar{f} \gamma_{\rho} f'$

●伝播中の非標準的相互作用

$$\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \,\bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \,\bar{f} \gamma_{\mu} f'$$

neutral current

 λ_{β}

f,

charged current

να

 v_{α}

VB

3.3 ユニタリー性の破れ

Violation of unitarity (Minimal Unitarity Violation)

ある種のシーソー模型では右巻_{VR}の効果が無視できるほど小さ くならず、ユニタリー性の破れが測定可能になる場合もある:

$$L = \frac{1}{2} \left(i \overline{v_{\alpha}} \partial K_{\alpha\beta} v_{\beta} - \overline{v}^{c} {}_{\alpha} M_{\alpha\beta} v_{\beta} \right) - \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} v_{\alpha} + h.c. \right) + \dots$$
rescaling v
$$L = \frac{1}{2} \left(i \overline{v_{i}} \partial v_{i} - \overline{v}^{c} {}_{i} m_{ii} v_{i} \right) - \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} N_{\alpha i} v_{i} \right) + \dots$$
N: 非ユニタリー混合行列

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, JHEP0610,084, '06

32/34

シナリオ	3世代 ユニタ リー性	効果の大きさの現象論 的制約(標準的効果との 比)
軽いステライルv	×	O(10%)
生成・検出中の非標 準的相互作用	×	O(1%)
伝播中の非標準的相	0	e-τ: O(100%)
互作用		それ以外: 〇(1%)
重い粒子に起因する ユニタリー性の破れ	×	O(0.1%)

T2Kを始めとする将来の∨実験でこれらのシナリオに 対する発見・制限の改善の可能性がまだまだある。

標準的3世代シナリオと非標準的なシナリオに対する 現象論について概観した。

標準的3世代シナリオ

- 混合角度
- 質量パターン
- CP位相

非標準的シナリオ

- ステライル v
- 非標準的相互作用
- ユニタリー性の破れ

T2Kを始めとする実験で非標準的シナリオに対する発見・制限の改善の可能性がまだまだある。

Backup slides

111

Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062v1

Differences in values of CP phases

$\theta_{13} := \theta_{13} \text{(true)}, \ \theta_{13} := \theta_{13} \text{(false)}$ $\delta := \delta(\text{true}), \ \delta' := \delta(\text{false})$

intrinsic degeneracy

$$x' \sin \delta' = x \sin \delta - \frac{(f - \overline{f})(x^2 - x'^2)}{4yg \sin \Delta}$$

$$x'\cos\delta' = x\cos\delta + \frac{(f+f)(x^2 - x'^2)}{4yg\cos\Delta}$$

$$x'^{2} - x^{2} = \frac{4yg\sin 2\Delta[yg\sin 2\Delta + xf\sin(\Delta - \delta) + xf\sin(\Delta + \delta)]}{f^{2} + \overline{f^{2}} - 2f\overline{f}\cos 2\Delta}$$

Barger Marfatia Whisnant Phys.Rev.D65:073023,2002

sign degeneracy

$$\sin^{2} 2\theta_{13}' = \sin^{2} 2\theta_{13} \tan^{2} \theta_{23} + \frac{\alpha^{2} g^{2} \sin^{2} 2\theta_{12}}{f\bar{f}} (1 - \tan^{2} \theta_{23}),$$

$$\sin 2\theta_{13}' \sin \delta' = \sin 2\theta_{13} \sin \delta + \frac{\alpha g (f - \bar{f}) \sin 2\theta_{12}}{f\bar{f}} \frac{\cot 2\theta_{23}}{\sin \Delta},$$

Octant degeneracy

$$x'^{2} = \frac{x^{2} (f^{2} + \bar{f}^{2} - f\bar{f}) - 2yg (f - \bar{f})x \sin \delta \sin \Delta}{f\bar{f}},$$

$$x' \sin \delta' = x \sin \delta \frac{f^{2} + \bar{f}^{2} - f\bar{f}}{f\bar{f}} - \frac{x^{2}}{\sin \Delta} \frac{f^{2} + \bar{f}^{2}}{f\bar{f}} \frac{f - \bar{f}}{2yg}.$$

Barger Marfatia Whisnant Phys.Rev.D65:073023,2002

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_{\nu}$ from: *Planck* CMB data alone (black dotted line); *Planck* CMB + SZ with 1 - b in [0.7, 1] (red); *Planck* CMB + SZ + BAO with 1 - b in [0.7, 1] (blue); and *Planck* CMB + SZ with 1 - b = 0.8 (green).

Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts, 1303.5080v1

Updated global fit summary

No indication for correct mass ordering:

Tortola@ICHEP2014

 $\Delta \chi^2 (\mathrm{IH} - \mathrm{NH}) = -0.6$

Cosmological constraints on light sterile neutrinos (s⇔e)

Smirnov & Zukanovich - Funchal, Phys. Rev. D74:013001,2006

$$\begin{array}{l}
P(\nu_{e} \to \nu_{s}) \\
\cong & 4|U_{e4}U_{s4}|^{2} \sin^{2}(\Delta m_{41}^{2}L/4E) \\
= & c_{24}^{2}c_{34}^{2} \sin^{2}2\theta_{14} \sin^{2}(\Delta m_{41}^{2}L/4E) \\
\cong & \sin^{2}2\theta_{14} \sin^{2}(\Delta m_{41}^{2}L/4E)
\end{array}$$

Cosmological constraints on light sterile neutrinos (s $\Leftrightarrow \mu$)

Smirnov & Zukanovich -Funchal, Phys.Rev.D74:013001,2006

Cosmological constraints on light sterile neutrinos (s $\Leftrightarrow \tau$)

Smirnov & Zukanovich - Funchal, Phys. Rev. D74:013001,2006

