## Tau detection and new physics

**Tokyo Metropolitan University** 

Osamu Yasuda

12 October 2009 4<sup>th</sup> IDS meeting@Mumbai (through video or phone)

Many apologies for my physical absence at this meeting!



- 1. Introduction
- 2. New Physics in propagation (matter effect)
- 3. New Physics at source and detector
- 4. Violation of unitarity
- 5. Light sterile neutrinos
- 6. Summary

#### References:

- Donini, talk at 3<sup>rd</sup> IDS Plenary Meeting@CERN, March 2009
- " $v_{\tau}$  detection and the IDS-NF baseline", Donini-Kopp,

**IDS-NF** note

#### 1. Introduction

# Motivation for research on New Physics and $\tau$ detection

- Just like at B factories, high precision measurements of ν oscillation in future experiments will allow us to probe physics beyond SM by looking at deviation from SM+massive ν.
- If  $\theta_{13}$  turns out to be large, search for new physics and test of unitarity will be even more important subjects at  $\nu$  factory. (cf.  $\sin^2\theta_{13}$ =0.02±0.01@1 $\sigma$ , Fogli et al, arXiv:0905.3549 [hep-ph])

- $\tau$  detection is potentially advantage of  $\nu$  factory:
- Detection of large number of  $\tau$ 's is possible at  $\nu$  factory
- No  $v_{\tau}$  contamination at a neutrino factory (cf. superbeam, [Van de Vyver-Zucchelli, NIM A385:91,1997])
- τ channels in 3 family model are not so useful:
- (golden) @4000km+7500km is better than (silver)+(golden) @4000km to solve intrinsic degeneracy [ISS report]
- (disappearance) is better than (discovery) to measure atmospheric parameters [Donini, 0<sup>th</sup> IDS mtg@CERN]

$$u_e \rightarrow \nu_\mu$$
 golden channel  $u_\mu \rightarrow \nu_\mu$  disappearance channel

$$u_e 
ightarrow 
u_ au$$
 silver channel  $u_\mu 
ightarrow 
u_ au$  discovery channel

● If 3 flavor unitarity is guaranteed, then roughly speaking, we could guess (discovery) from (golden) + (disappearance) at V factory from 3 flavor unitarity:



- Intuitively, therefore, τ detection is supposed to be important to test New Physics which violates unitarity.
- → Quantitative estimate is necessary to draw conclusions.

# New physics which can be probed at a neutrino factory includes:

- ♦ Non standard interactions in propagation
- Non standard interactions at production / detection
- Violation of unitarity due to heavy particles
- Schemes with light sterile neutrinos

| $\sum_{\beta=e,\mu,\tau}$ | $P(\nu_{\alpha})$ | $\rightarrow$ | $\nu_{\beta})$  | =1  |
|---------------------------|-------------------|---------------|-----------------|-----|
| $\beta = e, \mu, \tau$    | $P(v_{\alpha})$   | $\rightarrow$ | $\nu_{\beta}$ ) | = . |

| Scenarios                                     | 3 flavor unitarity |
|-----------------------------------------------|--------------------|
| NSI in propagation                            |                    |
| NSI at production / detection                 | ×                  |
| Violation of unitarity due to heavy particles | ×                  |
| Light sterile neutrinos                       | ×                  |

#### τ detectors

Emulsion Cloud Chamber (ECC)

Prototype: the OPERA detector at the CNGS active target: lead spectrometers to measure the charge only  $\tau \rightarrow \mu$  decay is used: detection efficiency  $\sim$  O(5%)

→Proposal of Magnetized Emulsion Cloud Chamber (MECC)

active target: iron  $\tau \rightarrow \mu$  decay +  $\tau \rightarrow$  e decay +  $\tau \rightarrow$  hadron decay are used: detection efficiency  $\sim$  O(25%)

Liquid Argon TPC (LAr-TPC)

Prototype: the ICARUS T600 at the CNGS

### 2. New Physics in propagation (matter effect)

Oscillation probability w/ NP in propagation

$$\mathcal{M} \equiv U \operatorname{diag}(E_j) U^{-1} + \mathcal{A} = \tilde{U} \operatorname{diag}(\tilde{E}_j) \tilde{U}^{-1}$$

$$A \equiv A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix} A \equiv \sqrt{2}G_F N_e$$

$$N_e \equiv \text{electron density}$$

$$A \equiv \sqrt{2}G_F N_e$$

$$P(\nu_{\alpha} \to \beta) = \left| \left[ \tilde{U} \exp \left\{ -i \operatorname{diag}(\tilde{E}_{j}) L \right\} \tilde{U}^{-1} \right]_{\beta \alpha} \right|^{2}$$

- $\triangleright$  Mass matrix  $\mathcal{M}$  is hermitian
- > There are only 3 flavors



#### Sensitivity at v factory

Kopp-Ota-Winter, Phys.Rev.D78:053007,2008



- Improvement by silver channel is modest
- Impact of discovery channel has not been investigated but improvement is expected to be modest, too, because of 3 flavor unitarity

# Sensitivity at ν factory w/ near τ detector

Tang-Winter, Phys.Rev.D80:053001,2009

Near τ detector does not improve, either

| <del>.</del>                     | Without $\nu_{\tau}$ ND5 | With $\nu_{\tau}$ ND5 |
|----------------------------------|--------------------------|-----------------------|
| $\overline{ \epsilon^m_{e	au} }$ | 0.004                    | 0.004                 |
| $ \epsilon_{\mu	au}^m $          | $\bigcirc 0.02$          | 0.02                  |

ND5: mass 2 kton, L=1 km

#### 3. New Physics at source and detector

**Grossman, Phys. Lett. B359, 141 (1995)** 

#### NP at source

$$\mu^{+} \to e^{+} + \overline{\nu}_{\mu} + \nu_{\mu}^{s}$$

$$\nu_{e}^{s} = \nu_{e} + \epsilon_{e\mu}^{s} \nu_{\mu}$$

#### **Effective eigenstate**

$$\begin{pmatrix} \nu_e^{s} \\ \nu_\mu^{s} \end{pmatrix} = \begin{pmatrix} 1 & \epsilon_{e\mu}^{s} \\ -\epsilon_{e\mu}^{s} & 1 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

#### NP at detector

$$\begin{array}{c} \nu_{\mu}^{d} + n \rightarrow \mu^{-} + p \\ \nu_{\mu}^{d} = \nu_{\mu} - \epsilon_{e\mu}^{d} \nu_{e} \end{array}$$

#### **Effective eigenstate**

$$\begin{pmatrix} \nu_e^{\mathbf{d}} \\ \nu_{\mu}^{\mathbf{d}} \end{pmatrix} = \begin{pmatrix} 1 & \epsilon_{e\mu}^{\mathbf{d}} \\ -\epsilon_{e\mu}^{\mathbf{d}} & 1 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_{\mu} \end{pmatrix}$$

Oscillation probability w/ NP @ source/detector

$$\mathcal{M} \equiv U \operatorname{diag}(E_j) U^{-1} + \mathcal{A}_0 = \tilde{U}_0 \operatorname{diag}(\tilde{E}_j^0) \tilde{U}_0^{-1}$$

$$\mathcal{A}_0 \equiv A \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$P(\nu_{\alpha} \to \beta) = \left| \left[ U^d \tilde{U}_0 \exp\left\{ -i \operatorname{diag}(\tilde{E}_j^0) L \right\} \tilde{U}_0^{-1} (U^s)^{-1} \right]_{\beta \alpha} \right|^2$$

- > There are only 3 flavors
- $\triangleright$  But matrix  $U^d \mathcal{M}(U^s)^{-1}$  is not hermitian



Oscillation probability does not satisfy 3 flavor unitarity

$$\nu_{\mu} \to \nu_{\tau}$$

$$\left|\mathcal{E}_{\mu\tau}^{s,m}\right| = 3 \times 10^{-3}$$

Required data size in unit of  $10^{21} \mu \times 100 kt$ 





The expected sensitivity is  $\epsilon \gtrsim \mathcal{O}(10^{-4})$ .

Sato: ISS 2<sup>nd</sup> plenary @ KEK

|                                    | $\epsilon_{e\mu}^{s,m}(\epsilon_{\mu e}^s)$ | $\epsilon_{e\tau}^{s,m}$ | $\epsilon_{\mu\tau}^{s,m}$ |
|------------------------------------|---------------------------------------------|--------------------------|----------------------------|
| $\nu_e \rightarrow \nu_\mu$        | $\triangle$                                 | $\triangle$              | $\times$                   |
| $\nu_{\mu} \rightarrow \nu_{\mu}$  | ×                                           | $\times$                 |                            |
| $\nu_e \rightarrow \nu_\tau$       | ×                                           | $\bigcirc$               | $\triangle$                |
| $\nu_{\mu} \rightarrow \nu_{\tau}$ | $\times$                                    | $\triangle$              | $\bigcirc$                 |
| $\nu_{\mu} \rightarrow \nu_{e}$    | Δ                                           | ×                        | ×                          |
| $\nu_e \rightarrow \nu_e$          | ×                                           | $\times$                 | $\times$                   |

### Sensitivity to $\varepsilon_{e\tau}$ , $\varepsilon_{\mu\tau}$ at $\nu$ factory

Tang-Winter, Phys.Rev.D80:053001,2009

Near τ detector improves sensitivity



ND5: mass 2 kton, L=1 km

### 4. Violation of unitarity w/o light $v_s$ (Minimal Unitarity Violation)

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, JHEP0610,084, '06

In generic see-saw models, after integrating out  $v_R$ , the kinetic term gets modified, and unitarity is expected to be violated.

$$L = \frac{1}{2} \left( i \overline{v_{\alpha}} \partial K_{\alpha\beta} v_{\beta} - \overline{v}^{c}{}_{\alpha} M_{\alpha\beta} v_{\beta} \right) - \frac{g}{\sqrt{2}} \left( W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} v_{\alpha} + h.c. \right) + \dots$$

rescaling 
$$V$$

$$L = \frac{1}{2} \left( i \overline{v_i} \partial v_i - \overline{v}^c{}_i m_{ii} v_i \right) - \frac{g}{\sqrt{2}} \left( W_\mu^+ \overline{l}_\alpha \gamma^\mu P_L N_{\alpha i} v_i \right) + \dots$$

**N**: non-unitary

#### Oscillation probability w/ Minimal Unitarity Violation

$$P(\nu_{\alpha} \to \beta) = \left| \left[ H\tilde{U} \exp\left\{ -i \operatorname{diag}(\tilde{E}_{j})L \right\} \tilde{U}^{-1} H \right]_{\beta\alpha} \right|^{2}$$
$$U \operatorname{diag}(E_{j}) U^{-1} + H \mathcal{A}_{0} H = \tilde{U} \operatorname{diag}(\tilde{E}_{j}) \tilde{U}^{-1}$$

$$N \equiv HU$$

 $N \equiv HU$   $\eta = H-1$ : deviation from unitarity

- > There are only 3 flavors
- $\blacktriangleright$  But matrix HU is not unitary



Oscillation probability does not satisfy 3 flavor unitarity

#### Sensitivity to MUV parameters at v factory (1)

• 4kt OPERA-like near detector @100 m

Antusch et al, JHEP0610,084, '06

$$V_{\mu} \rightarrow V_{\tau}$$

 $|\eta_{\mu\tau}| < 1.3 \times 10^{-3}$  (present: 6.5 \times 10^{-3})

$$H \equiv 1 + \eta$$

5kt OPERA-like far detector @130 km

Fernandez-Martinez et al, PLB649:427,'07



Present bound from  $\tau \rightarrow \mu \gamma$ 

Sensitivity to  $arg(\eta_{u\tau})$ 

Sensitivity to  $\mid \eta_{\mu au} \mid$ 

#### Sensitivity to MUV parameters at v factory (2)

τ detectors at L=1km & 7500km

Antusch, Blennow, Fernandez-Martinez, Lopez-Pavon, Phys.Rev.D80:033002,2009



Near detector mass = 10kt, 1kt, 100t, 0

1kt for near detector mass seems to be enough

### 5. Light sterile neutrinos

(3+1)-scheme w/o LSND: still a possible scenario, provided that the mixing angles satisfy all the constraints of the negative results

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_s \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_s \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix} \qquad U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$



Obviously oscillation probability does not satisfy 3 flavor unitarity

$$U = R_{34}(\theta_{34}, 0) R_{24}(\theta_{24}, 0) R_{23}(\theta_{23}, \delta_3) R_{14}(\theta_{14}, 0) R_{13}(\theta_{13}, \delta_2) R_{12}(\theta_{12}, \delta_1)$$

$$oldsymbol{ heta_{34}}$$
 : ratio of  $u_{\mu} \leftrightarrow 
u_{ au}$  and  $u_{\mu} \leftrightarrow 
u_{s}$  in  $u_{atm}$ 

$$\theta_{24}$$
: ratio of  $\sin^2(\frac{\Delta m_{\mathrm{atm}}^2 L}{4E})$  and  $\sin^2(\frac{\Delta m_{\mathrm{SBL}}^2 L}{4E})$  in  $v_{\mathrm{atm}}$ 

#### --- current -- disappearance -- discovery -- combined







 ${\bm f}_{\mu\tau}$  : uncorrelated bin-to-bin systematic error (error in detection efficiency in each bin etc.)

 $\sigma_{\alpha}$ : correlated systematic error (error in detector volume etc.)

In previous page,  $f_{\mu\tau}$ =10%,  $\sigma_{\alpha}$ =2.5% (black solid lines above) was assumed

#### By placing a near τ detector, systematic errors could be reduced

## cf. Reduction of systematic errors in the 2 detector complex at reactor experiments

Minakata et al., Phys.Rev.D68:033017,2003

| CHOOZ-like           | absolute normalization | relative normalization (expected) | relative/absolute |
|----------------------|------------------------|-----------------------------------|-------------------|
| flux                 | 2.1%                   | 0.0%                              | 0                 |
| number of protons    | 0.8%                   | 0.3%                              | 0.38              |
| detection efficiency | 1.5%                   | 0.7%                              | 0.47              |
| total                | (2.7%)                 | 0.8%                              |                   |
| for bins             | 8.1%)                  | 2.4%                              |                   |

If we can attain  $f_{\mu\tau}=3\%$ ,  $\sigma_{\alpha}=1\%$  w/ ND, then discovery channel could perform better than disappearance:



 $f_{\mu\tau}$ =3%,  $\sigma_{\alpha}$ =1%

--- current

— disappearance

— discovery

# Which $\tau$ detector is less important, @3000km or @7500km ?

Contour plot of significance for signal with  $\theta_{24}$ =0,  $\theta_{34}$ =14



For 50GeV (20GeV), L=3000km (L=4000km) performs (slightly) poor. This is also the case w/ disappearance.



Donini et al, JHEP 0908:041,2009





Discovery channel is crucial to measure the new CP phase

### 6. Summary

- v factory can search for new physics beyond the standard model with v mass, such as
- Non standard interactions in propagation
- Non standard interactions at production / detection
- Violation of unitarity due to heavy particles
- Schemes with light sterile neutrinos (the last 3 scenarios violate 3 flavor unitarity)
- In absence of 3 flavor unitarity,  $\tau$  detectors in principle give us important information on New Physics, but in practice it depends on the statistical/systematic errors.
- In some cases disappearance channel performs better than discovery one, but again it depends on the systematic errors.

- To measure the new CP phase due to New Physics, discovery channel is crucial.
- Near  $\tau$  detectors are useful not only to improve sensitivity to New Physics by themselves, but also to reduce the systematic errors of the far  $\tau$  detectors.
- Far  $\tau$  detectors @7500km seem to be more useful than those @3000km or 4000km.
- Study on the systematic errors of τ detectors is very important.
- Study on parameter degeneracy in the presence of New Physics has to be done:
- Unitarity violation [Goswami-Ota, Phys.Rev.D78:033012,2008]
- NP in propagation [Gago et al, arXiv:0904.3360 [hep-ph]]

- We have physics case for τ channels, but the technological requirements to take full advantage of them are not yet met at this moment.
- $\rightarrow$  No  $\tau$  detector is needed in the baseline scenario, but we have to keep going on R&D to take advantage of better understanding of  $\tau$  detectors after OPERA and to come up with a possible proposal for  $\tau$  detectors in a few years from now.

## **Backup slides**

#### Oscillation probability w/ Minimal Unitarity Violation

$$\begin{split} \hat{P}_{\mu\mu} &= P_{\mu\mu}^{\rm SM} + 4\varepsilon_{\mu\mu} + 4\varepsilon_{\mu\mu}^2 + 4\bigg\{ -\varepsilon_{\mu\mu} + 2\operatorname{Re}(\varepsilon_{\mu\tau})\delta\theta_{23} - 2\delta\theta_{23}(\varepsilon_{\mu\mu} - \varepsilon_{\tau\tau})\frac{A}{E_3}\bigg\} \sin^2\!\left(\frac{E_3L}{2}\right) \\ &- [2\operatorname{Re}(\varepsilon_{\mu\tau}) - \delta\theta_{23}(\varepsilon_{\mu\mu} - \varepsilon_{\tau\tau})]AL\sin(E_3L) + \mathcal{O}(\varepsilon_{\alpha\beta}^2), \end{split}$$

Antusch et al, Phys.Rev.D80, 033002, 2009

$$\begin{split} \hat{P}_{\mu\tau} &= P_{\mu\tau}^{\rm SM} + 4|\varepsilon_{\mu\tau}|^2 + \left[2\operatorname{Re}(\varepsilon_{\mu\mu} + \varepsilon_{\tau\tau}) + 8\delta\theta_{23}(\varepsilon_{\mu\mu} - \varepsilon_{\tau\tau})\frac{A}{E_3}\right]\sin^2\!\left(\frac{E_3L}{2}\right) + \left[-2\operatorname{Im}(\varepsilon_{\mu\tau}) - \delta\theta_{23}(\varepsilon_{\mu\mu} - \varepsilon_{\tau\tau})AL\right] \\ &\times \sin(E_3L) - \sqrt{2}\operatorname{Im}\!\left\{\varepsilon_{e\tau}\!\left[\frac{E_2}{A}\sin(2\theta_{12}) + \frac{2E_3s_{13}e^{i\delta}}{A - E_3}\right]\!\right\}\sin\!\left(\frac{AL}{2}\right)\sin\!\left(\frac{E_3L}{2}\right)\sin\!\left(\frac{E_3-A}{2}L\right) \\ &+ \sqrt{2}\operatorname{Re}\!\left\{\varepsilon_{e\tau}\!\left[\frac{E_2}{A}\sin(2\theta_{12})\sin\!\left(\frac{AL}{2}\right)\cos\!\left(\frac{E_3-A}{2}L\right) - \frac{2E_3s_{13}e^{i\delta}}{A - E_3}\cos\!\left(\frac{AL}{2}\right)\sin\!\left(\frac{E_3-A}{2}L\right)\right]\!\right\}\sin\!\left(\frac{E_3L}{2}\right) + \mathcal{O}(\varepsilon_{\alpha\beta}^2), \end{split}$$

$$\begin{split} \hat{P}_{e\mu} &= P_{e\mu}^{\rm SM} + |\varepsilon_{e\tau}|^2 \sin^2\!\!\left(\frac{E_3L}{2}\right) + \operatorname{Im}\!\!\left\{\varepsilon_{e\tau}\!\!\left[\frac{1}{2}\frac{E_2}{A}\sin(2\theta_{12}) + \frac{E_3s_{13}e^{i\delta}}{A-E_3}\right]\!\!\right\} \sin\!\!\left(\frac{AL}{2}\right) \sin\!\!\left(\frac{E_3L}{2}\right) \sin\!\!\left(\frac{E_3-A}{2}L\right) \\ &+ \operatorname{Re}\!\!\left\{\varepsilon_{e\tau}\!\!\left[\frac{1}{\sqrt{2}}\frac{E_2}{A}\sin(2\theta_{12})\sin\!\!\left(\frac{AL}{2}\right)\!\cos\!\!\left(\frac{E_3-A}{2}L\right) - \frac{2\sqrt{2}E_3s_{13}e^{i\delta}}{A-E_3}\cos\!\!\left(\frac{AL}{2}\right)\!\sin\!\!\left(\frac{E_3-A}{2}L\right)\right]\!\!\right\} \sin\!\!\left(\frac{E_3L}{2}\right) \\ &+ \mathcal{O}(\varepsilon^3), \end{split}$$

$$\begin{split} \hat{P}_{e\tau} &= P_{e\tau}^{\text{SM}} + 4|\varepsilon_{e\tau}|^2 - 2\bigg[|\varepsilon_{e\tau}|^2 - \frac{\sqrt{2}E_3s_{13}}{A - E_3}\operatorname{Re}(\varepsilon_{e\tau}e^{i\delta})\bigg]\sin^2\!\left(\frac{E_3 - A}{2}L\right) - 2\bigg[|\varepsilon_{e\tau}|^2 - \frac{1}{\sqrt{2}}\frac{E_2}{A}\sin(2\theta_{12})\operatorname{Re}(\varepsilon_{e\tau})\bigg] \\ &\times \sin^2\!\left(\frac{AL}{2}\right) - \operatorname{Im}\!\left\{\varepsilon_{e\tau}^*\!\left[\frac{1}{\sqrt{2}}\frac{E_2}{A}\sin(2\theta_{12})\sin(AL) - \frac{\sqrt{2}E_3s_{13}e^{-i\delta}}{A - E_3}\sin(\{E_3 - A\}L)\right]\right\} \\ &- 2\sqrt{2}\operatorname{Re}\!\left\{\varepsilon_{e\tau}\!\left[\frac{1}{2}\frac{E_2}{A}\sin(2\theta_{12}) - \frac{E_3s_{13}e^{i\delta}}{A - E_3}\right]\!\right\}\sin\!\left(\frac{AL}{2}\right)\!\cos\!\left(\frac{E_3L}{2}\right)\!\sin\!\left(\frac{E_3 - A}{2}L\right) \\ &+ \operatorname{Im}\!\left\{\varepsilon_{e\tau}\!\left[\sqrt{2}\frac{E_2}{A}\sin(2\theta_{12})\sin\!\left(\frac{AL}{2}\right)\!\cos\!\left(\frac{E_3 - A}{2}L\right) + \frac{2\sqrt{2}E_3s_{13}e^{i\delta}}{A - E_3}\cos\!\left(\frac{AL}{2}\right)\!\sin\!\left(\frac{E_3 - A}{2}L\right)\right]\!\right\}\cos\!\left(\frac{E_3L}{2}\right) + \mathcal{O}(\varepsilon^3). \end{split}$$

#### Oscillation probability in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

$$P_{\mu\mu} = 1 - 2\theta_{24}^2 - \left[1 - 4(\delta\theta_{23})^2 - 2\theta_{24}^2 + \theta_{34}^2 \frac{A_n}{\Delta_{31}} \left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{\Delta_{31}}\right)\right] \sin^2 \frac{\Delta_{31}L}{2} - (A_nL) \left\{2\theta_{24}\theta_{34}\cos\delta_3 - \frac{\theta_{34}^2}{2}\left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{2\Delta_{31}}\right)\right\} \sin\Delta_{31}L + O(\epsilon^5), \quad (16)$$

$$P_{\mu\tau} = \left\{ 1 - 4(\delta\theta_{23})^2 - \theta_{24}^2 - \theta_{34}^2 \left[ 1 - \frac{\theta_{34}^2}{3} - \frac{A_n}{\Delta_{31}} \left( 4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{\Delta_{31}} \right) \right] \right\} \sin^2 \frac{\Delta_{31}L}{2}$$

$$+ \left\{ \theta_{24} \theta_{34} \sin \delta_3 + (A_n L) \left[ 2\theta_{24} \theta_{34} \cos \delta_3 - \frac{\theta_{34}^2}{2} \left( 4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{2\Delta_{31}} \right) \right] \right\} \sin \Delta_{31}L$$

$$+ O(\epsilon^5) , \qquad (17)$$

# Numbers of events in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

| $ \nu_{\mu} \to \nu_{\tau}   \bar{\nu}_e \to \bar{\nu}_{\tau}$ | $\nu_{\mu} \rightarrow \nu_{\tau}$ | $\bar{\nu}_e \rightarrow \bar{\nu}_{\tau}$ |
|----------------------------------------------------------------|------------------------------------|--------------------------------------------|
|----------------------------------------------------------------|------------------------------------|--------------------------------------------|

| $(\theta_{13}; \theta_{14}; \theta_{24}; \theta_{34})$ | $N_{	au^-}^{3000}$ | $N_{	au^+}^{3000}$ | $N_{	au^-}^{7500}$ | $N_{	au^+}^{7500}$ |
|--------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| $(5^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$        | 559                | 10                 | 544                | 2                  |
| $(5^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$       | 474                | 11                 | 529                | 2                  |
| $(5^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$       | 384                | 18                 | 454                | 3                  |
| $(5^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$       | 384                | 18                 | 454                | 3                  |
| $(10^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$       | 522                | 22                 | 512                | 2                  |
| $(10^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$      | 443                | 22                 | 498                | 2                  |
| $(10^{\circ}; 5^{\circ}; 5^{\circ}; 30^{\circ})$       | 397                | 30                 | 413                | 4                  |
| $(10^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$      | 361                | 30                 | 428                | 4                  |
| $\theta_{13}=5^{\circ}$                                | 797                | 3                  | 666                | 0                  |
| 3 families, $\theta_{13} = 10^{\circ}$                 | 755                | 12                 | 632                | 1                  |

Number of events 2 x10<sup>20</sup> flux 1 year 1 Kton MECC perfect efficiency

# Dependence of sensitivity on systematic errors in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

