New plots & parameter degeneracy in v oscillations

Tokyo Metropolitan University

Osamu Yasuda

1. Introduction

Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign (Δm^2_{31}) and δ is difficult because of the 8-fold parameter degeneracy.

- intrinsic (δ, θ₁₃) degeneracy
- \bullet $\Delta m^2_{31} \Leftrightarrow -\Delta m^2_{31}$ degeneracy
- $\theta_{23} \Leftrightarrow \pi/2 \theta_{23}$ degeneracy

Intuitive understanding of 8-fold degeneracy is import \Rightarrow plots in (sin²2 θ_{13} , 1/s²₂₃) plane

Plots in $(\sin^2 2\theta_{13}, 1/s^2_{23})$ plane

The way curves intersect is easy to see

(P=const,
$$\delta$$
=const)

(P=const,
$$\delta$$
=const)

(P=const&
$$\overline{P}$$
 =const' off OM)

hyperbolas (or ellipses)

(P=const& P=const' on OM)

straight lines

Notations:

$$\begin{split} P &\equiv P \left(v_{\mu} \rightarrow v_{e} \right) \\ \overline{P} &\equiv P \left(\overline{v_{\mu}} \rightarrow \overline{v_{e}} \right) \\ \Delta &\equiv \frac{|\Delta m_{31}^{2}|L}{4E} \end{split}$$

Oscillation Maximum (OM)

$$\Delta \equiv \frac{|\Delta m_{31}^2|L}{4E} = \frac{\pi}{2}$$

normal hierarchy

$$P = f^2x^2 + 2xyfgcos(\delta + \Delta) + g^2y^2$$

$$\overline{P} = \overline{f}^2 x^2 + 2xy \overline{f} g cos (\delta - \Delta) + g^2 y^2$$
 inverted hierarchy

$$P = \overline{f}^2 x^2 - 2xy \overline{f}gcos (\delta + \Delta) + g^2 y^2$$

$$\overline{P} = f^2x^2 - 2xyfgcos(\delta - \Delta) + g^2y^2$$

$$\begin{split} &\textbf{x} \equiv \textbf{s}_{23} \text{sin2} \ \boldsymbol{\theta}_{13}, \\ &\textbf{y} \equiv \mid \Delta m_{21}^2 / \Delta m_{31}^2 \mid \textbf{c}_{23} \text{sin2} \ \boldsymbol{\theta}_{12}, \\ &\textbf{f}, \ \bar{\textbf{f}} \equiv \text{sin} \big(\Delta \mp \text{AL}/2 \big) / \big(1 \mp \text{AL}/2 \, \Delta \big), \\ &\textbf{g} \equiv \text{sin} \big(\text{AL}/2 \big) / \big(\text{AL}/2 \, \Delta \big) \\ &\textbf{A} \equiv \sqrt{2} \textbf{G}_{\textbf{F}} \textbf{N}_{\textbf{e}} \end{split}$$

 $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy

(a)
$$\cos 2\theta_{23} = 0 \rightarrow (b)\cos 2\theta_{23} \neq 0$$

$$(a)\frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} = 0 \rightarrow (b)\frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} \cong \frac{1}{35} \neq 0$$

degeneracy

(a)AL/2 =
$$0 \rightarrow$$
 (b)AL/2 \neq 0

$$A \equiv \sqrt{2}G_F N_e \cong 1/2000 km$$

Off OM we have 8-fold parameter degeneracy

Plot of $P(v_{\mu} \rightarrow v_{e})$, $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = const.$

On OM we have 4-fold parameter degeneracy

JPARC experiment is expected to be done on OM

 \rightarrow intrinsic (δ , θ_{13}) degeneracy is not a problem at JPARC

2. Determination of θ_{13}

Assumption: $v_{\mu} \rightarrow v_{e}$ and JPARC (@OM, 4MW, HK) .

$$\overline{v_{\mu}} \to \overline{v_{e}}$$

will be measured at

Question: Will that be enough to determine |U_{e3}|?

(1)
$$\sin^2 2\theta_{23} \cong 1$$

JPARC V + V is almost enough, since (a) there is no intrinsic (δ, θ_{13}) degeneracy, and (b) sign(Δm^2_{31}) degeneracy is small.

(2) $\sin^2 2\theta_{23} < 1$

Ambiguity due to $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy is significant.

In the case of (1):

JPARC experiment is enough to determine θ_{13} .

In the case of (2):

To resolve θ_{23} ambiguity, possible ways are:

- (A) reactor measurement of θ_{13}
- (B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$)
- (C) measurement of $V_e \rightarrow V_{\tau}$

The reference values used here are:

 $\sin^2 2\theta_{23} = 0.96$, $\sin^2 2\theta_{13} = 0.05$, $\delta = \pi/4$, $\Delta m_{31}^2 > 0$

(A) reactor measurement of θ_{13}

 $\stackrel{-}{\mathsf{v}_{\mathsf{e}}} \rightarrow \stackrel{-}{\mathsf{v}_{\mathsf{e}}}$

One can resolve

θ₂₃ ambiguity at 90%CL.

(B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$)

Consider 3rd measurement of $\nu_{\mu} \to \nu_{e}$ (or $\nu_{e} \to \nu_{\mu}$) in addition to JPARC $_{V+}\bar{\nu}$.

correct assumption wrong assumption on mass hierarchy

The value of δ for each point can be deduced (up to $\delta \Leftrightarrow \pi - \delta$) from

$$\sin\delta = -\frac{P - f^2x^2 - g^2y^2}{2fgxy}$$

Then from the equation for the probability of $v_{\mu} \to v_e$ (or $v_e \to v_{\mu}$) in the 3^{rd} experiment

$$P_{true} = P(sin^2 2\theta_{13}, \delta_{\pm [cw]}, s_{23}^2)$$
 or

$$P_{true} = P(sin^2 2\theta_{13}, \pi - \delta_{\pm [cw]}, s_{23}^2)$$

we can get a unique line (a hyperbola or an ellipse) in ($\sin^2 2\theta_{13}$, $1/s^2_{23}$) plane for $\delta_{\pm [cw]}$ or $\pi - \delta_{\pm [cw]}$.

where
$$P_{true} = P\left((\sin^2 2\theta_{13})_{true}, \delta_{true}, (s_{23}^2)_{true}\right)$$

L = 295 km, E=1.19 GeV, P=0.0158

In general, the gradient of the hyperbola is almost equal to that of the JPARC line, and this additional curve does not help to resolve θ_{23} ambiguity if $\Delta \leq \pi/2$.

The situation doesn't change much for V, if $\Delta \leq \pi/2$.

On the other hand, for $\pi/2 < \Delta < \pi$, the situation is different.

Good news is

- θ_{23} ambiguity may be resolved.
- δ⇔π-δ ambiguity may be resolved.

Bad news is

- E is so low that statistics is low.
- osc. prob. Is small (~solar v osc. prob.).

(C) measurement of $V_e \rightarrow V_T$

Curves intersect with the JPARC line almost orthogonally.

- ullet θ_{23} ambiguity may be resolved.
- δ⇔π-δ ambiguity
 may be resolved.
- sign(Δm^2_{31}) ambiguity may be resolved.

This channel may be interesting to be combined with JPARC in the future.

3. Summary

- Plots in $(\sin^2 2\theta_{13}, 1/s^2_{23})$ are useful to see 8-fold degeneracy.
- It is important for determination of θ_{13} to resolve θ_{23} ambiguity if $\sin^2 2\theta_{23} < 1$.
- After $v_{\mu} \rightarrow v_{e} + v_{\mu} \rightarrow v_{e}$ by JPARC, another $v_{\mu} \rightarrow v_{e}$ or $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ is not useful (but $v_{e} \rightarrow v_{\tau}$ is useful) to resolve θ_{23} ambiguity.