New plots & parameter degeneracy in v oscillations ## **Tokyo Metropolitan University** Osamu Yasuda #### 1. Introduction Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign (Δm^2_{31}) and δ is difficult because of the 8-fold parameter degeneracy. - intrinsic (δ, θ₁₃) degeneracy - \bullet $\Delta m^2_{31} \Leftrightarrow -\Delta m^2_{31}$ degeneracy - $\theta_{23} \Leftrightarrow \pi/2 \theta_{23}$ degeneracy Intuitive understanding of 8-fold degeneracy is import \Rightarrow plots in (sin²2 θ_{13} , 1/s²₂₃) plane ## Plots in $(\sin^2 2\theta_{13}, 1/s^2_{23})$ plane The way curves intersect is easy to see (P=const, $$\delta$$ =const) (P=const, $$\delta$$ =const) (P=const& $$\overline{P}$$ =const' off OM) hyperbolas (or ellipses) (P=const& P=const' on OM) straight lines #### **Notations:** $$\begin{split} P &\equiv P \left(v_{\mu} \rightarrow v_{e} \right) \\ \overline{P} &\equiv P \left(\overline{v_{\mu}} \rightarrow \overline{v_{e}} \right) \\ \Delta &\equiv \frac{|\Delta m_{31}^{2}|L}{4E} \end{split}$$ # Oscillation Maximum (OM) $$\Delta \equiv \frac{|\Delta m_{31}^2|L}{4E} = \frac{\pi}{2}$$ #### normal hierarchy $$P = f^2x^2 + 2xyfgcos(\delta + \Delta) + g^2y^2$$ $$\overline{P} = \overline{f}^2 x^2 + 2xy \overline{f} g cos (\delta - \Delta) + g^2 y^2$$ inverted hierarchy $$P = \overline{f}^2 x^2 - 2xy \overline{f}gcos (\delta + \Delta) + g^2 y^2$$ $$\overline{P} = f^2x^2 - 2xyfgcos(\delta - \Delta) + g^2y^2$$ $$\begin{split} &\textbf{x} \equiv \textbf{s}_{23} \text{sin2} \ \boldsymbol{\theta}_{13}, \\ &\textbf{y} \equiv \mid \Delta m_{21}^2 / \Delta m_{31}^2 \mid \textbf{c}_{23} \text{sin2} \ \boldsymbol{\theta}_{12}, \\ &\textbf{f}, \ \bar{\textbf{f}} \equiv \text{sin} \big(\Delta \mp \text{AL}/2 \big) / \big(1 \mp \text{AL}/2 \, \Delta \big), \\ &\textbf{g} \equiv \text{sin} \big(\text{AL}/2 \big) / \big(\text{AL}/2 \, \Delta \big) \\ &\textbf{A} \equiv \sqrt{2} \textbf{G}_{\textbf{F}} \textbf{N}_{\textbf{e}} \end{split}$$ $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy (a) $$\cos 2\theta_{23} = 0 \rightarrow (b)\cos 2\theta_{23} \neq 0$$ $$(a)\frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} = 0 \rightarrow (b)\frac{\Delta m_{21}^2}{|\Delta m_{21}^2|} \cong \frac{1}{35} \neq 0$$ degeneracy (a)AL/2 = $$0 \rightarrow$$ (b)AL/2 \neq 0 $$A \equiv \sqrt{2}G_F N_e \cong 1/2000 km$$ ### Off OM we have 8-fold parameter degeneracy Plot of $P(v_{\mu} \rightarrow v_{e})$, $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = const.$ ### On OM we have 4-fold parameter degeneracy JPARC experiment is expected to be done on OM \rightarrow intrinsic (δ , θ_{13}) degeneracy is not a problem at JPARC ## 2. Determination of θ_{13} Assumption: $v_{\mu} \rightarrow v_{e}$ and JPARC (@OM, 4MW, HK) . $$\overline{v_{\mu}} \to \overline{v_{e}}$$ will be measured at Question: Will that be enough to determine |U_{e3}|? (1) $$\sin^2 2\theta_{23} \cong 1$$ JPARC V + V is almost enough, since (a) there is no intrinsic (δ, θ_{13}) degeneracy, and (b) sign(Δm^2_{31}) degeneracy is small. (2) $\sin^2 2\theta_{23} < 1$ Ambiguity due to $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy is significant. ### In the case of (1): JPARC experiment is enough to determine θ_{13} . In the case of (2): To resolve θ_{23} ambiguity, possible ways are: - (A) reactor measurement of θ_{13} - (B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$) - (C) measurement of $V_e \rightarrow V_{\tau}$ The reference values used here are: $\sin^2 2\theta_{23} = 0.96$, $\sin^2 2\theta_{13} = 0.05$, $\delta = \pi/4$, $\Delta m_{31}^2 > 0$ ## (A) reactor measurement of θ_{13} $\stackrel{-}{\mathsf{v}_{\mathsf{e}}} \rightarrow \stackrel{-}{\mathsf{v}_{\mathsf{e}}}$ One can resolve θ₂₃ ambiguity at 90%CL. ## (B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$) Consider 3rd measurement of $\nu_{\mu} \to \nu_{e}$ (or $\nu_{e} \to \nu_{\mu}$) in addition to JPARC $_{V+}\bar{\nu}$. correct assumption wrong assumption on mass hierarchy The value of δ for each point can be deduced (up to $\delta \Leftrightarrow \pi - \delta$) from $$\sin\delta = -\frac{P - f^2x^2 - g^2y^2}{2fgxy}$$ # Then from the equation for the probability of $v_{\mu} \to v_e$ (or $v_e \to v_{\mu}$) in the 3^{rd} experiment $$P_{true} = P(sin^2 2\theta_{13}, \delta_{\pm [cw]}, s_{23}^2)$$ or $$P_{true} = P(sin^2 2\theta_{13}, \pi - \delta_{\pm [cw]}, s_{23}^2)$$ we can get a unique line (a hyperbola or an ellipse) in ($\sin^2 2\theta_{13}$, $1/s^2_{23}$) plane for $\delta_{\pm [cw]}$ or $\pi - \delta_{\pm [cw]}$. where $$P_{true} = P\left((\sin^2 2\theta_{13})_{true}, \delta_{true}, (s_{23}^2)_{true}\right)$$ L = 295 km, E=1.19 GeV, P=0.0158 In general, the gradient of the hyperbola is almost equal to that of the JPARC line, and this additional curve does not help to resolve θ_{23} ambiguity if $\Delta \leq \pi/2$. The situation doesn't change much for V, if $\Delta \leq \pi/2$. On the other hand, for $\pi/2 < \Delta < \pi$, the situation is different. #### Good news is - θ_{23} ambiguity may be resolved. - δ⇔π-δ ambiguity may be resolved. #### Bad news is - E is so low that statistics is low. - osc. prob. Is small (~solar v osc. prob.). ### (C) measurement of $V_e \rightarrow V_T$ Curves intersect with the JPARC line almost orthogonally. - ullet θ_{23} ambiguity may be resolved. - δ⇔π-δ ambiguity may be resolved. - sign(Δm^2_{31}) ambiguity may be resolved. This channel may be interesting to be combined with JPARC in the future. ## 3. Summary - Plots in $(\sin^2 2\theta_{13}, 1/s^2_{23})$ are useful to see 8-fold degeneracy. - It is important for determination of θ_{13} to resolve θ_{23} ambiguity if $\sin^2 2\theta_{23} < 1$. - After $v_{\mu} \rightarrow v_{e} + v_{\mu} \rightarrow v_{e}$ by JPARC, another $v_{\mu} \rightarrow v_{e}$ or $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ is not useful (but $v_{e} \rightarrow v_{\tau}$ is useful) to resolve θ_{23} ambiguity.