

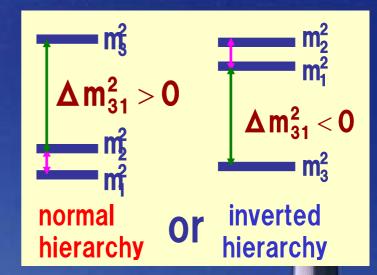
Tokyo Metropolitan University

Osamu Yasuda

Miami 2004 Dec. 15, 2004

Contents

- 1. Introduction
- 2. Determination of θ_{13}
- 3. Determination of 6
- 4. Summary


Ref: O.Y., New Journal of Physics 6 (2004) 83:

O.Y., hep-ph/0405222

1. Introduction

v oscillation

P (
$$v_{\alpha} \rightarrow v_{\beta}$$
) = $\sin^2 2 \theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

- solar v KamLAND (reactor)
 - $\Rightarrow \Delta m_{21}^2 \cong 8 \times 10^{-5} \, \text{eV}, \, \sin^2 2 \, \theta_{12} \cong 0.8$
- atmospheric v K2K (accelerator)
 - \Rightarrow $|\Delta m_{32}^2| \cong 2 \times 10^{-3} \, \text{eV}^2$, $\sin^2 2\theta_{23} \cong 1.0$
- CHOOZ (reactor)
 - \Rightarrow $\sin^2 2 \theta_{13} < 0.2$

Next things to determine: θ_{13} , δ (CP phase) and

 $sgn(\Delta m_{31}^2)$ (hierarchy pattern)

Ongoing/planned long baseline accelerator experiments

1st generation

$$v_{\mu} \rightarrow v_{\mu}$$

In red: approved

(not exhaustive)

1999- **K2K** KEK→SK L=250km $E\sim 1$ GeV

2004- MINOS FNAL→Soudan L=730km E~10GeV

2006- CNGS CERN—Grand Sasso L=730km E~20GeV

Mainly for determination of $|\Delta m_{31}^2|$

2nd generation $v_{\mu} \rightarrow v_{e} + \overline{v}_{\mu} \rightarrow \overline{v}_{e}$ In green: not approved yet

2009- JPARC I JAERI→SK (0.75MW,22.5kt) L=295km E~1GeV

discovery of $\theta_{13} \neq 0$? $(v_{\mu} \rightarrow v_{e} \text{ for 5 yrs})$

20??- NOva FNAL→near Soudan L~800km E~?GeV

identification of sgn (Δm_{31}^2) ??

20??- SPL CERN→Frejus (4MW,0.4Mt) L=130km E~0.1GeV

20??- JPARC II JAERI→HK (4MW,1Mt) L=295km E~1GeV

discovery of $\delta \neq 0$? $(v_{\mu} \rightarrow v_{e} \text{ for 2 yrs } \bar{v}_{\mu} \rightarrow \bar{v}_{e} \text{ for 6 yrs})$

Proposed Reactor experiments

 $v_e \rightarrow v_e$

2008?- Double CHOOZ France

2008?- Kaska Japan

20??- Braidwood US

20??- Diablo Canyon US

20??- Daya Bay China

20??- Angra Brazil

discovery of $\theta_{13} \neq 0$?

• (stage I) Measurement of θ_{23}

$$P \left(v_{\mu} \rightarrow v_{\mu} \right) \cong 1 - \frac{\sin^2 2 \theta_{23}}{4E} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)$$

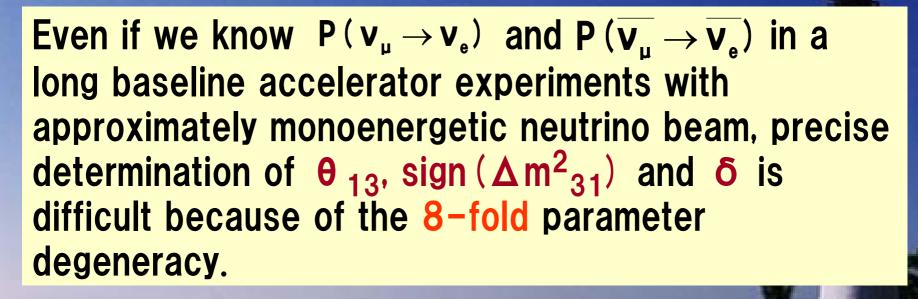
$$P \ (\ v_{\mu} \rightarrow v_{e}) \cong s_{23}^{2} \frac{\sin^{2}2}{\sin^{2}2} \frac{\theta_{13}}{4E} \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) + correction \ s$$

(stage II) Naϊve argument on measurement of δ

$$P(v_{\mu} \rightarrow v_{e}) - P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = 2Jsin\left(\frac{\Delta m_{21}^{2}L}{4E}\right)sin\left(\frac{\Delta m_{32}^{2}L}{4E}\right)sin\left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

$$J = \frac{sin \delta c_{13}sin2 \theta_{12}sin2 \theta_{13}sin2 \theta_{23}}{\delta can be deduced}$$

(stage II) Naïve argument on identification of sgn (Δm²₃₁)


 $sgn(\Delta m_{31}^2)$ can be deduced

$$\begin{split} &\Delta \, \widetilde{E}_{31} \equiv \left[\left(\Delta \, E_{31} cos2 \, \theta_{13} - A \right)^2 + \left(\Delta \, E_{31} sin2 \, \theta_{13} \right)^2 \right]^{1/2} \\ &\Delta \, E_{31} \equiv \Delta \, m_{31}^2 / \, 2E, \quad A \equiv \sqrt{2} G_F N_e \cong 1 / \, 2000 km > 0 \end{split}$$

To identify $sgn(\Delta m_{31}^2)$, a longer baseline will be necessary, because $AL\sim O(1)$ is necessary.

Unfortunately, these naïve arguments do not hold due to

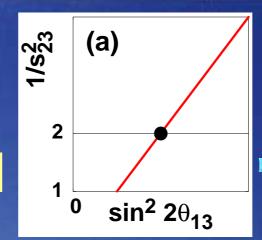
Parameter degeneracy

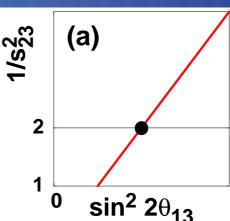
- intrinsic (δ, θ₁₃) degeneracy
- $\theta_{23} \Leftrightarrow \pi/2 \theta_{23}$ degeneracy

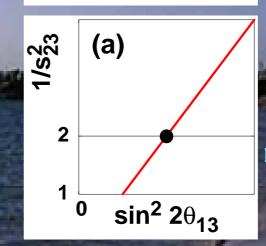
 $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy

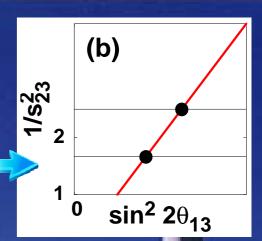
(a)
$$\cos 2\theta_{23} = 0 \rightarrow (b)\cos 2\theta_{23} \neq 0$$

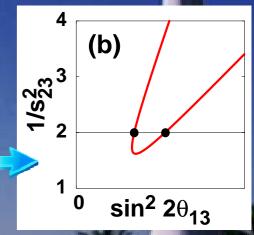
present bound: $\left|\cos 2\theta_{23}\right| < 0.3$

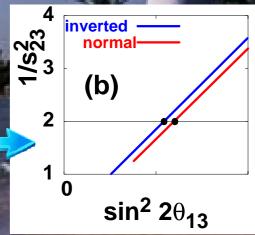

• intrinsic (δ , θ_{13}) degeneracy

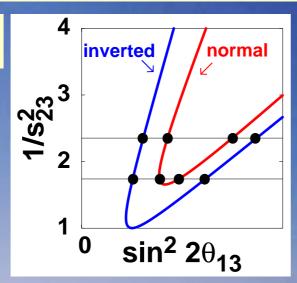

(a)
$$\frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} = 0 \rightarrow (b) \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} \cong \frac{1}{35} \neq 0$$


Δm²₃₁⇔ − Δm²₃₁ degeneracy


(a)AL/2 =
$$0 \rightarrow$$
 (b)AL/2 \neq 0

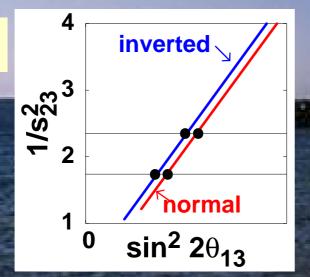

 $A \equiv \sqrt{2}G_F N_e \cong 1/2000 km$





In total we have 8-fold ambiguity

Plot of $P(v_{\mu} \rightarrow v_{e})$, $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = const.$


Off OM

Oscillation Maximum:

$$\left| \frac{\Delta m_{31}^2 L}{4E} \right| = \frac{\pi}{2}$$

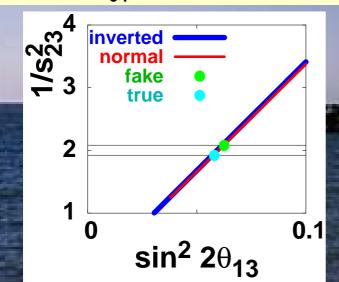
On OM

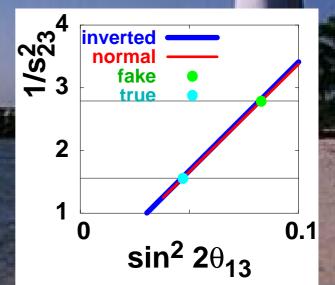
JPARC experiment is expected to be done on OM

→ intrinsic (δ, θ₁₃)
degeneracy is not a problem at JPARC

2. Determination of θ_{13}

Assumption: $V_{\mu} \rightarrow V_{e}$ and $\overline{V_{\mu}} \rightarrow \overline{V_{e}}$ will be measured at JPARC II (@OM, 4MW, HK) .


Question: Will that be enough to determine θ_{13} ?


(1)
$$\sin^2 2\theta_{23} \cong 1 \longrightarrow Yes!$$

JPARC V + V is almost enough, since (a) there is no intrinsic (δ, θ_{13}) degeneracy, and (b) sign (Δm^2_{31}) degeneracy is small.

Ambiguity due to $\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$ degeneracy is significant.

In the case of (1) $\sin^2 2\theta_{23} \approx 1$:

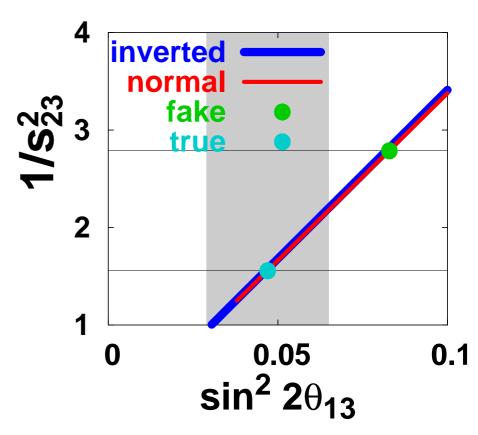
JPARC $v_{\mu} \rightarrow v_{e} + v_{\mu} \rightarrow v_{e}$ is enough to determine θ_{13} .

In the case of (2) $\sin^2 2\theta_{23} < 1$:

To resolve θ_{23} ambiguity, possible ways are:

Combine JPARC $v_{\mu} \rightarrow v_{e} + v_{\mu} \rightarrow v_{e}$ with:

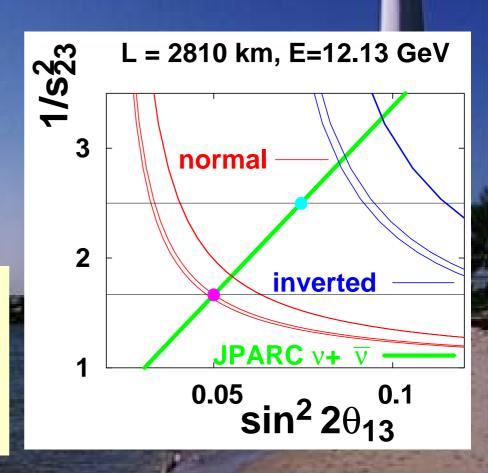
- (A) reactor measurement of θ_{13} $v_e \rightarrow v_e$
- (B) β beam measurement of $V_e \rightarrow V_T$
- (C) LBL measurement of $V_{\mu} \rightarrow V_{e}$ (or $V_{\mu} \rightarrow V_{e}$)??


(A) reactor measurement of θ_{13} $v_e \rightarrow v_e$

$$\overset{-}{\mathsf{v}_{\mathsf{e}}} \rightarrow \overset{-}{\mathsf{v}_{\mathsf{e}}}$$

$$P(\overline{v_e} \rightarrow \overline{v_e}) = 1 - \sin^2 2 \theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

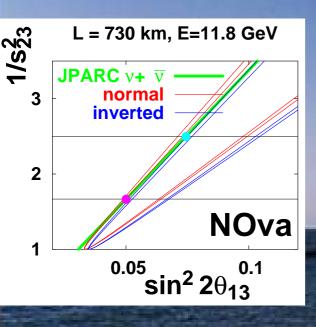
One can resolve θ₂₃ ambiguity at 90%CL.

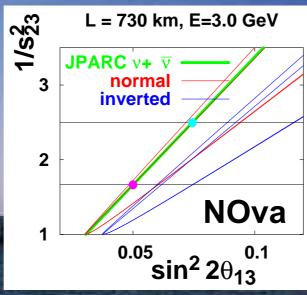

(B) β beam measurement of $V_e \rightarrow V_T$

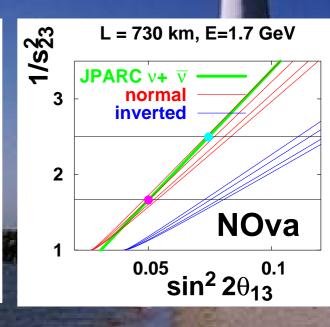
V_e beam from radioactive nuclei in a storage ring

$$P \ (\ \textbf{V}_{e} \rightarrow \textbf{V}_{\tau}) \cong c_{23}^{2} sin^{2} 2 \ \theta_{13} sin^{2} \bigg(\frac{\Delta m_{31}^{2} L}{4E} \bigg)$$

Curves intersect with the JPARC line almost orthogonally.

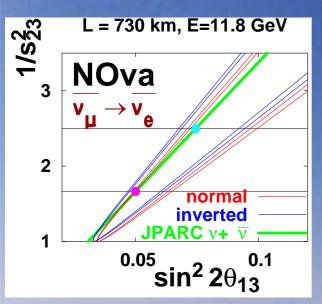

This channel may be interesting to be combined with JPARC in the future.

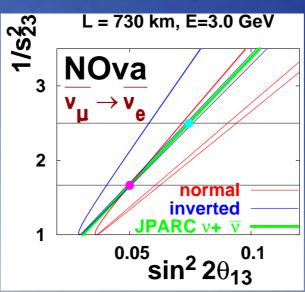


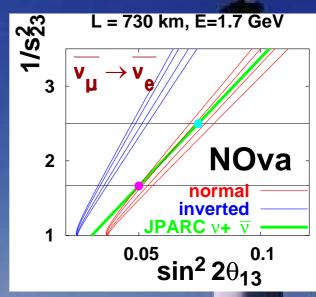

(C) LBL measurement of $v_{\mu} \! \to \! v_{e}$ (or $v_{\mu} \! \to \! v_{e}$)

Consider 3rd measurement of $\nu_{\mu} \to \nu_{e}$ (e.g. @ NOva) in addition to JPARC $\nu_{\mu} \to \nu_{e} + \nu_{\mu} \to \nu_{e}$.

In general, the gradient of the hyperbola is almost equal to that of the JPARC line, and this additional curve does not help to resolve θ_{23} ambiguity.







However, with lower E it may be possible to identify sgn (Δm_{31}^2).

The situation doesn't change much for $v_{\mu} \rightarrow v_{e}$.

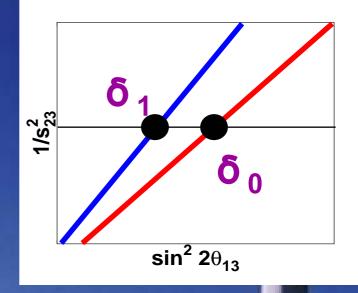
NOva may be complementary to JPARC only if it runs with low energy to determine $sgn(\Delta m_{31}^2)$.

3. Determination of 5 (CP phase)

Assumption: at JPARC (@OM, 4MW, HK)

 $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{e}$ will be measured.

Question: Will that be enough to determine δ?


Answer: In general no.

Resolution of sign(Δm^2_{31}) ambiguity is important.

Ambiguity due to sign(Δm^2_{31})

 δ_0 : by correct assumption on sign(Δm^2_{31})

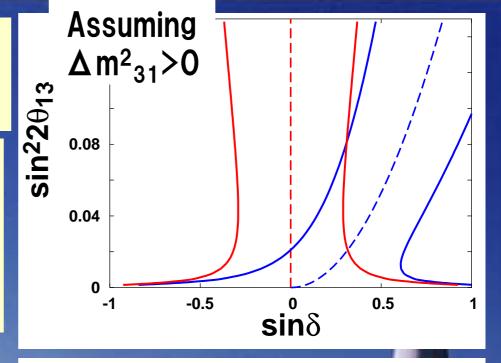
 δ_1 : by wrong assumption on sign(Δm^2_{31})

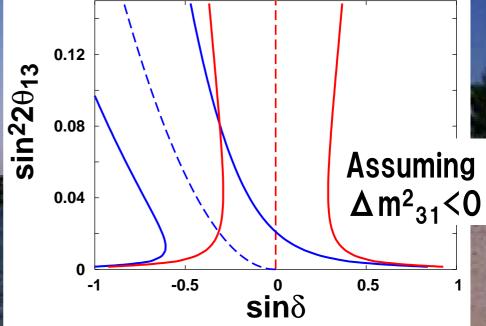
Difference between $\delta_0 \& \delta_1$ turns out to be large.

If $\delta_0 = 0$, then $\sin \delta_1 \cong -2.2 \sin 2\theta_{13}$ at JPARC

= -0.5 (if $\sin^2 2\theta_{13} = 0.05$)

i.e., if we made a mistake on $sign(\Delta m^2_{31})$, then our prediction on δ would be significantly different!


 3σ sensitivity to δ (w/ exp. errors included)


correct assumption on $sign(\Delta m^2_{31})$ ——

wrong assumption on sign(Δm^2_{31}) ——

 $\delta \neq 0$ can be claimed outside of red or blue solid lines.

If we don't know $sign(\Delta m^2_{31})$, the region in which $\delta \neq 0$ can be claimed becomes smaller.

4.Summary

It is important

- for determination of θ_{13} to resolve θ_{23} ambiguity if $\sin^2 2 \theta_{23} < 1$.
- for determination of δ to resolve sign (Δm^2_{31}) ambiguity.

If NOva runs with lower E, then it will become complementary to JPARC, and only in this case it will play an important role.

Otherwise, another LBL exp. with a longer baseline will be necessary.

Stage	θ ₂₃	$\sin^2 2 \theta_{23} \cong 1$	$sin^2 2 \; \theta_{23} < 1$
		JPARC@OM	In addition to JPARC V&v @OM,
Stage I	0 ₁₃	ν _μ → ν _e & ν _μ → ν _e is almost enough.	$v_e \rightarrow v_e$ (reactor) or $v_e \rightarrow v_\tau$ (β beam)
			is necessary to resolve θ ₂₃ ambiguity.
		In addition to JPARC v&v@OM,	In addition to JPARC V&v @OM,
Stage II	δ	LBL w/ L>~1000km is necessary to resolve	(A) $V_e \rightarrow V_e$ or $V_e \rightarrow V_\tau$ is necessary to resolve
		sign(∆m ² ₃₁) ambiguity (NOva w/ low E may work).	θ_{23} ambiguity. (B) LBL w/ L>~1000km is necessary to resolve sign(Δm^2_{31}) ambiguity.