Sensitivity of Future Long Baseline Experiments and Octant Degeneracy

Osamu Yasuda Tokyo Metropolitan University

December 16, 2023 Miami2023 @ Lago Mar Resort

1. Introduction

- Framework of 3 flavor v oscillation
- Status of 3v fit
- 2. Sensitivity of T2HK & DUNE to N_v =3 oscillation parameters

Ghosh-OY, NPB 989 ('23) 116142

- Precision of $\Delta m_{31}^2 \& \theta_{23}$
- Mass ordering
- Octant degeneracy
- CP
- 3. Octant parameter degeneracy

Sugama-OY, arXiv:2308.15071

- Situation before and after 2012
- Octant degeneracy in T2HK, DUNE, T2HKK, ESSvSB
- 4. Conclusions

1. Introduction

Framework of 3 flavor ν oscillation

Mixing matrix $\mathbf{U}_{\alpha j}$ depends on $\theta_{12}, \, \theta_{23}, \, \theta_{13}, \,$ and CP phase δ

All 3 mixing angles have been measured:

1998- V_{atm}+T2K +MINOS+NOvA (accelerators)

$$P(\nu_{\mu} \rightarrow \nu_{\mu})$$

$$heta_{23} \cong rac{\pi}{4}$$
, | Δm^2_{32} | \cong 2.5 $imes$ 10⁻³ eV²

2002 v_{solar} +KamLAND (reactor) P

$$\bar{\nu}_e \rightarrow \bar{\nu}_e)$$

$$heta_{12}\congrac{\pi}{6}$$
, $\Delta m^2_{21}\cong8 imes10^{-5}\,eV^2$

2012 DCHOOZ+Daya Bay+Reno (reactors)

$$P(\bar{\nu}_e \to \bar{\nu}_e) \longrightarrow \theta_{13} \cong \pi/20$$

Both Mass Orderings are still allowed

m∛

má

 $\Delta m^2_{32} > 0 \Delta m^2_{32} < 0$

Normal

Ordering

má

Inverted

Ordering

Status of 3v fit (2)

• Appearance data of LBL show us potential tension for NO, although T2K dominates over NOvA in statistics. \Rightarrow Situation of δ is still confusing.

Next things to do are to determine the following by long baseline experiments:

οδ

$$(\overline{\nu}_{\mu}^{)} (\overline{\nu}_{\mu}^{)} + (\overline{\nu}_{\mu}^{)} (\overline{\nu}_{e}^{)})$$

Matter effect in T2HK and DUNE

T2HK: L=295km

DUNE: L=1300km

In a toy 2 flavor case:

To know the sign of $\Delta E = \Delta m^2/2E$, large matter effect is necessary.

Matter effect becomes most conspicuous if $\Delta Ecos2\theta = A$ is satisfied.

$$P(\nu_{\mu} \to \nu_{e}) = \left(\frac{\Delta E \sin 2\theta}{\Delta \tilde{E}}\right)^{2} \sin^{2}\left(\frac{\Delta \tilde{E}L}{2}\right) \qquad \tan 2\tilde{\theta} \equiv \frac{\Delta E \sin 2\theta}{\Delta E \cos 2\theta} - \frac{1}{2}$$

 $\left|\Delta \tilde{E} \equiv \left\{ (\Delta E \cos 2\theta - A)^2 + (\Delta E \sin 2\theta)^2 \right\}^{1/2} \right| A \equiv \sqrt{2} G_F N_e \sim 1/2000 \text{km}$

In this case, the baseline length L has to be large

 \rightarrow L> $\pi/A \sim O(1000 \text{ km}) \rightarrow$ It is satisfied by DUNE but not by T2HK.

A

2. Sensitivity of T2HK & DUNE to N_v =3 oscillation parameters

Uncertainty in matter density taken into account

Ghosh-OY, NPB 989 ('23) 116142

The parameters assumed here:

T2HK

- 187 kton fiducial volume
- $v:\overline{v} = 1:1$

Total exposure: 2.7 x 10²² POT

DUNE

40 kt LiAr detector,

 $v:\overline{v} = 1:1$

Total exposure: 1.1 X 10²¹ POT

Reference value: $\theta_{23} = 42^{\circ} \text{ or } 48^{\circ},$ $\delta = -90^{\circ},$ $\Delta m^2_{31} = 2.51 \times 10^{-3} \text{eV}^2,$ $\Delta \rho / \rho = 0, 5\%, 10\%$

> Recommended by Geller-Hara, hep-ph/0111342

DUNE&T2HK vs Present status of global fit

	Ref	∆m² ₃₁ /10-³eV²	θ ₂₃ [°]
Global fit	www.nu-fit.org v5.2 (Nov. 2022)	2.507+0.026-0.027	42.2+1.1-0.9
Future exp	T2HK Ghosh-OY('23)	2.510+0.013-0.014	42.0±0.5
	DUNE Ghosh-OY('23)	2.510+0.015-0.014	42.0±0.5
	DUNE+T2HK Ghosh-OY('23)	2.510±0.010	42.0+0.4-0.3

2.2 Sensitivity to Mass Ordering

Ghosh-OY, NPB 989 ('23) 116142

Δρ/ρ=0% Δρ/ρ=5% Δρ/ρ=10%

Uncertainty in matter density has some effect on DUNE <- DUNE has longer baseline L=1300km

2.3 Sensitivity to Octant degeneracy

HO-LO Separation is possible for T2HK & DUNE w/ v & \overline{v} for most of δ

Ghosh-OY, NPB 989 ('23) 116142

$$\theta_{23} = 42^{\circ}$$

Uncertainty in matter density has some effect on DUNE. <- DUNE has longer baseline L=1300km However even with $\Delta\rho/\rho$ =10%, the sensitivity is excellent.

2.4 Sensitivity to CP(1)

Ghosh-OY, NPB 989 ('23) 116142

Uncertainty in matter density has some effect on the precision $\Delta\delta$ both for T2HK & DUNE.

 $\Delta\delta/\delta$ has mild dependence on δ but not much.

2.4 Sensitivity to CP(2)

Δρ/ρ=0% Δρ/ρ=5% $\Delta \rho / \rho = 10\%$

Ghosh-OY, NPB 989 ('23) 116142

3. Octant parameter degeneracy

Sugama - OY, arXiv:2308.15071

Parameter degeneracy

Even if we know $P \equiv P(\nu_{\mu} \rightarrow \nu_{e})$ and $\overline{P} \equiv P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ in LBL experiments with energy E and baseline L, δ cannot be uniquely determined because of the 8-fold parameter degeneracy.

• octant degeneracy $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ (Fogli-Lisi, '96)

intrinsic degeneracy (δ, θ₁₃)
 (Burguet-Castell et al, '01)

● sign degeneracy △m²₃₁↔ -△m²₃₁ (Minakata-Nunokawa, '01)

 $(sin^2 2\theta_{13}, 1/s^2_{23})$ plane (P=const & P=const gives a quadratic curve)

$$X \equiv \sin^{2} 2\theta_{13} Y \equiv \frac{1}{s_{23}^{2}} C \equiv \left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right)^{2} \left[\frac{\sin(AL/2)}{AL/2\Delta}\right]^{2} \sin^{2} 2\theta_{12}$$
For sin $\Delta \neq 0$
A quadratic curve in (X,Y)-plane
$$16CX(Y-1)$$

$$= \frac{1}{\cos^{2}\Delta} \left[\left(\frac{P(E) - C}{F} + \frac{\bar{P}(E) - C}{\bar{F}}\right) (Y-1) - (F+\bar{F})X + \frac{P(E)}{F} + \frac{\bar{P}(E)}{\bar{F}} \right]^{2}$$

$$+ \frac{1}{\sin^{2}\Delta} \left[\left(\frac{P(E) - C}{F} - \frac{\bar{P}(E) - C}{\bar{F}}\right) (Y-1) - (F-\bar{F})X + \frac{P(E)}{F} - \frac{\bar{P}(E)}{\bar{F}} \right]^{2}$$
For sin Δ =0 (Oscillation Maximum $\Delta \equiv \frac{|\Delta m_{31}^{2}|L}{4E} = \frac{\pi}{2}$)
$$A \text{ straight line in (X,Y)-plane}$$

$$\left(\frac{P(E) - C}{F} + \frac{\bar{P}(E) - C}{\bar{F}}\right) (Y-1) - (F+\bar{F})X + \frac{P(E)}{F} + \frac{\bar{P}(E)}{\bar{F}} = 0$$

Fit of test oscillation parameters to true ones

From the values of P and \overline{P} given by the true oscillation parameters, can we determine uniquely the test oscillation parameters?

$$P(\nu_{\mu} \rightarrow \nu_{e}, E; \theta_{jk}^{\text{test}}, \Delta m_{jk}^{2 \text{ test}}, \delta^{\text{test}}) = P(\nu_{\mu} \rightarrow \nu_{e}, E; \theta_{jk}^{\text{true}}, \Delta m_{jk}^{2 \text{ true}}, \delta^{\text{true}}) \equiv P(E)$$

$$P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, E; \theta_{jk}^{\text{test}}, \Delta m_{jk}^{2 \text{ test}}, \delta^{\text{test}}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, E; \theta_{jk}^{\text{true}}, \Delta m_{jk}^{2 \text{ true}}, \delta^{\text{true}}) \equiv \bar{P}(E)$$

$$\text{Test oscillation parameters}$$

$$(\theta_{13}, \theta_{23}, \delta): \text{ varied } (\delta \text{ is expressed by } \theta_{13} \text{ and } \theta_{23})$$

$$\rightarrow 2 \text{ independent parameters are: } X \equiv \sin^{2} 2\theta_{13} \quad Y \equiv \frac{1}{s_{23}^{2}}$$

$$\text{NB Other test oscillation parameters}$$

$$(\Delta m_{31}^{2}, \theta_{12}, \Delta m_{21}^{2}) \text{ are fixed}$$

21/26

3.3 T2HK: (E,Y_i^{MO}(E)) plot

Assumption: True Octant=Higher Octant

Because of the long baseline, wrong Mass Ordering can be always excluded.

→ Octant degeneracy can be resolved, as in T2HK.

L=530km E=0.2GeV – 0.4GeV

1st Oscillation Maximum ($\Delta = \pi/2$, E=0.73GeV) is missed for $\overline{\nu}$ mode, but 2nd Oscillation Maximum ($\Delta = 3\pi/2$, E=0.24GeV) is covered.

 → Because of large deviation and rapid oscillations near 2nd oscillation maximum, it is difficult to resolve octant degeneracy.
 [← already known by numerical simulations in S. K. Agarwalla et al., (arXiv:1406.2219)]

4. Conclusions

•T2HK+DUNE gives us excellent precision in θ_{23} (1%), Δm_{32}^2 (0.5%), δ (20%), although DUNE suffers from uncertainty in the density (20%). •T2HK and DUNE are expected to resolve octant degeneracy, while it seems difficult to resolve octant degeneracy for far future long baseline experiments, T2HKK and ESSvSB, which focus on 2nd oscillation maximum.

Backup slides

Historical background of ν oscillation studies:

1998- Atmospheric v / Long baseline v: $P(\nu_{\mu} \rightarrow \nu_{\mu}) \Rightarrow \sin^2 2\theta_{23}$

- **2000-** Phenomenology of Long baseline v:
- How to determine δ_{CP} from $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

2001- Parameter degeneracy was pointed out.

- 2004 Plot of 8-fold parameter degeneracy was proposed.
- **2012 Reactor v:** $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \Rightarrow \sin^2 2\theta_{13}$
- 2023 Plot of 8-fold parameter degeneracy is revisited, taking into account the measured values of $\sin^2 2\theta_{13}$ and $\sin^2 2\theta_{23}$ (this talk).

Understanding degeneracy by appearance probabilities

Prakash, Raut, Sankar, PRD 86, 033012 (2012)

Agarwalla, Prakash, Sankar, JHEP 1307, 131 (2013)

Due to uncertainty in δ , the appearance probabilities has finite width. -> Each border is approximately realized for $\delta = +\pi/2$ or $-\pi/2$

Mass Ordering

At T2HK, MO separation is good only for $\delta \sim -\pi/2$ (NO), $\delta \sim +\pi/2$ (IO)

NO
IO

$$-\delta = \pi/2$$

 $-\delta = -\pi/2$
 $-\delta = \pi/2$
 $-\delta = -\pi/2$

Fukasawa, Ghosh, OY, NPB 918 ('17) 337

At DUNE, NO-IO separation is good for any δ

Timeline of Hyperkamiokande

- 2022-2027: Construction, 2027-: Operation
 - No change of schedule since the approval of project in 2020

Nakaya@Neutrino Workshop at IFIRSE, 2023.7.17

Timeline of DUNE (2029(?)-)

Earliest installation start in 2029 with FD3 completed in Q4,2034 and FD4 in Q4,2036

Bishai@ P5 Townhall Meeting, Fermilab, March 21, 2023

Ghosh-OY, NPB 989 ('23) 116142

34/26

octant degeneracy at DUNE

Ghosh-OY, NPB 989 ('23) 116142

Probability vs octant degeneracy at T2HK

Ghosh-OY, NPB 989 ('23) 116142

Probability vs octant degeneracy at DUNE

Ghosh-OY, NPB 989 ('23) 116142

For T2HK, $(\delta, DS)=(-64^{\circ}, 1.0)$ is degenerate with $(-61^{\circ}, 1.1)$. For δ (true) = -90°, $(\delta$ (test),DS(test)) = $(-61^{\circ}, 1.0)$ is excluded but $(\delta$ (test),DS(test)) = $(-61^{\circ}, 1.1)$ is allowed.

37/26

For DUNE, $(\delta, DS)=(-74^{\circ}, 1.0)$ is degenerate with (-69°, 1.1). For δ (true) = -90°, (δ (test),DS(test)) = (-69°, 1.0) is excluded but (δ (test),DS(test)) = (-69°, 1.1) is allowed.

Т2НК	D>0		́т	2HKK	Κ		D>0
	True=NO, Test=NO, D<0 🛑					Т	rue=NO, Test=NO, D<0 💻
	True=NO, Test=IO, D<0					Т	rue=NO, Test=IO, D<0 📃
	True=IO, Test=IO, D<0					Т	rue=IO, Test=IO, D<0
	True=IO, Test=NO, D<0					т	rue=IO, Test=NO, D<0 🛛 🗖
			1	I			
0.2 0.4 0.6 0.8 1 1	.2	0.2	0.6	1	1.4	1.8	
Energy (GeV)			Ener	'gy (G	ieV)		

Sugama-OY, arXiv:2308.15071

DUNE	D>0 —		Ē	SSnSE	3	D>0
	True=NO, Test=NO, D<0 🚥					True=NO, Test=NO, D<0
	True=NO, Test=IO, D<0 📃					True=NO, Test=IO, D<0
	True=IO, Test=IO, D<0					True=IO, Test=IO, D<0
	True=IO, Test=NO, D<0					True=IO, Test=NO, D<0
l					<u> </u>	
1 2 3 4	5	0.	1 0.3	0.5	0.7	0.9
Energy (GeV)			Ene	rgy (Ge	eV)	