New plots & parameter degeneracy in v oscillations

Tokyo Metropolitan University

Notations:

$$\begin{split} \mathbf{P} &\equiv \mathbf{P} \Big(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \Big) \\ \overline{\mathbf{P}} &\equiv \mathbf{P} \left(\overline{\mathbf{v}_{\mu}} \rightarrow \overline{\mathbf{v}_{e}} \right) \\ \mathbf{\Delta} &\equiv \frac{| \mathbf{\Delta} \mathbf{m}_{31}^{2} | \mathbf{L}}{4\mathbf{E}} \end{split}$$

Oscillation Maximum (OM)

normal hierarchy
$$\begin{split} P &= f^2 x^2 + 2 x y f g cos \left(\delta + \Delta \right) + g^2 y^2 \\ \overline{P} &= \overline{f}^2 x^2 + 2 x y \overline{f} g cos \left(\delta - \Delta \right) + g^2 y^2 \\ \text{inverted hierarchy} \\ P &= \overline{f}^2 x^2 - 2 x y \overline{f} g cos \left(\delta + \Delta \right) + g^2 y^2 \\ \overline{P} &= f^2 x^2 - 2 x y f g cos \left(\delta - \Delta \right) + g^2 y^2 \end{split}$$

$$\begin{split} & \textbf{X} \equiv \textbf{S}_{23} \textbf{sin2} \; \boldsymbol{\theta}_{13}, \\ & \textbf{y} \equiv \mid \Delta m_{21}^2 / \Delta m_{31}^2 \mid \textbf{C}_{23} \textbf{sin2} \; \boldsymbol{\theta}_{12}, \\ & \textbf{f}, \bar{\textbf{f}} \equiv \textbf{sin} (\Delta \mp \textbf{AL}/2) / (1 \mp \textbf{AL}/2 \Delta), \\ & \textbf{g} \equiv \textbf{sin} (\textbf{AL}/2) / (\textbf{AL}/2 \Delta) \\ & \textbf{A} \equiv \sqrt{2} \textbf{G}_{\textbf{F}} \textbf{N}_{\textbf{e}} \end{split}$$

$$(X \equiv sin^2 2 \theta_{13}, Y \equiv 1/s^2_{23})$$

All the curves become quadratic or linear.

Ambiguity due to parameter degeneracy

Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign (Δm_{31}^{2}) and δ is difficult because of the ambiguity due to 8-fold parameter degeneracy.

•
$$\theta_{23} \Leftrightarrow \pi / 2 - \theta_{23}$$

degeneracy

(a)
$$\cos 2\theta_{23} = 0 \rightarrow (b)\cos 2\theta_{23} \neq 0$$

(a)
$$\frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} = 0 \rightarrow (b) \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} \cong \frac{1}{35} \neq 0$$

•
$$\Delta m_{31}^2 \Leftrightarrow -\Delta m_{31}^2$$

degeneracy

(a)AL/2 = 0
$$\rightarrow$$
 (b)AL/2 \neq 0

$$A \equiv \sqrt{2}G_F N_e \cong 1/2000 \text{ km}$$

Determination of \theta_{13}

Assumption: $v_{\mu} \rightarrow v_{e}$ and

JPARC (@OM, 4MW, HK).

 $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ will be measured at

Question: Will that be enough to determine |U_{e3}|?

(1) $\sin^2 2 \theta_{23} \cong 1$

JPARC V + V is almost enough, since (a) there is no intrinsic (δ, θ_{13}) degeneracy, and (b) sign (Δm_{31}^2) degeneracy is small.

(2)
$$\sin^2 2 \theta_{23} < 1$$

Ambiguity due to $\theta_{23} \Leftrightarrow \pi / 2 - \theta_{23}$ degeneracy is significant.

To resolve θ_{23} ambiguity, possible ways are:

(A) reactor measurement of
$$\theta_{13}$$

(B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$)
(C) measurement of $V_{e} \rightarrow V_{T}$

Here we consider (B) and (C).

The reference values used here are: $\sin^2 2\theta_{23}=0.96$, $\sin^2 2\theta_{13}=0.05$, $\delta = \pi/4$, $\Delta m_{31}^2 > 0$

(B) LBL measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$)

Consider 3rd measurement of $v_{\mu} \rightarrow v_{e}$ (or $v_{e} \rightarrow v_{\mu}$)

in addition to JPARC $v + \overline{v}$.

08

The value of δ for each point can be deduced (up to $\delta \Leftrightarrow \pi - \delta$) from

$$sin\,\delta=-\frac{P-f^2x^2-g^2y^2}{2fgxy}$$

Then from the equation for the probability of $\nu_{\mu} \rightarrow \nu_{e}$ (or $\nu_{e} \rightarrow \nu_{\mu}$) in the 3rd experiment

$$\begin{split} \mathsf{P}_{true} &= \mathsf{P}\!\!\left(sin^2 2\theta_{13}, \delta_{\pm [cw]}, s_{23}^2 \right) \\ \text{or} \\ \mathsf{P}_{true} &= \mathsf{P}\!\!\left(sin^2 2\theta_{13}, \pi - \delta_{\pm [cw]}, s_{23}^2 \right) \end{split}$$

we can get a unique line (a hyperbola or an ellipse) in $(\sin^2 2 \theta_{13}, 1/s_{23}^2)$ plane for $\delta_{\pm [cw]}$ or $\pi - \delta_{\pm [cw]}$.

0.02 0.04 0.06 0.08 0.1 0.12
$$\sin^2 2\theta_{13}$$

$$\frac{dX}{dY}\Big|_{\delta} - \frac{dX}{dY}\Big|_{\Pi - \delta} \cong -\frac{4\sqrt{PC}}{f^2}\cos\delta\cos\Delta$$

Difference in the gradients is large for $\Delta = 0$ or π

10

sign(Δm_{31}^2) ambiguity (a) L: AL~L/1900km → L>2000km is good to distinguish Δm^2_{31} from $-\Delta m_{31}^2$ (b) E: \rightarrow low energy is advantageous $\frac{\left(\sin^{2}2\,\theta_{13}\right)_{i}}{\left(\sin^{2}2\,\theta_{13}\right)_{n}} \cong \mathbf{1} + \mathbf{2AL} \left(\frac{\mathbf{1}}{\Delta} - \frac{\mathbf{1}}{\tan\Delta}\right)$ **Enhancement of matter** effect for $\pi/2 < \Delta < \pi$

θ₂₃ ambiguity

Resolution of θ_{23} ambiguity (a) $f \equiv \frac{\sin(\Delta - AL/2)}{1 - AL/2\Delta}$ has to be small (b) $|\cos(\delta + \Delta)|$ has to be large

▲ is unknown at first, so it is impossible to design to optimize this resolution.

It may happen that this ambiguity can be resolved as a byproduct.

Situation for $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ is similar to that for $v_{\mu} \rightarrow v_{e}$

L = 295 km, E=1.19 GeV, P=0.0174

L = 730 km, E=1.97 GeV, P=0.0265 L = 3000 km, E=24.26 GeV, P=0.0029

(C) measurement of $V_e \rightarrow V_T$

Curves intersect with the JPARC line almost orthogonally.

• θ_{23} ambiguity may be resolved.

• $\delta \Leftrightarrow \pi - \delta$ ambiguity may be resolved.

sign(∆m²₃₁) ambiguity may be resolved.

This channel may be interesting to be combined with JPARC in the future.

	Summary	$\Delta = \frac{ \Delta }{ \Delta }$	$m_{31}^2 I$	- [<mark>∆</mark> :may	be OK
			4E intrinsic	π.δ	sign(\Delta m ²)	$\theta_{23}\left(\text{if } \theta_{23} \neq \frac{\pi}{4} \right)$
	JPARC $\mathbf{V} + \overline{\mathbf{V}}$ @	PARC $\mathbf{V} + \overline{\mathbf{V}}$ @OM		<u>x</u>	×	×
	JPARC $\mathbf{V} + \mathbf{\overline{V}}$ + reactor (90%CL)		\checkmark	×	×	\checkmark
	JPARC $\mathbf{V} + \overline{\mathbf{V}}$	Δ < π /8	\checkmark	\checkmark	×	×
	+ LBL	$\Delta < \pi / 2$, L<500km	\checkmark	Δ	×	Δ
	$(v \text{ and/or } \overline{v})$	$\Delta < \pi / 2$, L>500km	\checkmark	Δ	\checkmark	Δ
		$\Delta > \pi / 2$	\checkmark	Δ	Δ	Δ
	JPARC $\mathbf{V} + \overline{\mathbf{V}}$	L<500km	\checkmark	Δ	×	\checkmark
14	$V_e \rightarrow V_{\tau}$	L>500km	\checkmark	Δ	\checkmark	\checkmark