Reactor measurements of θ_{13} and complementarity to LBL experiments

Osamu Yasuda Tokyo Metropolitan Univ. June 6, '03 NuFact 03 at Columbia Univ.

H. Minakata, H. Sugiyama, O.Y., F. Suekane, K. Inoue, hep-ph/0211111.

I. Introduction

Oscillation parameters in N_{ν} =3 framework

 $\begin{array}{ll} (\Delta m_{21}^2, \ \theta_{12}) & \leftarrow \nu_{\odot} + \mathsf{KamLAND} \\ (|\Delta m_{32}^2|, \ \theta_{23}) & \leftarrow \nu_{\mathrm{atm}} \\ (\theta_{13}, \ \mathrm{sign}(\Delta m_{32}^2), \ \delta) & \leftarrow \mathrm{unknown} \end{array}$

As a first step toward the measurement of CP violation, we need to know the magnitude of θ_{13} .

There are two complementary methods so far:

	degeneracy	sensitivity to $\sin^2 2\theta_{13}$
LBL	some	$O(10^{-3})$
reactor	none	$\mathcal{O}(10^{-2})$

II. Parameter degeneracies

Even if we know $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ in a long baseline accelerator experiment with an approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign of Δm_{31}^2 and δ is difficult because of the 8-fold parameter degeneracy.

- intrinsic (θ_{13}, δ) degeneracy
- $\Delta m^2_{31} \leftrightarrow -\Delta m^2_{31}$ degeneracy

•
$$\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$$
 degeneracy

→ talks by Minakata, Sugiyama, Whisnant, Donini, Migliozzi, Winter The 8-fold degeneracy is lifted as the small parameters $\cos^2 2\theta_{23}$, $|\Delta m_{21}^2/\Delta m_{31}^2|$, $AL~(A \equiv \sqrt{2}G_F N_e)$ are switched on:

III. Measurement of θ_{13} by reactors

Measurement of θ_{13} by reactors is free of ambiguities from θ_{23} , δ , θ_{12} , Δm_{21}^2 , A:

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$
$$(|\Delta m_{31}^2| \leftarrow \nu_{\text{atm}}, \text{ MINOS, or JHF-I})$$

Therefore,

a long baseline accelerator experiment $_+$ a reactor measurements of θ_{13} may enable us to resolve the degeneracy.

Experimental conditions for θ_{13} (Suekane-san)

Optimization of baseline

SK $\nu_{\rm atm}$ result: $|\Delta m^2_{31}|\simeq 2.5\times 10^{-3}{\rm eV^2}$

$$\int F(E)\sigma(E)\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)dE = \max$$

 \rightarrow $L \simeq 1.7 {\rm km}$

 $ightarrow N_{
u} \sim$ 150/yr/target-ton/GW $_{
m th}$

1% stat. error/yr (necessary to improve the CHOOZ bound)

$$\rightarrow M_{\text{target}} \cdot P_{\text{reactor}} = 70 \text{ t} \cdot \text{GW}_{\text{th}}$$

Kashiwazaki-Kariwa NPP (24.3 GW_{th})

 $ightarrow M_{
m target} \sim$ 5 tons (=just CHOOZ size)

Systematic errors can be reduced by detectors at two baselines:

Bugey	absolute	relative	rel./abs.
flux	2.8%	0.0%	0
number of protons	1.9%	0.6%	0.32
solid angle	0.5%	0.5%	1
detection efficiency	3.5%	1.7%	0.49
total	4.9%	2.0%	

CHOOZ–like	absolute	relative (expected)	rel./abs.
flux	2.1%	0.0%	0
number of protons	0.8%	0.3%	0.38
detection efficiency	1.5%	0.7%	0.47
total	2.7%	0.8%	

Here we assume:

 $24.3\,\mathrm{GW_{th}}$ 80% operation efficiency 70% detection efficiency baselines $L_1=0.3$ km and $L_2=1.7$ km (1.7km: optimum for $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{eV}^2$) (Two detectors are necessary to reduce systematic error.) energy spectrum: 14 bins of 0.5MeV systematic error σ_{sys}^{bin} & data size D (two cases): $(\sigma_{\text{sys}}^{\text{bin}}, D) = (2\%, 5 \text{ t·yr}) \text{ or } (0.8\%, 20 \text{ t·yr})$

With out the knowledge on the the relative systematic error $\sigma_{\rm sys}^{\rm bin}$ for each bin, we assume that $\sigma_{\rm sys}^{\rm bin}$ is distributed equally into bins,

$$(\sigma_{
m sys}^{
m bin})_i=\sigma_{
m sys}^{
m bin}$$

and is estimated from the relative systematic error $\sigma_{\rm sys}$ for the total number of events by

$$\sigma_{\rm sys}^2 (N_{\rm tot}(L_2))^2 = \sum_i (\sigma_{\rm sys}^{\rm bin})_i^2 (N_i(L_2))^2 = (\sigma_{\rm sys}^{\rm bin})^2 \sum_i (N_i(L_2))^2,$$
$$(\sigma_{\rm sys}^{\rm bin})^2 = \sigma_{\rm sys}^2 \frac{(N_{\rm tot}(L_2))^2}{\sum_i (N_i(L_2))^2} \simeq (2.4\%)^2$$

CHOOZ–like	relative (expected)
total	$\sigma_{ m sys}=0.8\%$
for bins	$\sigma_{ m sys}^{ m bin}=$ 2.4%

The ambiguity due to the parameter degeneracy by the LBL accelerator experiment alone can be resolved by reactor measurements of θ_{13} if $\delta_{re}(\sin^2 2\theta_{13}) < \delta_{de}(\sin^2 2\theta_{13})$.

$$\begin{split} \delta_{\rm re} (\sin^2 2\theta_{13}) &= 0.043 \\ {\rm for} \ \ \sigma_{\rm sys} &= 2\% \\ \delta_{\rm re} (\sin^2 2\theta_{13}) &= 0.018 \\ {\rm for} \ \sigma_{\rm sys} &= 0.8\% \end{split}$$

$$\delta_{\mathrm{de}}(\sin^2 2\theta_{13}) / \sin^2 2\theta_{13}$$
$$= |1 - \tan^2 \theta_{23}| (1 + \frac{\mathcal{O}(1)\epsilon^2}{\sin^2 2\theta_{13}})$$
$$\epsilon \equiv |\frac{\Delta m_{21}^2}{\Delta m_{31}^2}| \simeq \frac{1}{35} \text{ (best fit)}$$
$$\simeq 0.12 \text{ (worst case @90\%CL)}$$

The region where $\delta_{re}(\sin^2 2\theta_{13}) < \delta_{de}(\sin^2 2\theta_{13})$ is satisfied. Error in the LBL experiment is not taken into account here.

 \rightarrow Sugiyama's talk with the errors of JHF

IV. Idea of a measurement of θ_{13} at Kashiwazaki-Kariwa NPP

Working group so far

- F. Suekane, K. Inoue, T. Araki, K. Jongok (Tohoku Univ.) H. Minakata, H. Sugiyama, O.Y. (TMU)
- Optimization on baseline

$$\int F(E)\sigma(E)\sin^2\left(\frac{\Delta m_{31}^2 L_2}{4E}\right)dE = \max$$

in principle gives the optimal baseline $L_2=1.7$ km, but we have to compromise with the longest possible baseline in the Kashiwazaki-Kariwa NPP site: $L_2=1.3$ km.

Kashiwazaki-Kariwa Nuclear Power Plant

Two near detectors are necessary:

- N1: Near detector I (L=0.35km, 70m deep)
- N2: Near detector II (L=0.3km, 70m deep)
 - F: Far detector (L=1.3km, 200m deep)

The sensitivity to $\sin^2 2\theta_{13}$ for $L_2=1.3$ km turns out to be comparable (~ 0.015) to that (~ 0.014) for $L_2=1.7$ km because $\sigma_{\rm stat}^{\rm bin}$ is still larger than $\sigma_{
m sys}^{
m bin}\simeq 2.4\%$ for each bin with D=40t yr, and going to shorter distance gives larger yields which compensate the smaller oscillation probability.

V. Summary

• Measurements of θ_{13} by reactors are free of ambiguities of the parameter degeneracy, and may enable us to resolve the ambiguity which occurs in the LBL experiment if $\sin^2 2\theta_{13}$ and $\cos^2 2\theta_{23}$ are both large.

• Sensitivity to $\sin^2 2\theta_{13} \gtrsim 0.02$ (0.05) is obtained with a 24.3 GW_{th} reactor, D = 40 (10) t·yr and $\sigma_{sys} = 0.8\%$ (2%).

• At Kashiwazaki-Kariwa NPP with $L_2=1.3$ km, similar sensitivity can be obtained for D = 40 t·yr and $\sigma_{sys} = 0.5\%$.