Summary of WG1

Phenomenological issues

Osamu Yasuda (TMU)

Various proposals to resolve 8-fold degeneracy

Schwetz

ATM+LBL

Nunokawa

T2K-II ($v + \overline{v}$) +a detector in Korea

Okamura

T2K-I (v) +a detector in Korea

Palomares-Ruiz

two detectors for Nova

Ota

possibility to use polarized μ

Donini

importance of energy resolution

Meloni

Precision measurements of θ_{23} and

∆m²₃₂

Miscellaneous topics

Blennow Phenomenology with the modified

probability

Winter Applications of very long baseline

experiments

Takamura Analytical treatment of 3-flavor

oscillation probability

Romanino Predictive models for θ_{13} and m_{ee}

Thomas Schwetz

Atmospheric neutrinos are sensitive to mass hierarchy.

Combining ATM and LBL \rightarrow sign(Δm^2_{32}) ambiguity is resolved.

True hierarchy: normal, $\sin^2 \theta_{23}^{true} = 0.5$

solid: LBL-only, dashed: ATM-only, shading: LBL+ATM

Hiroshi Nunokawa

- We propose to determine mass hierarchy and CP phase at the same time by using Two Identical Detectors with Different Baselines
- As a concrete example, we consider JPARC Phase II 4MW Beam Power and 0.54 Mt Detector at Kamioka and other 0.54 Mt one at Korea
- 4 + 4 yrs runs of $v+\bar{v}$ modes, it is possible to determine mass hierarchy for $\sin^2 2\theta_{13} > 0.03$ (0.055) at 2 (3) σ CL for any value of δ
- At the same time, good sensitivity to CP violation

Naotoshi Okamura

$K \leftarrow J$ experiment

- T2K phase I + Korea (1.OAB 2.Detectors)
 - L=295km OA:3.0 and L=1000km OA:0.5
 - with reactor experiment

- we get them
 - mass hierarchy: $\chi^2 > 9$ ($\sin^2 2\theta_{13} \sim 0.06$)
 - CP phase : $0 \Leftrightarrow 180 (\sin^2 2\theta_{13} \sim 0.06)$

Sergio Palomares-Ruiz

- Super-NOvA: 2 off-axis (LAr) detectors with same L/E using the NuMI beam \rightarrow determination of sign(\triangle m²₃₁) free of degeneracies
- Only need of 5 years of neutrino run to resolve the type of hierarchy down to $\sin^2 2\theta_{13} = 0.02$ with Proton Driver (for all values of δ)
- Better capabilities than NOvA + T2K at HK for determining the type of mass hierarchy

Polarized
$$\mu^-$$
 with P_{μ} =-1 (μ^+ with P_{μ} =+1) gives exclusively ν_{μ} (ν_{μ})

Toshihiko Ota

in principle $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ can be measured

Theoretically

P (
$$v_e \rightarrow v_\mu$$
) - P ($\overline{v}_\mu \rightarrow \overline{v}_e$) = const

seems to resolve degeneracy, but detailed studies are needed to draw definite conclusions.

Andrea Donini

- Precision measurements
 of θ₂₃ and Δm²₂₃ need
 energy resolution and
 events above and below
 the oscillation peak
- SPL is clearly inadequate for the task. T2K-I is very good due to energy resolution and it can exclude maximal mixing for θ_{23} <41°
- The NuFactory seems extremely promising but more study is needed (a very long baseline?)

Davide Meloni

Comparison between 2 and 3 dof's analysis

- present uncertainties on <u>atmospheric parameters</u> are large enough to modify in a significant way the results of 2-par fits
- If the atmospheric parameters will be measure with the expected precision after T2K-I (Nona) the results of 2-par fits presented in the literature can be considered reliable

Phenomenology with the modified probability

Mattias Blennow

$$P_{\alpha\beta} = \sum_{i} \sum_{j} \frac{\mathbf{D}_{ij}}{\mathbf{D}_{ij}} J_{\alpha\beta}^{ij} \exp\left(-\mathrm{i}\frac{\Delta m_{ij}^{2}}{2p}L\right)$$

$$D_{ij} = \exp\left(-\frac{\alpha_{ij}}{E^{\gamma}} \frac{|\Delta m_{ij}^2|^{\xi} L^{\beta}}{E^{\gamma}}\right)$$

Introduction of an extra parameter σ_E can result in larger θ_{13}

Energy dependence may be useful to discover the new effect

- Major challenge: Decay ring/decay tunnel slope
- Open question: Simultaneous or subsequent operation of VL baseline? Feasibility study for storage ring configurations needed!

Analytical treatment of 3-flavor probability for non-constant density profile: basically expressed in terms of 2-flavor amplitudes

Akira Takamura

terms of 2-flavor amplitudes
$$S(t) = [O_{23}\Gamma_{\delta}]S'(t)[O_{23}\Gamma_{\delta}]^{\dagger}$$

$$S(t) = [S(t)_{\mu e}|^2 = A\cos\delta + B\sin\delta + C$$

★ Two small parameters

1.
$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2 \simeq 0.03$$

2.
$$s_{13} = \sin \theta_{13} \le 0.23$$

$$\Gamma_{\delta} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix}$$

$$S' \sim \lim_{s_{13}\to 0} S' + \lim_{\alpha\to 0} S' - \lim_{s_{13},\alpha\to 0} S'$$

Agreement with numerical results are good

Andrea Romanino

Predictive models

$R=\Delta m_{21}/\Delta m_{22}$

	$\sin heta_{13}$
A1	$\frac{1}{2}\tan\theta_{23}\sin2\theta_{12}\sqrt{R}$
В1	$\left rac{1}{2} an heta_{23} an 2 heta_{12} \left(R \cos 2 heta_{12} ight)^{1/2} ight $

С	$\frac{1}{2}\tan 2\theta_{12} (R\cos 2\theta_{12})^{3/4}$
D	$\frac{1}{2} \frac{\tan 2\theta_{12}}{ \tan 2\theta_{23} } (R\cos 2\theta_{12})^{1/2}$
E1	$-\frac{\tan\theta_{23}}{\cos\delta}\frac{1-\tan\theta_{12}}{1+\tan\theta_{12}}$

---Phenomenological issues----

Achievements@Nufact05

- Degeneracies can be resolved by one way or the other (super beams + v factories + beta beams + reactors) for $\sin^2 2\theta_{13} > 0.03$.
- New physics (other than oscillations) or applications of very long baseline experiments have been studied.

Problems towards Nufact06

- •Look for ways to resolve degeneracies for $\sin^2 2\theta_{13}$ <<0.03.
- Look for more interesting new physics or more applications of very long baseline experiments.