NuFact 06 Fighth International Workshop on Neutrino Factories, Superbeams and Betabeams

August 24–30, 2006 University of California, Irvine

UCIrvine

Summary of WG1 (Theoretical Part)

Convenors: P. Hernández, M. Messier, <u>O. Yasuda</u>

NuFact06, 30 August 2006 @UCI

P. Hernandez (Valencia) M. Messier (Indiana) O. Yasuda (Tokyo Metropolitan

orking Group 2: utrino Scattering Physics

S. Boyd (Warwick) M. Sakuda (Okayama) G. Zeller (Columbia) **Program Committee**

D. Casper (UC Irvine), co-chair W. Molzon (UC Irvine), co-chair

I. Blondel (Geneva) Edgecock (RAL) Geer (FNAL) Harris (FNAL) . Gomez-Cadenas (Valencia Kuno (Osaka) Marciano (BNL) Meot (Saclay) K. Mondal (Tata Institute) TMori (KEK) I. Nakamura (KEK) . Palladino (Naples) .-A. Shibata (Tokyo Tech) I. Walter (Duke) I. Zisman (LBNL)

orking Group 3: ccelerator Physics

R. Garoby and M. Meddahi (CERN) H. Kirk (BNL) C. Ohmori (KEK)

Norking Group 4 Nuon Physics

F. Gatti (Genoa) B.L. Roberts (Boston) A. Sato (Osaka)

SCHOOL OF PHYSICAL SCIENCES Department of Physics & Astronomy In conjunction with the NuFact 06 Summer School, August 15-23

Theoretical discussions on v masses

Murayama:How can we test seesaw experimentally?Ma:Lepton family symmetries for neutrino masses and mixingHarrison:Democracy in Neutrino Oscillations:
Magic/S3 Group Mixing and its Derivatives

Dark matter

Kusenko:Opening a new window for warm dark matterCirelli:Spectra of neutrinos from dark matter annihilations

New physics

Friedland: Two modes of searching for new v int. at MINOS
Biggio: Unitarity of the leptonic mixing matrix
Ota: Discovery reach for non-standard interactions in a v Factory
Okamura: Matter Effect on v osc. from violation of universality in v NC Int.

New proposals

Takamura:Maximal CP phase effect & θ_{13} screening in long baseline v exp.Zukanovich Funchal:Determining v mass hierarchy by precision
measurements in disappearance exp.

How can we test seesaw experimentally? (Murayama) A scenario to "establish" seesaw Next generation experiments discover neutrinoless double beta decay \mathbf{v} $\mathbf{0}\mathbf{v}\mathbf{\beta}\mathbf{\beta}$ leaves the possibility for *R*-parity violation Consistency between cosmology, dark matter detection, and LHC/ILC will remove the concern Dark Matter Mass from Supersymmetry (GeV 0.2 0.18 ILC Planck (~2010)

> of Dark Matter 80'0 U

ALCPG Cosmology Subgroup

High precision needed to know the scale Λ

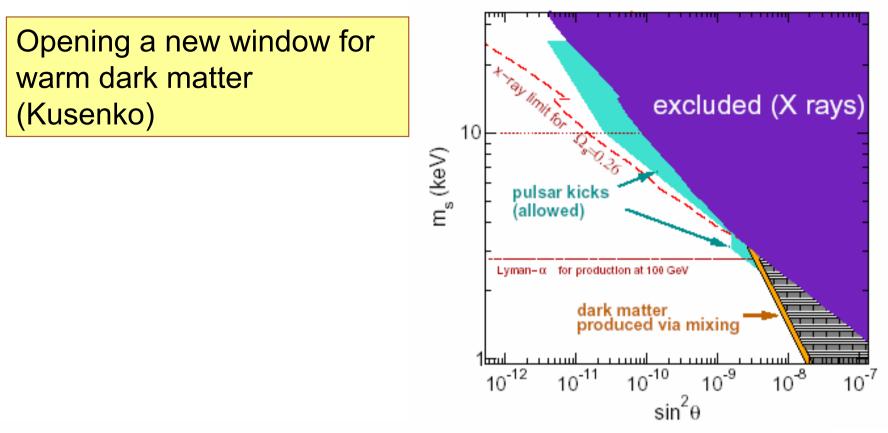
 $\Omega_M = \frac{0.756(n+1)x_f^{n+1}}{g^{1/2}\sigma_{ann}M_{Pl}^3} \frac{3s_0}{8\pi H_0^2} \approx \frac{\alpha^2/(TeV)^2}{\sigma_{ann}}$

Lepton family symmetries for neutrino masses and mixing (Ma)

$$U \simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \text{[Harrison/ Perkins/Scott (2002)]}$$

Tetrahedral Symmetry A₄

class	n	h	χ_1	$\chi_{1'}$	$\chi_{1^{\prime\prime}}$	χ_3
C_1	1	1	1	1	1	3
C_2	4	3	1	ω	ω^2	0
C_3	4	3	1	ω^2	ω	0
C_4	3	2	1	1	1	-1


With the application of the non-Abelian discrete symmetry A_4 , a plausible theoretical understanding of the HPS form of the neutrino mixing matrix has been achieved.

Democracy in Neutrino Oscillations: Magic/S3 Group Mixing and its Derivatives (Harrison)

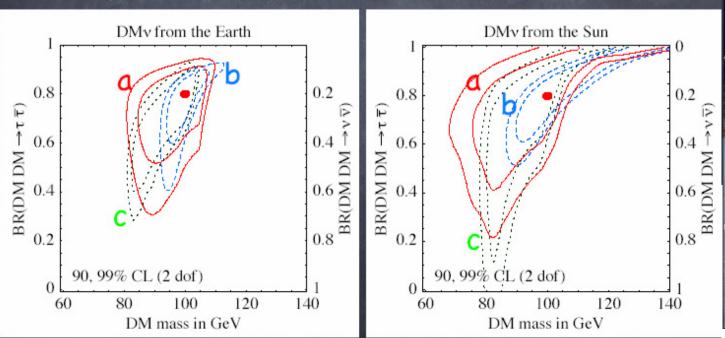
Democracy Symmetry \iff S3 Group property \iff Magic property \iff At least one trimaximally mixed mass eigenstate: $\frac{1}{\sqrt{3}}(1, 1, 1)$

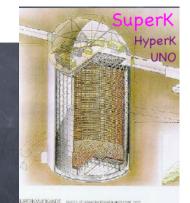
THE FOUR CONDITIONS ARE ALL EQUIVALENT!

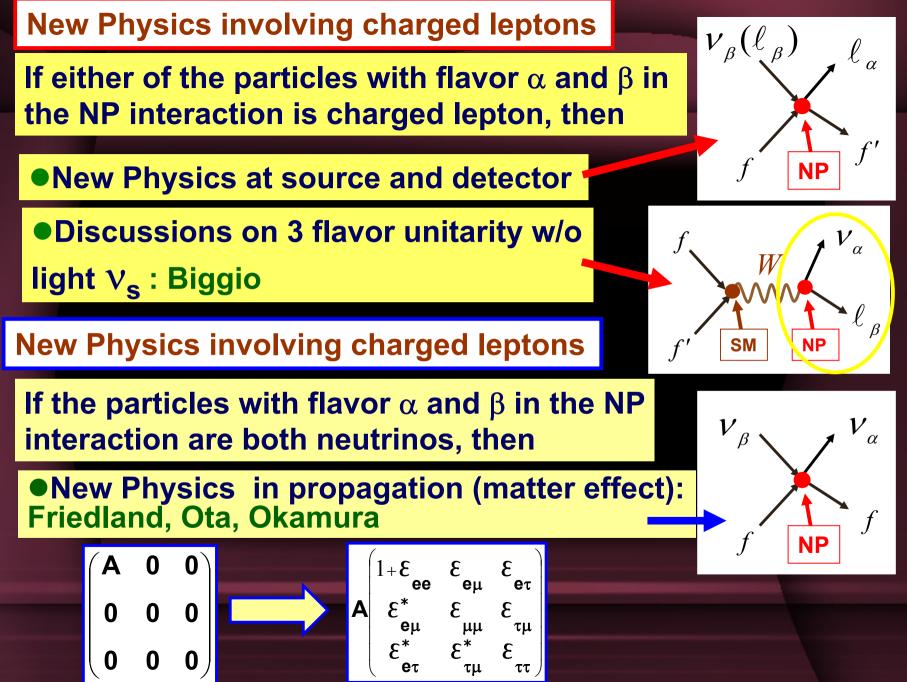
H_{ν} Constraint(s)	Extra Symms.	Given Name	U_{MNS} Constraint(s)
y = z	$\mu-\tau^*$	Tri- χ maximal, XZZ(A)	$\operatorname{Re}(U_{\mathbf{e}3})=0$
d = 0	CP	Tri- ϕ maximal, XZZ(B)	$\operatorname{Im}(U_{e^3}) = 0$
y = z and $d = 0$	$\mu-\tau^*$ and CP	Tri-bimaximal mixing	$U_{e3} = 0$
y = z = 0	$\mu-\tau^*$	Simplest mass matrix	$\operatorname{Re}(U_{\mathbf{e}3}) = 0$ and
			$\operatorname{Im}(U_{e3}) = \sqrt{\frac{2}{3}} \sqrt{\frac{\Delta m_{se}^2}{\Delta m_{ati}^2}}$
d = 0 and	CP	Friedberg-Lee model	$\operatorname{Im}(U_{e3}) = 0$ and
$f(x,y,z,a_0)=0$			$\operatorname{Re}(U_{e3}) \simeq \frac{1}{2\sqrt{2}} \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$
d = z = 0	CP	Simplest Real mass	$\operatorname{Im}(U_{\mathbf{e}3}) = 0$ and
		matrix	$\operatorname{Re}(U_{e3}) \simeq \frac{1}{\sqrt{3}} \frac{\Delta m_{sol}^2}{\Delta m_{sol}^2}$

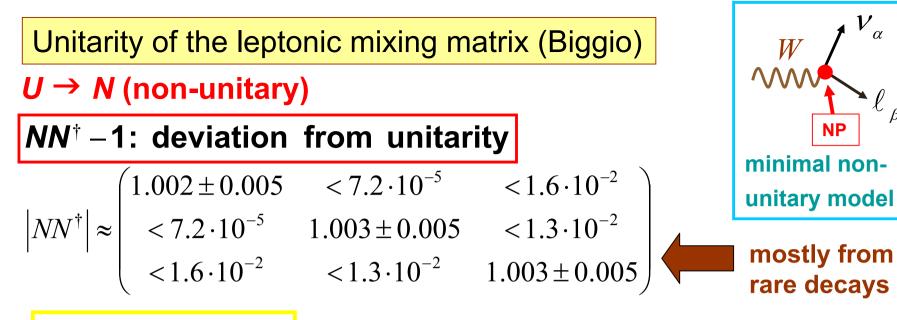
- Sterile neutrinos with mass in the keV range can be dark matter
- The same sterile neutrinos can explain the pulsar kicks and can play a role in star formation and reionization.
- Sterile dark matter can be warm or cold, depending on the production mechanism and on values of the parameters.

Spectra of neutrinos from dark matter annihilations (Cirelli)

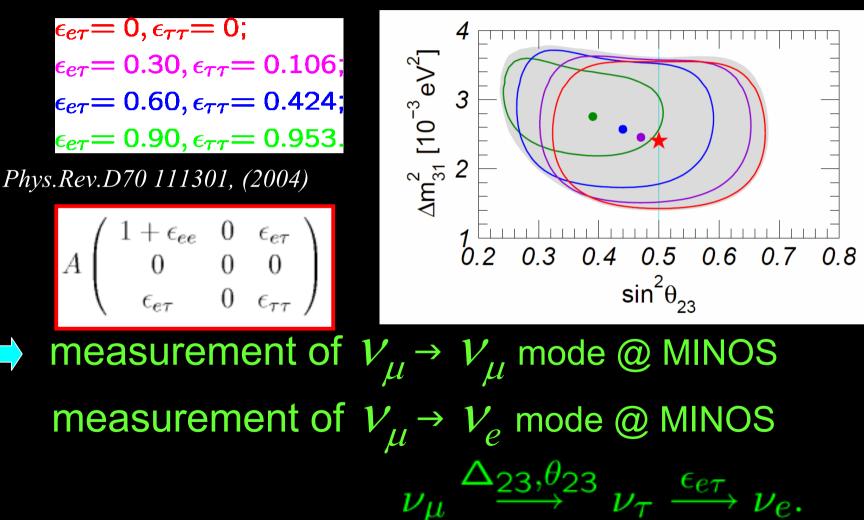

DM in Sun and in Earth $\rightarrow V$ from Sun and Earth

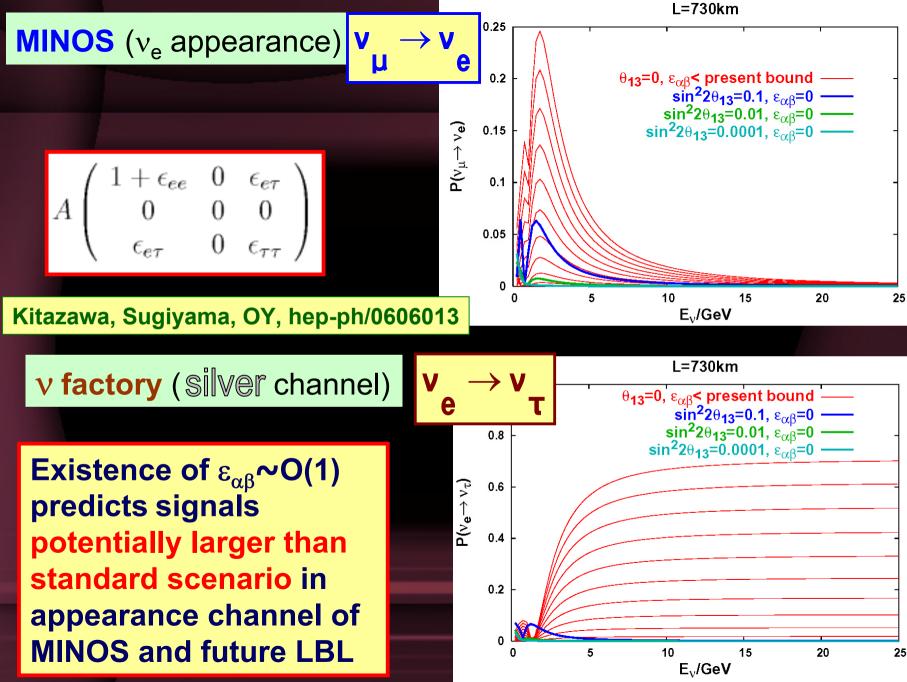

v from DM carry precious insight


 on the properties of DM.

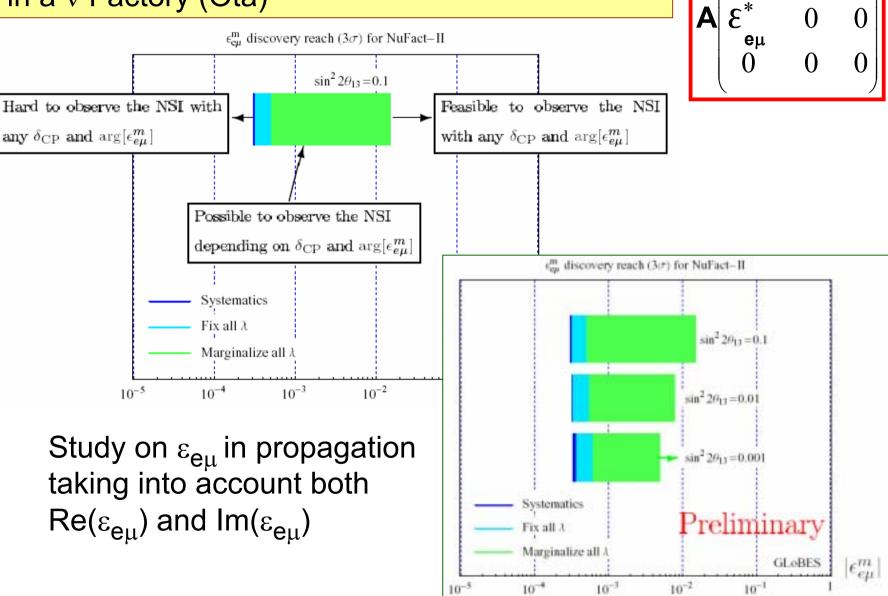

 We have the formalism to compute spectra,
 including everything.

a) 100 contained muons or
b) 1000 thru-going muons or
c) 300 shower events



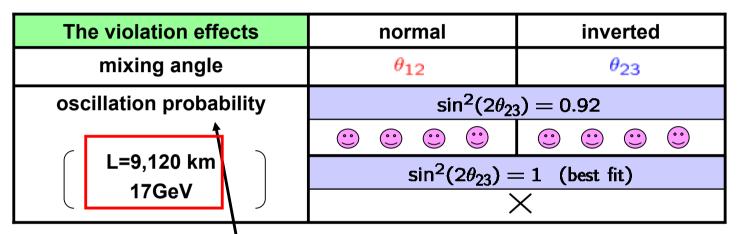

In the future...

Rare leptons decays (present)ZERO-DISTANCE EFFECT
40Kt Iron calorimeter @ NUFACT• $\mu \rightarrow e\gamma$ $(NN^{\dagger})_{e\mu} < 7.2 \cdot 10^{-5}$ • $v_e \rightarrow v_{\mu}$ $(NN^{\dagger})_{e\mu} < 2.3 \cdot 10^{-4}$ • $\tau \rightarrow e\gamma$ $(NN^{\dagger})_{e\tau} < 0.016$ • $v_e \rightarrow v_{\mu}$ $(NN^{\dagger})_{e\tau} < 2.9 \cdot 10^{-3}$ • $\tau \rightarrow \mu\gamma$ $(NN^{\dagger})_{\mu\tau} < 0.013$ • $v_{\mu} \rightarrow v_{\tau}$ $(NN^{\dagger})_{\mu\tau} < 2.6 \cdot 10^{-3}$


Two modes of searching for new v int. at MINOS (Friedland)

* The best-fit region shifts to smaller θ and larger Δm^2 :

Discovery Reach for Non-Standard Interactions in a v Factory (Ota)

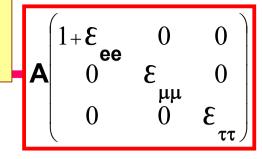


3

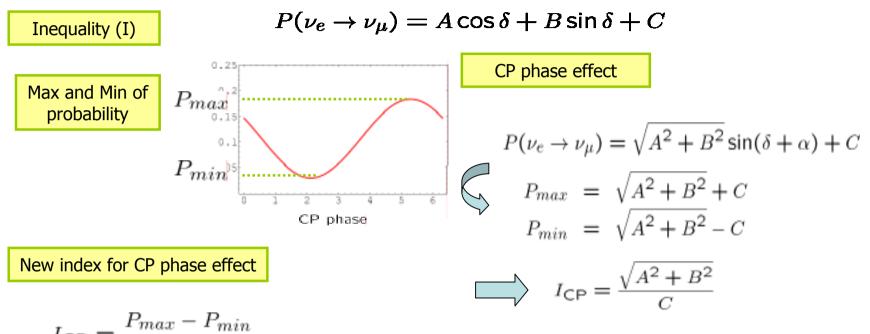
eμ

Matter Effect on ν oscillation from violation of universality in ν NC Int. (Okamura)

We investigated the matter effect on neutrino oscillation from universality violation in neutral current interactions.



>This result is highly sensitive to the value of $sin^2(2\theta_{23})$


Fermilab ⇒ Hyper-Kamiokande

>If $sin^2(2\theta_{23})$ is **NOT** too close to 1,

we may be able to either observe this effect, or impose a much tighter constraint on universality violation than that from CHARM and CHARMII.

Maximal CP phase effect & θ_{13} screening in long baseline v exp. (Takamura)

 $I_{\mathsf{CP}} = \frac{P_{max} - P_{min}}{P_{max} + P_{min}}$

Applications (1) Easy u

(1) Easy understanding of magic baseline phenomenon

(2) Easy understanding of $P_{\mu e} \sim 0$ for $\delta = 135^{\circ}$ at T2K

Determining n mass hierarchy by precision measurements in disappearance exp. (Zukanovich Funchal)

- The sign of |Δm²₃₁| − |Δm²₃₂| can be restated in a transparent way by introducing the effective mass squared differences Δm²(ee) and Δm²(μμ)
- The mass hierarchy is normal (inverted) if $|\Delta m^2(ee)| - |\Delta m^2(\mu\mu)|$ is positive (negative) $1 - P(\nu_{\alpha} \to \nu_{\alpha}) \equiv \sin^2 2\theta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{\alpha\alpha}^2}{4E}L\right)$
- By comparing Δm²(ee) and Δm²(µµ) measured in ν_e and ν_µ disappearance modes, in principle, it is possible to determine the neutrino mass hierarchy at > 95% CL for

 $\Delta m^2(\mu\mu)$

T2K-I:
$$rac{\delta |\Delta m^2(\mu\mu)|}{|\Delta m^2(\mu\mu)|} \sim 2\%$$

 $\Delta m^2(ee)$

$${}^{3}\text{H} \rightarrow \bar{\nu}_{e} + {}^{3}\text{He} + \text{ orbital } e^{-}$$

Raghavan hep-ph/0511191, hep-ph/061079

(Mössbauer Effect)

$$\delta rac{\delta |\Delta m^2(ext{ee})|}{|\Delta m^2(ext{ee})|} = 0.6 imes (0.05/\sin^2 2 heta_{13})\%$$

 $+ O((\Delta m_{21}^2 L/4E))$

Future problems toward nufact07

After the 1 year work of ISS, there are still a lot of problems to be worked out:

• Quantitative discussions on measuring θ_{13} and effects of new physics and/or non-unitarity (correlations of errors, degeneracies, dependence on the beam energy and the baseline, etc.) Distinction between the new physics effects (e.g., 4-fermi interactions vs. non-unitarity from modification in the kinetic term) Predictions of various models on deviation from SM+massive v

•many more

Department of Physics & Astronomy

August 15-23

M. Sakuda (Okayama G. Zeller (Columbia) B.L. Roberts (Boston A. Sato (Osaka)