Summary of WG1 (Theoretical Part)

Convenors: P. Hernández, C. Walter, O. Yasuda

NuFact07, 11 August 2007 @Okayama Univ.

Phenomenology with certain detectors

Terranova:v hierarchy from CP-blind observables w/ high density mag. det.Majumdar:Tri-bimaximal mixing

Theoretical discussions on $\boldsymbol{\nu}$ masses

Farzan:CP violation: Zero, maximal or between the two extremesWinter:extended quark-lepton complementarity

Sterile v scenario

Schwetz-Mangold: Sterile v oscillations after first MiniBooNE results

Karagiorgi: Sterile v Oscillations and CP-Violation Implications for MiniBooNE

New physics/Non-Standard Interactions

Agarwalla:New Physics searches with Beta BeamsOhlsson:Effects of NSI in MINOSSugiyama:More on NSI at MINOSOta:NSI in reactor and superbeam experiments

Unitarity

Xing:	Leptonic unitarity triangle in matter
Kimura:	CP Phase in $v_{\mu} \rightarrow v_{\mu}$
_opez-Pavon:	CP-violation from non-unitary leptonic mixing

Terranova Combination of atmospheric + Beta Beam w/ charge ID by a magnetized iron detector

$$E_R = \pm \Delta m_{31}^2 L_{magic} \cos 2\theta_{13}/4\pi$$
$$\Gamma_R = |\Delta m_{31}^2| L_{magic} \sin 2\theta_{13}/2\pi$$

resonance occurs only for v (NH) or only for v-bar (IH)

→ mass hierarchy can be determined $\stackrel{\infty}{\oplus}$ at 90% CL for θ_{13} > 4° (normal hierarchy negative δ).

Some physics studies have been made for possible neutrino beams from Neutrino Factory with ICAL at INO as the End-detector. Two baseline lengths are considered Possible signals for deviation from tri-bimaximality are studied $\sin^2\theta_{13}$ reach ~ 0.001 ($\theta_{13} < 2^0$) at INO is obtained for $E_{\mu} \sim 105$ GeV. The effect of CP-violation and of mass hierarchy on $\sin^2\theta_{13}$ reach is also studied.

Farzan Principles/Symmetries to predict CP phases

Zero Dirac phase

- No CP-violation \equiv zero Dirac as well as Majorana phases; Rephasing Invariants;

 $-\delta = 0$ but $\phi_1, \phi_2 \neq 0$: Conditions on m_{ν} ;

• Maximal δ ; $\mu - \tau$ reflection symmetry;

$$\nu_e \to \xi_1 \nu_e^c, \quad \nu_\mu \to \xi_2 \nu_\tau^c, \quad \nu_\tau \to \xi_3 \nu_\mu^c,$$

• Arbitrary δ between zero and maximal value: Generalized $\mu - \tau$ reflection symmetry.

 $\nu_{\alpha} \rightarrow \sum_{\beta} P_{\alpha\beta}(\alpha, \phi) \nu_{\beta}^{c} \quad P(\alpha, \phi) = U_{23}(\alpha) \operatorname{Diag}[1, 1, e^{i\phi}] U_{23}^{T}(\alpha)$

Relations between the phases of the CKM and PMNS matrix

under certain \rightarrow conditions

$$|\sin\theta_{13}| \simeq \frac{\sin\theta_C}{\sqrt{2}} \left|\sin\delta \approx \frac{|V_{ub}|}{\sin\theta_C}\sin\delta_{CKM}\right|$$

Schwetz-Mangold

$$\Delta m_{41}^2 = 0.89 \text{ eV}^2$$

$$\Delta m_{51}^2 = 6.49 \text{ eV}^2$$

$$\chi_{\min}^2 = 94.5/(107 - 7)$$

$$\phi_{54}^{best} = 1.64 \pi$$

Karagiorgi

10

(3+2) schemes

- offer the possiblity of CP violation to reconcile LSND and MiniBooNE,
- but there is tension between appearance and disappearance data (3σ , 4σ for MB300)

The two works basically agree, but some details (comparison between CPC & CPV, inclusion of low energy data, etc.) have to be worked out in future.

Agarwalla

$\mathcal{L}_{\lambda'} = \lambda'_{ijk} \left[\tilde{d}^j_L \, \bar{d}^k_R \nu^i_L + (\tilde{d}^k_R)^* (\bar{\nu}^i_L)^c d^j_L \right] + h.c.$

- We consider a β-beam experiment with CERN-INO baseline.
 R interactions may obstruct a clean extraction of the mixing angle θ₁₃ or determination of the mass hierarchy unless the bounds on the λ' couplings are tightened
- one might see a clean signal of new physics and put tighter constraints on the λ' couplings

Ohlsson

- Allowed region in the $\sin^2(2\theta_{23})$ - Δm_{31}^2 plane is extended to smaller values of $\sin^2(2\theta_{23})$ and larger values of Δm_{31}^2 if NSI effects are present
- Possible bounds on the NSI parameter $\varepsilon_{e\tau}$ depending on the value of θ_{13}
- Better upper bound on $\sin^2(2\theta_{13})$ than CHOOZ only for small values of $|\varepsilon_{e\tau}|$

$\sin^2(2\theta_{13}) = 0.07$	$-2.16 < \varepsilon_{e\tau} < -1.31$	90 % C.L.
	$-0.60 < \varepsilon_{e\tau} < 0.41$	
$\sin^2(2\theta_{13}) = 0$	$-0.69 < \varepsilon_{e\tau} < 0.8$	90 % C.L.

0.1

 $\sin^2(2\theta_{13})$

0.15

0.2

0.05

Discovery reach : depends on arg[ϵ **]**

Xing

Testing the unitarity of lepton flavor mixing is an important task in the era of precision measurements. A way to explore new physics.

In realistic seesaw models, the 3×3 MNS matrix is non-unitary.

Natural seesaw: unitarity violation $\sim < 10^{-24}$

Unnatural seesaw: unitarity violation $\sim < 10^{-2}$

The existence of sterile neutrinos would violate the unitarity of the
 3 × 3 MNS matrix (at a detectable level?)

Future problems toward nufact08

After the ISS report is finished, there are still a lot of problems ahead of us:

- Predictions of various schemes on deviation
- from SM+massive ν
- Quantitative discussions on determination of small quantities such as θ_{13} , $\pi/4-\theta_{23}$, and parameters of new physics and/or non-unitarity (correlations of errors, degeneracies, dependence on the beam energy and the baseline, etc.)
- Test of leptonic unitarity
- Other strong physics case for future LBL
- Many more