Study of v oscillation ---present and future---

> Osamu Yasuda Tokyo Metropolitan University

> > 07-31-2006 at ppp2006

Introduction & v oscillation Future long baseline experiments Summary

1. Introduction & v oscillation

(i) 2 flavor oscillations in vacuum

(ii) 2 flavor oscillations in matter (MSW effect)

$$\mathcal{L}_{eff} = \sqrt{2} G_F \, \bar{\nu}_e \gamma^\mu \nu_e \, \bar{e} \gamma_\mu e \quad (\langle \bar{e} \gamma_\mu e \rangle \to \delta_{\mu 0} N_e(x))$$

= $A \, \bar{\nu}_e \gamma^0 \nu_e \qquad (A \equiv \sqrt{2} G_F N_e(x))$

$$\begin{split} i\frac{d}{dx} \left(\begin{array}{c} \nu_{e}(x)\\ \nu_{\mu}(x) \end{array}\right) &= \left[U \left(\begin{array}{cc} E_{1} & 0\\ 0 & E_{2} \end{array}\right) U^{-1} + \left(\begin{array}{c} A & 0\\ 0 & 0 \end{array}\right) \right] \left(\begin{array}{c} \nu_{e}(x)\\ \nu_{\mu}(x) \end{array}\right) \\ &= \tilde{U}(x) \left(\begin{array}{c} \tilde{E}_{1} & 0\\ 0 & \tilde{E}_{2} \end{array}\right) \tilde{U}^{-1}(x) \left(\begin{array}{c} \nu_{e}(x)\\ \nu_{\mu}(x) \end{array}\right) \end{split}$$

$$\begin{array}{c} Ve, V\mu, Ve \\ \uparrow Z\mu \\ \uparrow Z\mu \\ Ve, V\mu, Ve \\ NC \\ \end{array} \begin{array}{c} e \\ Ve \\ Ve \\ NC \\ \end{array} \begin{array}{c} e \\ Ve \\ CC \\ \end{array}$$

If N_e=const.

$$P(\nu_{e} \rightarrow \nu_{\mu}; L) = \sin^{2} 2\tilde{\theta} \sin^{2} \left(\frac{\Delta \tilde{E}L}{2}\right)$$

$$\tan 2\tilde{\theta} \equiv \frac{\Delta E \sin 2\theta}{\Delta E \cos 2\theta - A}$$

$$\Delta \tilde{E} = \left[(\Delta E \cos 2\theta - A)^{2} + (\Delta E \sin 2\theta)^{2}\right]^{1/2}$$
even if θ in vacuum is
small $\tilde{\theta}$ in matter could
be large (MSW effect)

mixing matrix of 3 flavor ν oscillation

$$N_v = 3 : v_{atm} + v_{solar} + v_{reactor}$$

Mixing matrix

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu1} & \mathbf{U}_{\mu2} & \mathbf{U}_{\mu3} \\ \mathbf{U}_{\tau1} & \mathbf{U}_{\tau2} & \mathbf{U}_{\tau3} \end{pmatrix} \cong \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & \mathbf{\varepsilon} \\ -\mathbf{S}_{12}/\sqrt{2} & \mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \\ \mathbf{S}_{12}/\sqrt{2} & -\mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Mixing angles & mass squared differences

$$\theta_{12} \cong \pi/6, \quad \theta_{23} \cong \pi/4$$
 $| \, \theta_{13} \, | \cong | \, \epsilon \, | \le \sqrt{0.15}/2$
 $\Delta m_{21}^2 \cong 8 \times 10^{-5} \, eV^2$
 $| \, \Delta m_{32}^2 \, | \cong 2.5 \times 10^{-3} \, eV^2$

θ₁₃ :only upper
 bound is known
 δ :undetermined

Both mass
 hierarchies
 are allowed

normal

hierarchy

 $\Delta m_{32}^2 > 0$

inverted

hierarchy

 $\Delta m_{22}^2 < 0$

(iv) Scenario other than 3 flavor ν oscillation

(3+2)-scenario with 2 kind of sterile neutrinos used to be the only viable scenario, but now it is under tension.

5

4

3

2

LSND

LSND

atm

solar

Sorel: ISS 2nd plenary ('06) @ KEK http://www-kuno.phys.sci.osakau.ac.jp/~yoshida/ISS/presentations/23Phys IssThreePI

usTwo_sorel.pdf

Until LSND is confirmed by MiniBOONE, sterile neutrino scenarios don't seem to have strong motivations. In most of the talk, $N_v=3$ is assumed.

(v) Theoretical prediction for θ_{13}

Mu-Chun Chen

Models of Neutrino Mass and Their Predictions

All kinds of values of θ_{13} are predicted by theory, and it doesn't look like illuminating.

Theory is not yet developed enough to say something from mass & mixing of quarks & leptons.

Reference hep-ex/040204	$\sin \theta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8 \cdot 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	0.01 0.06	$4 \cdot 10^{-4}$ 0.01
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	0.08 0.4	0.03 0.5
Ohlsson, Seidl [56]	$0.07 \dots 0.14$	0.02 0.08
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	0.08 0.20	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	0.01 0.05	$4 \cdot 10^{-4} \dots 0.01$
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6\cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement		
Mohapatra, Parida, Rajasekaran [67]	0.08 0.1	0.03 0.04

(vi) oscillation vs non-oscillation experiments

Majorana

phases

neutrino oscillation

neutrinoless double beta decay

$$\mathbf{m}_{ee} = |\Sigma(\mathbf{U}_{ej})^2 \mathbf{m}_j \exp(i\phi_j)|$$

direct measurement

$$\mathbf{m}_{\beta} = \left(\Sigma |\mathbf{U}_{ej}|^2 \mathbf{m}_{j}^2 \right)^{1/2}$$

cosmology

neutrinoless double beta decay

$$m_{ee} = |\Sigma(U_{ej})^2 m_j exp(i\phi_j)|$$

Affirmative result claimed by Klapdor-Kleingrothaus et al: Mod. Phys. Lett. A16, 2409 ('01)

"ββ community: very careful reaction. In any case new experiments are needed (and first of all with ⁷⁶Ge). " BARABASH@neutrino2006

Strumia-Vissani: hep-ph/0606054

nucleus	Present	; bound on $ m_{ee} /h$ in e	V	Sensi	tivity to $ m_{ee} /h$ in meV
⁷⁶ Ge	0.35	HM		25	GERDA
76 Ge	0.38	IGEX		25	MAJORANA
¹³⁰ Te	0.42	Cuoricino		33	CUORE
¹⁰⁰ Mo	1.7	NEMO3		52	EXO
¹³⁶ Xe	2.2	DAMA/LXe		55	SuperNEMO

direct measurement

$$\mathbf{m}_{\beta} = (\Sigma | \mathbf{U}_{ej} |^2 \mathbf{m}_{j}^2)^{1/2}$$

cosmology

 Σm_i

Strumia-Vissani: hep-ph/0606054

2. Future LBL (Long BaseLine experiments)

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu1} & \mu^2 & \mu^3 \\ \mathbf{U}_{\tau1} & \mathbf{U}_{\tau2} & \mathbf{U}_{\tau3} \end{pmatrix} \cong \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & \mathbf{\epsilon} \\ -\mathbf{S}_{12}/\sqrt{2} & \mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \\ \mathbf{S}_{12}/\sqrt{2} & -\mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

θ₁₃ :only upper bound is known
 δ :undetermined

Next task is to measure θ_{13} , sign(Δm_{31}^2) and δ .

Most realistic way to measure θ_{13} , sign(Δm_{31}^2) and δ is long base line experiments by accelerators or reactors.

Matter effect contributes in LBL in most cases

• Measurement of θ_{13} and sign (Δm^2_{31}) by LBL

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta E_{31}}{\Delta \tilde{E}_{31}^{(-)}}\right)^{2} \sin^{2} \left(\frac{\Delta \tilde{E}_{31}^{(-)}L}{2}\right) \\ P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) &= s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta E_{31}}{\Delta \tilde{E}_{31}^{(+)}}\right)^{2} \sin^{2} \left(\frac{\Delta \tilde{E}_{31}^{(+)}L}{2}\right) \\ &\wedge \tilde{\nu}^{(\pm)} &= \sqrt{(\Delta E_{-} \cos 2\theta_{-} + \Delta)^{2} + (\Delta E_{-} \sin 2\theta_{-})} \end{split}$$

to leading order in $\Delta m_{21}^2 / |\Delta m_{32}^2|$

$$\Delta \tilde{E}_{31}^{(\pm)} \equiv \sqrt{(\Delta E_{31} \cos 2\theta_{13} \pm A)^2 + (\Delta E_{31} \sin 2\theta_{13})^2}$$

For large L, difference between P($\mu \rightarrow e$) and P($\mu \rightarrow e$) and P($\mu \rightarrow e$) due to matter effect becomes significant: AL ~ L/(200km)

• Measurement of θ_{13} by reactors

$$P(\bar{\nu}_e \to \bar{\nu}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta E_{31}L}{2}\right)$$

E ~ 4MeV, L ~ 2km, AL<<1 (no matter effect)

All the contributions of δ appear with the factor of $\sin\theta_{13}$ It is very difficult to measure δ

$$\textbf{U} = \begin{pmatrix} \textbf{1} & \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{C}_{23} & \textbf{S}_{23} \\ \textbf{0} & -\textbf{S}_{23} & \textbf{C}_{23} \end{pmatrix} \begin{pmatrix} \textbf{C}_{13} & \textbf{0} & \textbf{S}_{13} \textbf{e}^{-i} \\ \textbf{0} & \textbf{1} & \textbf{0} \\ -\textbf{S}_{13} \textbf{e}^{i} & \textbf{0} & \textbf{C}_{13} \end{pmatrix} \begin{pmatrix} \textbf{C}_{12} & \textbf{S}_{12} & \textbf{0} \\ -\textbf{S}_{12} & \textbf{C}_{12} & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{1} \end{pmatrix}$$

Theoretical argument on measurement of $\,\delta\,$

in vacuum

$$\begin{array}{ll} P(\nu_{\alpha} \rightarrow \nu_{\beta}) \\ P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \end{array} \bigg\} &= \delta_{\alpha\beta} - 4 \sum_{j < k} \operatorname{Re}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin^{2}(\Delta E_{jk} L/2) \\ &\pm 2 \sum_{j < k} \operatorname{Im}(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k}) \sin(\Delta E_{jk} L), \end{array}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$4 \int [\sin(\Delta E_{12}L) + \sin(\Delta E_{23}L) + \sin(\Delta E_{31}L)]$$

 $J \equiv \operatorname{Im} \left(U_{\alpha 1} U_{\beta 1}^* U_{\alpha 2}^* U_{\beta 2} \right) \propto \sin \delta$

Jarlskog factor

CP odd term

in matter

$$\left\{ \begin{array}{ll} P(\nu_{\alpha} \rightarrow \nu_{\beta}) \\ P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \end{array} \right\} = \delta_{\alpha\beta} - 4 \sum_{j < k} \operatorname{Re}(\tilde{U}_{\alpha j}^{\ (\mp)} \tilde{U}_{\beta j}^{\ (\mp)} * \tilde{U}_{\alpha k}^{\ (\mp)} * \tilde{U}_{\beta k}^{\ (\mp)}) \sin^{2}(\Delta \tilde{E}_{j k}^{\ (\mp)} L/2) \\ + 2 \sum_{j < k} \operatorname{Im}(\tilde{U}_{\alpha j}^{\ (\mp)} \tilde{U}_{\beta j}^{\ (\mp)} * \tilde{U}_{\alpha k}^{\ (\mp)} * \tilde{U}_{\beta k}^{\ (\mp)}) \sin(\Delta \tilde{E}_{j k}^{\ (\mp)} L),$$

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\nu_{\beta} \to \nu_{\alpha})$$

= $4 \left(\tilde{J} \left[\sin \left(\Delta \tilde{E}_{12}^{(-)} L \right) + \sin \left(\Delta \tilde{E}_{23}^{(-)} L \right) + \sin \left(\Delta \tilde{E}_{31}^{(-)} L \right) \right]$ **T odd term**

 $\tilde{J} \equiv \operatorname{Im}\left(\tilde{U}_{\alpha 1}\tilde{U}_{\beta 1}^{*}\tilde{U}_{\alpha 2}^{*}\tilde{U}_{\beta 2}\right) \propto \sin\delta$

modified Jarlskog factor

Practical measurement of $\,\delta\,$

Measure P($\mu \rightarrow e$) and P($\mu \rightarrow e$), and then:

Assume three flavor mixing and compare the data with prediction for $\delta=0$:

$$\Delta \chi^2 = \sum_j \frac{[N_j(\delta) - N_j(\delta = 0)]^2}{\sigma_j^2}$$

To reject a hypothesis " δ =0" at 3σ :

 $\Delta \chi^2 > \Delta \chi^2 (3\sigma)$

We can estimate significance to reject " δ =0" at 3σ

Two points to be taken into account for precise measurements:

(1) Correlation of errors

(2) Parameter degeneracy

(1) Correlation of errors

If uncertainties of other parameters (such as density of matter ρ A) mimic the dependence on δ , then we cannot determine δ (correlation of errors)

We have take into account the uncertainties of other parameters to reject " δ =0"

 $\Delta \chi^2 = \sum_j rac{[N_j(\delta) - N_j(\delta=0)]^2}{\sigma_i^2}$

 $\Delta \chi$

$$e^{2} = \min_{\overline{\theta_{k\ell}}, \overline{\Delta m_{k\ell}^{2}}, \overline{A}} \sum_{j} \frac{\left[N_{j}(\delta; \overline{\theta_{k\ell}}, \overline{\Delta m_{k\ell}^{2}}, \overline{A}) - N_{j}(\delta = 0; \theta_{k\ell}, \Delta m_{k\ell}^{2}, \overline{A}) - \sigma_{j}^{2} \right]}{\sigma_{j}^{2}}$$

(2) Parameter degeneracy

Even if we know $P(\mu \rightarrow e)$ and $P(\mu \rightarrow e)$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , sign(Δm_{31}^2) and δ is difficult because of the 8-fold parameter degeneracy. $\Delta m_{31}^2 > 0 \ \Delta m_{31}^2 < 0$

 $\theta_{23} <$

0.008

0.004

 $\sin^2 2\theta_{13}$

0.006

 $\theta_{23} > 45^{\circ}$

0.01

 $\theta_{23} \leftrightarrow \pi/2 - \theta_{23}$ degeneracy

If parameter degeneracy exists, then the errors of the parameters become unnecessarily large.

Resolution of parameter degeneracy is important.

To solve parameter degeneracy, combine the following:

(A) LBL measurement at $| m_{31}^2 | L/4E = /2$ hyperbola shrinks to a straight line (B) reactor measurement of $\theta_{13} = -e$ depends only on θ_{13} (C) LBL measurement of $\mu \rightarrow e$ (or $e \rightarrow \mu$) with different L/E

(D) measurement of $e \rightarrow$

To perform precise measurements of θ_{13} and δ , one has to have a lot of numbers of events to improve statistical errors.

We need high intensity beam

Candidates for high intensity beam in the future:

(conventional) superbeam

neutrino factory

 $\boldsymbol{\mu}$ in a storage ring

beta beam

RI in a storage ring

$$\begin{array}{c} & \stackrel{+}{\longrightarrow} \mu \stackrel{+}{\longrightarrow} \mu \stackrel{+}{\longrightarrow} \mu \stackrel{+}{\longrightarrow} \mu \stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}$$

Future LBL exp. (under construction / proposed)

superbeam

T2K phase I (2009-, 0.75MW, E~1GeV, L=295km)

T2K phase II (4MW+HK, E~1GeV, L=295km)

T2KK (JAERI→HK&Korea, E~1GeV, L=295km&1000km)

NOvA (FNAL \rightarrow Ash River (MN), E~2GeV, L=810km)

VBLNO (BNL→DUSEL*, E~2GeV, L>2500km)

(*Deep Underground Science and Engineering Laboratory: Homestake(SD), Icicle Creek(WA), San Jacinto(CA), Soudan(MN), Kimballton(VA), Henderson(CO))

SPL (CERN→Frejus, E~0.25GeV, L=130km) neutrino factory (E_v<50GeV, L~3000km) beta beam (E_v=0.5-1.5GeV, L~130km)

Proposed reactor experiments (E~4MeV, L~2km)

Double CHOOZ (France), Kaska (Kashiwazaki-Kariwa), Braidwood (US), Daya Bay (China), Reno (Korea), Angra (Brazil)

sensitivity to the CP phase δ of future experiments

Huber-Lindner-Winter JHEP 0505:020,2005

T2KK vs. NOvA; CP

Minakata@2nd T2KK workshop ('06)

J.E. Campagne, M. Maltoni, M. Mezzetto, T. Schwetz, hep-ph/0603172

Expected sensitivity to $\sin^2 2 \theta_{13}$ of ongoing and near future experiments

MINOS(2005-): FNAL \rightarrow Soudan, E_v~4GeV, L=735km OPERA(CNGS)(2006-): CERN \rightarrow Gran Sasso, E_v~17GeV, L=732km

"Physics at a Fermilab proton driver", hep-ex/0509019

Jacobs: P5 Meeting@SLAC(April, '06)

v Roadmap (A. Cervera, Geneva Univ.)

1st step: transition era

Ongoing: 2005-2010

- Improve the precision on the atm. parameters looking at ν_{μ} disappearance
- Confirm (atm. osc) = ($v_{\mu} v_{\tau}$) and first look at $v_{\mu} v_{e}$

- Existing facilities could reach it
- ... but with very small sensitivity to δ_{CP} and mass hierarchy

 No access for ongoing experiments at that time

Cleaner and more intense beams + larger detectors

K.Long

NF roadmap: key decision points

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Neutrino Factory roadmap															
International scoping study (ISS)						III				LIII					
NuFact06	•														
International design study (IDS)							• •	• • • •	••						
Neutrino Factory consortium formation															
Build															
Physics															
Key decision points															
Seek to instigate IDS	•														
Seek to host FP7 DS and/or I3 bids	•														
IDS mandate at Nufact06	•														
Submit FP7 bids		•													
Form Neutrino Factory consorium						•									
Initiate build phase							•								

Ambitious, science-driven schedule

- Issue now is to establish vibrant R&D programme
- Vision for International Design Study phase:
 - International collaboration; coordinated effort:
 - Concept development full system
 - Accelerator R&D
 - Detector R&D

Nagashima: ISS 3rd plenary ('06) @ RAL

International scoping study of a future Neutrino Factory and super-beam facility

Mandate

The international scoping study of a future accelerator neutrino complex will be carried by the international community between NuFact05, Frascati, 21-26 June 2005, and NuFact06. The plan for the scoping study is summarised below. The physics case for the facility will be evaluated and options for the accelerator complex and neutrino detection systems will be studied. The principal objective of the study will be to lay the foundations for a full conceptual-design study of the facility. The plan for the scoping study has been prepared in collaboration by the international community that wishes to carry it out; the ECFA/BENE network in Europe, the Japanese NuFact-J collaboration, the US Muon Collider and Neutrino Factory Collaboration and the UK Neutrino Factory collaboration. CCLRC's Rutherford Appleton Laboratory will be the 'host laboratory' for the study.

Sept. 2005 ~ Sept. 2006 http://www.hep.ph.ic.ac.uk/iss/

Evaluate the physics case for the facility Study options for the accelerator complex and neutrino detection systems

Physics GroupDetector Group

Accelerator Group

Theory Subgroup
 Phenomenology Subgroup
 Experiment Subgroup

 Theory Subgroup Model building for neutrino mass & mixing
 Phenomenology Subgroup Deviation from SM with massive neutrinos
 Experiment Subgroup Estimation of sensitivity and resolution of degeneracy for ν factories and β beams

Deviation from SM which has been discussed at Phenomenology Subgroup

 Check of unitarity (like at a B factory)
 Study of new physics (NP) (exotic interactions)

$$\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \, \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \, \bar{f} \gamma_{\mu} f'$$

(1) Check of unitarity

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, hep-ph/0607020

• Assume new physics at $\Lambda >> \nu$. In the flavor basis, generically

$$L = i \sum_{\alpha,\beta} \overline{\nu_{\alpha}} \, \mathcal{A} K_{\alpha\beta} \nu_{\beta} - \sum_{\alpha,\beta} \overline{\nu_{\alpha}} M_{\alpha\beta} \nu_{\beta}$$

Lopez: ISS 3rd plenary ('06) @ RAL

$$-\sum_{\alpha} \frac{g}{\sqrt{2}} \Big(W^{+}_{\mu} \overline{l_{\alpha}} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c \Big) - \sum_{\alpha} \frac{g}{c_{w}} \Big(Z_{\mu} \overline{\nu_{\alpha}} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c \Big) + \dots$$

$$\mathbf{L} = \sum_{i} \overline{\nu_{i}} (i \not\partial - m_{i}) \nu_{i} - \sum_{\alpha, i} \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} \overline{l_{a}} \gamma^{\mu} P_{L} N_{\alpha i} \nu_{i} + h.c \right)$$

$$-\sum_{i} \frac{g}{c_{w}} \left(Z_{\mu} \overline{\nu_{i}} \gamma^{\mu} P_{L} \left(N^{\dagger} N \right)_{ij} \nu_{j} + h.c \right) + \dots$$

 $\downarrow \langle v_i | v_j \rangle = \delta_{ij} \qquad NN^+ \neq 1 \qquad \left\langle V_\beta | V_\alpha \right\rangle \neq \delta_{\alpha\beta}$

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, hep-ph/0607020

Mixing Matrix from oscillations and rare decays (3 σ) $W \rightarrow l_{\alpha}v \qquad Z \rightarrow \text{invisible} \qquad \text{rare lepton decays}$ universality tests

With unitarity
[M. C. Gonzalez Garcia
$$|U|^2 = \begin{pmatrix} 0.62 - 0.77 & 0.22 - 0.37 & < 0.04 \\ 0.04 - 0.27 & 0.18 - 0.53 & 0.34 - 0.67 \\ 0.04 - 0.28 & 0.19 - 0.55 & 0.31 - 0.66 \end{pmatrix}$$

Without unitarity
$$|N|^2 = \begin{pmatrix} 0.57 - 0.79 & 0.21 - 0.43 & < 0.04 \\ 0.04 - 0.30 & 0.17 - 0.53 & 0.33 - 0.67 \\ 0.01 - 0.40 & 0.09 - 0.60 & 0.26 - 0.68 \end{pmatrix}$$

Lopez: ISS 3rd plenary ('06) @ RAL Preliminary

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, hep-ph/0607020

The L=0 effect
$$P(v_{\alpha} \rightarrow v_{\beta}, L = 0) = \left| \sum_{i} N_{\alpha i} N_{\beta i}^{*} \right|^{2}$$

$$\begin{aligned} \frac{\text{KARMEN}}{v_{\mu} \rightarrow v_{e}} & \mu \quad e \gamma \\ \left| \sum_{i} N_{\mu i} N_{ei}^{*} \right| < 0.05 & \left| \sum_{i} N_{\mu i} N_{ei}^{*} \right| < 7.2 \cdot 10^{-5} \end{aligned}$$

 $\left|\sum_{i} N_{ei} N_{\tau i}^{*}\right| < 0.016$

 $\left|\sum N_{\mu i} N_{\tau i}^{*}\right| < 0.013$

μγ

 $\tau \quad e \gamma \quad \tau$

UTURE@NF 40kt Iron cal

 γ

 $V_e \rightarrow V_\mu$ $\left|\sum_{\cdot} N_{\mu i} N_{ei}^{*}\right| < 2.3 \cdot 10^{-4}$

4kt OPERA (100 m) $V_e \rightarrow V_{\tau} \quad V_{\mu} \rightarrow V_{\tau}$

$$\left|\sum_{i} N_{ei} N_{\tau i}^{*}\right| < 2.9 \cdot 10^{-3}$$

$$\sum_{i} N_{\mu i} N_{\tau i}^{*} < 2.6 \cdot 10^{-3}$$

Lopez: ISS 3rd plenary ('06) @ RAL

KARMFN

 $V_{\mu} \rightarrow V_{e}$

NOMAD

 $V_e \rightarrow V_\tau \quad V_\mu \rightarrow V_\tau$

 $\left|\sum_{i} N_{ei} N_{\tau i}^{*}\right| < 0.09$

 $\left|\sum_{i} N_{\mu i} N_{\tau i}^*\right| < 0.013$

Models which predict non-unitarity include:

Czakon, Gluza, Zralek, Acta Phys. Polon. B32 (2001) 3735; Bekman, Gluza, Holeczek, Syska Zralek, Phys. Rev. D66 (2002) 093004; Langacker, London, Phys. Rev. D 38 (1988) 907; Bilenky, Giunti, Phys. Lett. B300 (1993) 137; Nardi, Roulet, Tommasini, Phys. Lett. B327 (1994) 319; Bergmann, Kagan, Nucl. Phys. B538 (1999) 368; Loinaz, Okamura, Takeuchi, Wijewardhana, Phys. Rev. D67, 073012 (2003); Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana, Phys. Rev. D68, 073001 (2003); Phys. Rev. D70, 113004 (2004);

Broncano, Gavela, Jenkins, Phys. Lett. B552 (2003) 177;

De Gouvea, Giudice, Strumia, Tobe, Nucl. Phys. B623 (2002) 395.

In general:

NP effects at production and at detection becomes important when L is smaller

$$P(\rightarrow) \rightarrow \left[U^{d}(U^{s})^{-1} \right]$$

i.e., no BG from osc. in the limit of $L \rightarrow 0$

Experiments with a shorter baseline are advantageous

NP effects in propagation becomes important when L is larger

because AL $\mathcal{E}_{\alpha\beta} \sim \mathcal{E}_{\alpha\beta}$ (L/2000km)

Experiments with a longer baseline are advantageous

Works which discussed NP in v oscillation include:

Grossman, Phys. Lett. B359, 141 (1995); Gonzalez-Garcia, Grossman, Gusso, Nir, Phys. Rev. D64, 096006 (2001); Gago, Guzzo, Nunokawa, Teves, Zukanovich Funchal, Phys. Rev. D64, 073003 ('01); Ota, Sato, Yamashita, Phys. Rev. D65, 093015 (2002); Huber, Schwetz, Valle, Phys. Rev. Lett. 88, 101804 (2002); Campanelli, Romanino, Phys. Rev. D66, 113001 (2002); Huber, Schwetz, Valle, Phys. Rev. D66, 013006 (2002); Ota, Sato, Phys. Lett. B545, 367 (2002); Ota, Sato, Phys. Rev. D71, 096004 (2005); Blennow, Ohlsson, Winter, hep-ph/0508175; Honda, Okamura, Takeuchi, hep-ph/0603268; Kitazawa, Sugiyama, OY, hep-ph/0606013; Friedland, Lunardini, hep-ph/0606101; Ota et al, "Discovery Reach for Non-Standard Interactions in a Neutrino Factory", (to appear).

Models which predict relatively large NP effect include:

Grossman (Randall-Sundrum model), ISS 1st Physics Workshop @Imperial Coll.: http://www.hep.ph.ic.ac.uk/~longkr/UKNF/Scoping-study/ISS-www-site/WG1-PhysPhen/Workshops/2005-11/Programme/Talks/iss-london-yuvalg.pdf

A recent work which discussed NP effects in propagation

Kitazawa, Sugiyama, OY, hep-ph/0606013

$$\mathcal{L}_{NP} = -2\sqrt{2}G_F \sum_{\alpha,\beta} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \left(\epsilon_{\alpha\beta}^{f\bar{f}L} \bar{f}_L \gamma_{\mu} f_L + \epsilon_{\alpha\beta}^{f\bar{f}R} \bar{f}_R \gamma_{\mu} f_R \right) + h.c.$$

Two constraints on $\mathcal{E}_{\alpha\beta}$

Davidson et al (JHEP 0303:011,2003): Constraints from

various V experiments

$$\begin{aligned} \epsilon_{\alpha\beta} \sim \epsilon^{e}_{\alpha\beta} + 3\epsilon^{u}_{\alpha\beta} + 3\epsilon^{d}_{\alpha\beta} \\ \hline -3 \leq \epsilon_{ee} \leq 2 \quad |\epsilon_{e\mu}| \leq 0.5 \quad |\epsilon_{e\tau}| \leq 1.5 \\ |\epsilon_{e\mu}| \leq 0.5 \quad |\epsilon_{\mu\mu}| \leq 0.05 \quad |\epsilon_{\mu\tau}| \leq 0.15 \\ |\epsilon_{e\tau}| \leq 1.5 \quad |\epsilon_{\mu\tau}| \leq 0.15 \quad |\epsilon_{\tau\tau}| \leq 6 \end{aligned}$$

Friedland-Lunardini (Phys.Rev.D72:053009,2005): Constraints from atmospheric neutrinos

$$\epsilon_{\tau\tau} \sim \frac{\left|\epsilon_{e\tau}\right|^2}{1+\epsilon_{ee}}$$

$$0 \le |\epsilon_{e\tau}| \le 1 + \epsilon_{ee}$$
$$-1 \le \epsilon_{ee} \le 1.5$$

 \mathcal{E}_{ee} , $\mathcal{E}_{e\tau}$, $\mathcal{E}_{\tau\tau} \sim O(1)$ are consistent with atmospheric neutrino data

 L=730km

E_v/GeV

MINOS (v_e appearance)

In the final ISS report, due to time constraint, only qualitative discussions on deviation from SM+massive v will be given.

There are a lot of problems to be worked out:
Quantitative discussions on non-unitarity and the NP effects
Predictions of various models on deviation from SM+massive v
→ Predictions by theorists could change plans of v experiments in the far future dramatically.

3. Summary

A brief review was given on the known parameters in SM+massive ν . Efforts to determine the unknown parameters (θ_{13} , δ , sign($\Delta m^2{}_{31}$)) in the future experiments were described.

Like B factories, the future neutrino experiments with high precision will be able to see deviation from SM, and it is emphasized that theorists should make efforts to predict possible deviations of various models from SM.