Search for sterile neutrinos at reactors

Osamu Yasuda
Tokyo Metropolitan University

27 September 2011@SNAC11

Based on OY, arXiv:1107.4766 [hep-ph]

■New prediction of the reactor v flux

- → (3+1)-scheme may fit to the data (LSND+MB+other short baseline expts.) better with new flux than before (with old flux).
- → It is important to confirm sterile v oscillations
- A ten kilocurie scale anti-v source (144Ce, 106Ru) $v_e \rightarrow v_e$ M. Cribier et al., arXiv:1107.2335
- A proposal for a β-beam $v_e \rightarrow v_e$ Agarwalla-Huber-Link, JHEP 1001:071,2010
- v oscillation experiments at a reactor with a small core → Present work arXiv:1107.4766 [hep-ph]

Thermal (Neutron) Reactors vsFast (Neutron) Reactors

Fuels must be distant ⇒ the volume must be larger

	Kinetic energy of neutron	Moderator	Coolant	Power density
Thermal Neutron Reactor (w/ H ₂ O)	~0.02eV	H ₂ O	H ₂ O	~O(10MW/m ³)
Fast Neutron Reactor	~2MeV	None	Na	~O(100MW/m ³)

Fuels can be closer ⇒ the volume can be smaller

Composition of Thermal Reactor & Fast Reactor

	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu
Thermal Neutron Reactor (w/ H ₂ O)	53.8%	32.8%	7.8%	5.6%
Fast Neutron Reactor	37.1%	51.3%	7.3%	4.3%

Joyo Fast Research Reactor

Operated by JAEA
P_{th}=140MW
Frequent On/Off

Analysis of a reactor neutrino oscillation experiment with one reactor & two detectors

$$\chi^{2} = \min_{\alpha's} \left\{ \sum_{A=N,F} \sum_{i=1}^{n} \frac{1}{(t_{i}^{A} \sigma_{i}^{A})^{2}} \left[m_{i}^{A} - t_{i}^{A} (1 + \alpha + \alpha^{A} + \alpha_{i}) - \alpha_{\text{cal}}^{A} t_{i}^{A} v_{i}^{A} \right]^{2} + \sum_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{\text{dB}}} \right)^{2} + \left(\frac{\alpha_{\text{cal}}^{A}}{\sigma_{\text{cal}}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{\text{Db}}} \right)^{2} + \left(\frac{\alpha}{\sigma_{\text{DB}}} \right)^{2} \right\}.$$

OY, arXiv: 1107.4766 [hep-ph]

m^A_i: Measured numbers of events

t^A_i: Theoretical prediction

v^A_i: Variation due to energy calibration error

$$(t_i^A \sigma_i^A)^2 = t_i^A + \left(t_i^A \sigma_{\mathrm{db}}^A\right)^2$$

statistical errors

systematic errors

In the present case $\sigma_{\text{stat}} > \sigma_{\text{sys}}$: statistical errors are more important

Assumed systematic errors

 σ_{DB} : correlated wrt detectors, correlated wrt bins = 3%

 $\sigma_{\rm Db}$:correlated wrt detectors, uncorrelated wrt bins = 2%

 σ_{dB} : uncorrelated wrt detectors, correlated wrt bins = 0.5%

 σ_{db} : uncorrelated wrt detectors, uncorrelated wrt bins = 0.5%

 σ_{cal} : energy calibration error for each bin = 0.6%

Formula for oscillation probability for (3+1)-scheme

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

(1) A conventional reactor (thermal reactors)

Assumed parameters (a la Bugey)

- Power: 2.8 GW
- Size of the core: Diameter=4m, Height=4m

Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2=1eV^2$

Optimized baseline lengths: $L_N=17m$ $L_F=23m$

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

The difference at $\langle E \rangle \sim 4 \text{MeV}$ is most significant for $L_N=17 \text{m L}_F=23 \text{m}$

Sensitivity of Conventional reactors to $sin^2 2\theta_{14}$ at $L_N=17m$ $L_F=23m$

The case of a hypothetical reactor with a point-like core → better sensitivity

Finite size
effect of a
core → poor
sensitivity
for Δm²~2eV²

(2) A fast neutron reactor

Assumed parameters (a la Joyo)

- Power: 0.14 GW
- Size of the core: Diameter=0.8m, Height=0.5m

Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2=1eV^2$

Optimized baseline lengths: $L_N=4m$

 $L_F=8m$

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

Asymmetry at $\langle E \rangle \sim (4 \mp 1) \text{MeV}$ is most significant for $L_N=4 \text{m } L_F=8 \text{m}$

Sensitivity of Joyo to $\sin^2 2\theta_{14}$ at L_N=4m, L_F=8m

- Less
 power is
 compensate
 ed by
 closer
 distance
- A reactor with a small core prevents smearing effect

A Study of Reactor v Monitoring at Experimental Fast Reactor JOYO

H.Furuta et al., arXiv:1108.2910v1 [hep-ex]

L=24.3m; about 150 vp → e⁺n reactions/day

The measured ν event rate from reactor on-off comparison was $1.11\pm1.24(stat.)\pm0.46(syst.)$ events/day.

The statistical significance of the measurement was not enough.

Their motivation: to detect ν from a fast reactor (not motivated by ν_s)

Prototype detector

Reactor core

Summary (1)

- Because of the recent re-evaluation of the reactor v flux, scenarios of sterile v oscillations with $\Delta m^2 \sim O(1eV^2)$ are reviving.
- To get a useful information from the spectrum analysis of reactor v for $\Delta m^2 > 1eV^2$, a reactor with a small core is necessary to avoid the smearing effect.
- Fast neutron reactors have a small core in general, and measurements of v from a fast neutron reactor
 Joyo may be able to offer a test of LSND/MiniBooNE.
- A preliminary experiment to measure v from Joyo has been performed, but not sufficient significance of the signals was obtained. → More developments are needed.

Summary (2)

 There exist in France a couple of experimental thermal neutron reactors with a small core. → Nucifer project

ILL (Institut Laue-Langevin near Grenoble) research reactor Power=58 MW, Diameter=40cm, Height=80cm

Osiris (in the French Atomic Energy Commission (CEA) centre at Saclay) Power=70 MW, Size=57cmx57cmx60cm

Great if the detectors are placed very closed to a reactor!