Sterile neutrinos and near detectors at a neutrino factory

Tokyo Metropolitan University

Osamu Yasuda

11 December 2009
Madrid Neutrino NSI Workshop

- 1. Introduction
- 2. Light sterile neutrinos
- 3. Sensitivity to θ_{14} , θ_{24} , θ_{34} at ν factory with a near detector
- 4. Sensitivity to θ_{14} , θ_{24} , θ_{34} at ν factory with far detectors
- 5. Summary

1. Introduction

Motivation for research on New Physics and τ detection

- •Just like at B factories, high precision measurements of ν oscillation in future experiments will allow us to probe physics beyond SM by looking at deviation from SM+massive ν .
- If θ_{13} turns out to be large, search for new physics and test of unitarity will be even more important subjects at V factory. (cf. $\sin^2\!\theta_{13}$ =0.02±0.01@1 σ , Fogli et al, arXiv:0905.3549 [hep-ph])

• If 3 flavor unitarity is guaranteed, then roughly speaking, we could guess (discovery) from (golden) + (disappearance) at ∨ factory from 3 flavor unitarity:

- Intuitively, therefore, τ detection is supposed to be important to test New Physics which violates unitarity.
- → Quantitative estimate is necessary to draw conclusions.

New physics which can be probed at a neutrino factory includes:

- Non standard interactions in propagation
- Non standard interactions at production / detection
- Violation of unitarity due to heavy particles
- Schemes with light sterile neutrinos

	ρ e, μ, v
Scenarios	3 flavor unitarity
NSI in propagation	
NSI at production / detection	×
Violation of unitarity due to heavy particles	×
Light sterile neutrinos	×

 $\sum P(\nu_{\alpha} \to \nu_{\beta}) = 1$

Scenarios	Phenomenological bound on deviation of unitarity
NSI at production / detection	O(0.1%)
Violation of unitarity due to heavy particles	O(0.1%)
Light sterile neutrinos	O(10%)

- **♦** (Except sterile v) none of these scenarios has ever been supported experimentally.
- ♦ To encourage experimentalists, one should adopt the most optimistic scenario.
- \rightarrow Even if LSND anomaly is excluded in the near future, light sterile ν could be phenomenologically even more promising than others!

Recent status of LSND: Check by MiniBooNE

Karagiorgi et al, Phys.Rev.D80:073001,2009

• Neither MiniBooNE ($_{V}$ or $_{\bar{V}}$) nor disappearance results (CDHSW+Bugey+atm) excludes LSND at 4_{σ} .

2. Light sterile neutrinos

(3+1)-scheme w/ LSND: the situation is unclear, but it's worth checking it

(3+1)-scheme w/o LSND: still a possible scenario, provided that the mixing angles satisfy all the constraints of the negative results

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_s \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$U = R_{34}(\theta_{34}, 0) R_{24}(\theta_{24}, 0) R_{23}(\theta_{23}, \delta_3) R_{14}(\theta_{14}, 0) R_{13}(\theta_{13}, \delta_2) R_{12}(\theta_{12}, \delta_1)$$

$$m{ heta_{34}}$$
 : ratio of $u_{\mu} \leftrightarrow
u_{ au}$ and $u_{\mu} \leftrightarrow
u_{s}$ in $u_{
m atm}$

$$\theta_{24}$$
: ratio of $\sin^2(\frac{\Delta m_{
m atm}^2 L}{4E})$ and $\sin^2(\frac{\Delta m_{
m SBL}^2 L}{4E})$ in $v_{
m atm}$

$$\theta_{14}$$
: mixing angle in $v_{reactor}$ at L=O(10m)

Constraints from v_{atm} and SBL

Donini-Maltoni-Meloni-Migliozzi-Terranova, JHEP 0712:013,'07

$$U = R_{34}(\theta_{34}) R_{24}(\theta_{24}) R_{23}(\theta_{23}, \delta_3) R_{14}(\theta_{14}) R_{13}(\theta_{13}, \delta_2) R_{12}(\theta_{12}, \delta_1)$$

 θ_{34} : could be relatively large

12 10 8 90%CL 95%CL 99%CL 2 3σCL θ13 Assumption on rapid oscillations in V_{atm} : $\Delta m^2_{41} > 0.1 \text{ eV}^2$

Cosmological constraints on light sterile neutrinos (s⇔e)

Smirnov & Zukanovich -Funchal, Phys.Rev.D74:013001,2006

Cosmological constraints on light sterile neutrinos (s⇔µ)

Smirnov & Zukanovich -Funchal, Phys.Rev.D74:013001,2006

Cosmological constraints on light sterile neutrinos ($s \Leftrightarrow \tau$)

Smirnov & Zukanovich -Funchal, Phys.Rev.D74:013001,2006

Accelerator

NB: Constraints from LSS, X-ray, BBN, CMB may be avoided if some suppression mechanism (e.g., lepton asymmetry) exists

Hence there may be some room for sterile neutrino mixings for these values of Δm^2_{41} .

3. Sensitivity to θ_{14} , θ_{24} , θ_{34} at ν factory with a near detector

Donini, Meloni, Eur. Phys. J. C22:179-186,2001

$$2 \times 10^{20} \, \mu^{-}$$
 's/yr × 5 yrs, E_{\(\mu\)} = 20GeV

10kton MIND @ L = 40 Km + 1ton ECC @ L = 1 Km

efficiency=0.5 for μ , 0.35 for τ

statistical errors + BG (w/o systematic errors)

golden

$$P(\nu_e \to \nu_\mu) = 4c_{24}^2 c_{34}^4 s_{14}^2 s_{24}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

sensitivity to $s_{14}^2 s_{24}^2$

silver

$$P(\nu_e \to \nu_\tau) = 4c_{24}^2 c_{34}^2 s_{14}^2 s_{34}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

sensitivity to $s_{14}^2 s_{34}^2$

discovery

$$P(\nu_{\mu} \to \nu_{\tau}) = 4c_{34}^2 s_{24}^2 s_{34}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

sensitivity to $s_{24}^2 s_{34}^2$

disappearance
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - 4c_{34}^2 s_{24}^2 (1 - c_{34}^2 s_{24}^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

sensitivity to s²₂₄

golden

$$P(\nu_e \to \nu_\mu) = 4c_{24}^2 c_{34}^4 s_{14}^2 s_{24}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

 $4|U_{e4}U_{u4}|^2 > 1.4x10^{-7}$

disappearance

$$P(\nu_{\mu} \to \nu_{\mu})$$
= $1 - 4c_{34}^2 s_{24}^2 (1 - c_{34}^2 s_{24}^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$

 $4|U_{u4}|^2 > 5.3x10^{-4}$

silver

discovery

$$P(\nu_e \to \nu_\tau) = 4c_{24}^2 c_{34}^2 s_{14}^2 s_{34}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) P(\nu_\mu \to \nu_\tau) = 4c_{34}^2 s_{24}^2 s_{34}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$P(\nu_{\mu} \to \nu_{\tau}) = 4c_{34}^2 s_{24}^2 s_{34}^2 \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$4|U_{\mu 4}U_{\tau 4}|^2 > 1.8 \times 10^{-5}$$

4. Sensitivity to θ_{14} , θ_{24} , θ_{34} at ν factory with far detectors

Donini et al, JHEP 0908:041,2009

$$5 \times 10^{20} \, \mu^- + \mu^+ \text{'s/yr} \times 4 \, \text{yrs}$$
 (E $_\mu$ /GeV, L/km)= (50,3000+7500) or (20, 4000+7500) 50kton MIND + 4kton MECC

Results for E_{μ} =20GeV case are shown below for a fair comparison

statistical errors + systematic errors + BG

efficiency \sim 0.7 for μ , \sim 0.65 for τ

NB. Magnetized Emulsion Cloud Chamber (MECC) active target: iron $\tau \rightarrow \mu$ decay + $\tau \rightarrow$ e decay + $\tau \rightarrow$ hadron decay are used

golden + silver

$$P(\nu_e \to \nu_\mu) = 4 \text{Re} \left[U_{e3} U_{\mu 3}^* (U_{e3}^* U_{\mu 3} + U_{e4}^* U_{\mu 4}) \right] \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) + \cdots$$

$$P(\nu_e \to \nu_\tau) = 4 \text{Re} \left[U_{e3} U_{\tau 3}^* (U_{e3}^* U_{\tau 3} + U_{e4}^* U_{\tau 4}) \right] \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) + \cdots$$

 $4|U_{e4}U_{u4}|^2 > 5.8 \times 10^{-6}$

 $4|U_{e4}U_{\tau 4}|^2 > 3.8 \times 10^{-5}$

disappearance + discovery

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4|U_{\mu 3}|^{2}(1 - |U_{\mu 3}|^{2} - |U_{\mu 4}|^{2})\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) + \cdots$$

$$P(\nu_{\mu} \to \nu_{\tau}) = 4 \operatorname{Re} \left[U_{\mu 3} U_{\tau 3}^* (U_{\mu 3}^* U_{\tau 3} + U_{\mu 4}^* U_{\tau 4}) \right] \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) + \cdots$$

--- current -- disappearance -- discovery -- combined

$$4|U_{u4}|^2 > 7.6 \times 10^{-2}$$

$$4|U_{\mu 4}U_{\tau 4}|^2 > 1.9 \times 10^{-3}$$

 Byproduct of the near detectors: improvement of systematic errors at far detectors

Dependence of sensitivity on systematic errors

Donini et al, JHEP 0908:041,2009

In previous page, $f_{\mu\tau}$ =10%, σ_{α} =2.5% (black solid lines above) was assumed

 ${f f}_{\mu\tau}$: uncorrelated bin-to-bin systematic error (error in detection efficiency in each bin etc.)

 σ_{α} : correlated systematic error (error in detector volume etc.)

By placing a near τ detector, systematic errors could be reduced

cf. Reduction of systematic errors in the 2 detector complex at reactor experiments

Minakata et al., Phys.Rev.D68:033017,2003

CHOOZ-like	absolute normalization	relative normalization (expected)	relative/absolute
flux	2.1%	0.0%	0
number of protons	0.8%	0.3%	0.38
detection efficiency	1.5%	0.7%	0.47
total	2.7%	0.8%	
for bins	8.1%	2.4%)	

2.6 Summary

 In most cases sensitivity to the sterile mixings is better at a near detector (@Oscillation Maximum) than at far detectors. (Notice the absence of the systematic errors in the analysis of ND. → Further study is necessary.)

	near@Osc.Max	far
$4 U_{e4}U_{\mu4} ^2$	1.4x10 ⁻⁷	5.8x10 ⁻⁶
$4 U_{e4}U_{\tau4} ^2$	4.8x10 ⁻⁵	3.8x10 ⁻⁵
$4 U_{\mu 4} ^2$	5.3x10 ⁻⁴	7.6x10 ⁻²
$4 \mathbf{U}_{\mu 4}\mathbf{U}_{\tau 4} ^2$	1.8x10 ⁻⁵	1.9x10 ⁻³

Sensitivity to the sterile mixings at ND & FD is very good compared to the present bound.

→ It could serve as a severe test of LSND/MiniBooNE.

• Sensitivity to $4|U_{e4}U_{\tau4}|^2$ & $4|U_{\mu4}U_{\tau4}|^2$: improvement over the present bound by one order of magnitude

Sensitivity to ∆m² :

FD: insensitive

ND: sensitive but some fine tuning required

- → ND & very near detector are necessary. → To cover the region $\Delta m_{41}^2 \sim O(1eV^2)$, L $\sim O(10km)$
- To measure the new CP phase due to sterile neutrinos, discovery channel at far detectors is crucial. → ND & FD are complementary in the study of sterile neutrinos at a ν factory.
- Near τ detectors are useful not only to improve sensitivity to sterile neutrino mixings by themselves, but also to reduce the systematic errors of the far τ detectors.

In answering Belen's questions on τ -ND (1)

- Is it worth the trouble to develop such a "tau-sensitive" detector?
 Yes, since it doesn't cost much, it's worth putting a tau ND.
- Is it doable?
 The analysis on ND has to be done again, but presumably it is.
- How good results one can get? We can improve sensitivity to $4|U_{e4}U_{\mu4}|^2$ ($4|U_{e4}U_{\tau4}|^2$, $4|U_{\mu4}U_{\tau4}|^2$) by 2 (4, 1) orders of magnitude.
- If we only improve a limit will anybody care?
 At least I do. The neutrino factory would give a limit independent of cosmology.
 As for 4|Ue4Uμ4|², by putting a MIND, we can exclude LSND by 4 orders of magnitude. Presumably it is possible only with a neutrino factory.

In answering Belen's questions on τ -ND (2)

- For instance, for your chosen physics goal or subject, what sensitivity would be required to be worth physicswise? e $_{\mu}$: Both ND & FD w/ assumed $_{\sigma_{sys}}$ will test LSND. e $_{\tau}$ or $_{\mu\tau}$: W/o particular physics model, typically improvement by one order of magnitude is one goal.
- And what are the optimal characteristics of the detector? MECC seem to be the best so far as a τ detector to have better efficiency.
- How does it compare with respect to physics reach with other future planned detectors? Complementarity?
 Liquid argon TPC could be alternative. → Further study is required.
- For what other beams is it appropriate or possible? Superbeam: v_{τ} contamination
 - β beam: Energy is too low to produce τ .

Backup slides

- τ detection is potentially advantage of ν factory:
- Detection of large number of τ's is possible at V factory
- No v_{τ} contamination at a neutrino factory (cf. superbeam, [Van de Vyver-Zucchelli, NIM A385:91,1997])
- τ channels in 3 family model are not so useful:
- (golden) @4000km+7500km is better than (silver)+(golden) @4000km to solve intrinsic degeneracy [ISS report]
- (disappearance) is better than (discovery) to measure atmospheric parameters [Donini, 0th IDS mtg@CERN]

$$v_e o v_\mu$$
 golden channel $v_\mu o v_\mu$ disappearance channel $v_e o v_ au$ silver channel $v_\mu o v_ au$ discovery channel

τ detectors

Emulsion Cloud Chamber (ECC)

Prototype: the OPERA detector at the CNGS active target: lead spectrometers to measure the charge only $\tau \rightarrow \mu$ decay is used: detection efficiency \sim O(5%)

→Proposal of Magnetized Emulsion Cloud Chamber (MECC)

active target: iron $\tau \rightarrow \mu$ decay + $\tau \rightarrow$ e decay + $\tau \rightarrow$ hadron decay are used: detection efficiency \sim O(25%)

Liquid Argon TPC (LAr-TPC)

Prototype: the ICARUS T600 at the CNGS

Oscillation probability in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

$$P_{\mu\mu} = 1 - 2\theta_{24}^2 - \left[1 - 4(\delta\theta_{23})^2 - 2\theta_{24}^2 + \theta_{34}^2 \frac{A_n}{\Delta_{31}} \left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{\Delta_{31}}\right)\right] \sin^2 \frac{\Delta_{31}L}{2} - (A_nL) \left\{2\theta_{24}\theta_{34}\cos\delta_3 - \frac{\theta_{34}^2}{2}\left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{2\Delta_{31}}\right)\right\} \sin\Delta_{31}L + O(\epsilon^5), \quad (16)$$

$$P_{\mu\tau} = \left\{ 1 - 4(\delta\theta_{23})^2 - \theta_{24}^2 - \theta_{34}^2 \left[1 - \frac{\theta_{34}^2}{3} - \frac{A_n}{\Delta_{31}} \left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{\Delta_{31}} \right) \right] \right\} \sin^2 \frac{\Delta_{31}L}{2}$$

$$+ \left\{ \theta_{24} \theta_{34} \sin \delta_3 + (A_n L) \left[2\theta_{24} \theta_{34} \cos \delta_3 - \frac{\theta_{34}^2}{2} \left(4\delta\theta_{23} - \theta_{34}^2 \frac{A_n}{2\Delta_{31}} \right) \right] \right\} \sin \Delta_{31}L$$

$$+ O(\epsilon^5) , \qquad (17)$$

Numbers of events in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

$\nu_{\mu} \rightarrow \nu_{\tau}$	$\bar{\nu}_e \rightarrow \bar{\nu}$	$_{ au}$ $\nu_{\mu} ightarrow \nu_{ au}$	$\bar{\nu}_e \to \bar{\nu}_{\tau}$
------------------------------------	-------------------------------------	---	------------------------------------

$\theta_{13}; \theta_{14}; \theta_{24}; \theta_{34})$	$N_{ au^-}^{3000}$	$N_{ au^+}^{3000}$	$N_{ au^-}^{7500}$	$N_{ au^+}^{7500}$
$(5^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$	559	10	544	2
$(5^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$	474	11	529	2
$(5^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$	384	18	454	3
$(5^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$	384	18	454	3
$(10^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$	522	22	512	2
$(10^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$	443	22	498	2
$(10^{\circ}; 5^{\circ}; 5^{\circ}; 30^{\circ})$	397	30	413	4
$(10^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$	361	30	428	4
$\theta_{13}=5^{\circ}$	797	3	666	0
3 families, $\theta_{13} = 10^{\circ}$	755	12	632	1

Number of events 2 x10²⁰ flux 1 year 1 Kton MECC perfect efficiency

Dependence of sensitivity on systematic errors in (3+1)-scheme

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

Donini, Fuki, Lopez-Pavon, Meloni, Yasuda, JHEP 0908:041,2009

$$P(\nu_{\alpha} \to \nu_{\beta}) = 4 \text{Re} \left[U_{\alpha 3} U_{\beta 3}^* (U_{\alpha 3}^* U_{\beta 3} + U_{\alpha 4}^* U_{\beta 4}) \right] \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) + \cdots,$$

we can expect that the golden and silver channels have some sensitivity to $U_{e4}U_{\mu4}$ and $U_{e4}U_{\tau4}$. In the present parametrization (2) of the mixing matrix, we have $U_{e4}U_{\mu4} = s_{14}c_{14}s_{24} = s_{14}s_{24} + O(\epsilon^6)$ and $U_{e4}U_{\tau4} = s_{14}c_{14}c_{24}s_{34} = s_{14}s_{34} + O(\epsilon^5)$, where we have

Which τ detector is less important, @3000km or @7500km ?

Contour plot of significance for signal with θ_{24} =0, θ_{34} =14

For 50GeV (20GeV), L=3000km (L=4000km) performs (slightly) poor. This is also the case w/ disappearance.

