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1. Introduction

Framework of 3 flavor v oscillation Functions of
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Information we have obtained so far:
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Mixing matrix has been roughly determined:
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However,

® 0,5 :only upper bound is known
® {5 :undetermined

Next task is to measure 0, ,
sign(Am?;,) and &

Most realistic way to measure 0,,, normal Inverted
. . . hierarchy hierarchy
sign(Am?,,) and 3 is long baseline - -
Amz, >0 AmZ, <0

experiments by accelerators or reactors.



Future LBL experiments

To perform precise measurements of 0, and O, one has to
have a lot of numbers of events to reduce statistical errors.

—We need high intensity beams

Candidates for high intensity beam in the future:
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Example of expected sensitivity and time scale
(FERMILAB-FN-0778-AD-E (=hep-ex/0509019))
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fac}r(’( International scoping study of a future

Neutrino Factory and super-beam facility

Sept. 2005 ~ Sept. 2006 http://www.hep.ph.ic.ac.uk/iss/

® Evaluate the physics case for the facility
® Study options for the accelerator complex
and neutrino detection systems

»Theory Subgroup S.F. King

®Physics Group Y. Nagashima »Phenomenology Subgroup OY
& Detector Group A. Blondel »Experiment Subgroup K. Long
& Accelerator Group M. Zisman »Muon Subgroup L. Roberts

Deviation from SM with massive neutrinos (test
of unitarity, probe of NP) was the main issue.

Final report:
http://www.hep.ph.ic.ac.uk/~longkr/lUKNF/Scoping-study/ISS-www-
site/WG1-PhysPhen/Planning-drafts/Report/Current/PhysReport.pdf

It will appear on arXiv soon.



2. New Physics in v oscillation

2.1 New Physics in v oscillation

Just like at B factories, high precision measurements of
v oscillation can be used also to probe physics beyond
SM by looking at from deviation from SM+masssive v

Here we study phenomenologically new physics which
is described by 4-fermi exotic interactions:
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Types of New Physics A=
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(1) Effects of New Physics at source and detector

Deviation from the standard form is small:
Grossman (PLB359:141,1995)

|(US-1) ] < O(10°2), |(U4-1) 5] < O(102)

(2) New Physics effects in propagation

1. Constraints from various v experiments:
Davidson et al (JHEP 0303:011,2003)
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2. Constraints from atmospheric neutrinos:
Friedland-Lunardini (Phys.Rev.D72:053009,2005)
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Since the parameters 8043 can be of O(1) only for New

Physics in propagation, we will consider only NP in
propagation here.

NP effects in propagation becomes important
when baseline L is larger

because
oscillation probability oC sinz(somethingxaaBALj

where AL ~ L/2000km A = vV2GrN,

Experiments with a longer baseline
are advantageous

Here we will discuss MINOS (L=730km)



2.2 Analytical formula for the oscillation
probability in matter with New Physics

(1)For the standard 3 flavor case, analytical formula
for the oscillation probability in matter is known:
Kimura, Takamura and Yokomakura (PLB537:86,2002)

(2) KTY formalism to more general cases (e.g., NP etc.)
was discussed: OY arXiv:0704.1531 [hep-ph]

In particular, in thelimit Am3, -0, P(v —v ) can be

obtained analytically with .
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(1) Exact formula for oscillation probability in matter
with standard 3 flavor neutrinos

Kimura, Takamura and Yokomakura (PLB537:86,2002)
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Problem: Obtain the values of X;” = Uo;U3) |
which appear in diagonalization of
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Solution: Trivial 3 identities solve it
Xing-Zhang PLB618:131,2005; OY arXiv:0704.1531 [hep-ph]
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(2) Analytical formula for the oscillation probablllty in
matter with New Physics in the limit Am3, -0

OY arXiv:0704.1531 [hep-ph]
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Features of the proba

A) It depends only onCarg(e

— This is approximately the case also for Am3, =0 .
B) Each term gives a large contribution (See Fig. below).

cf In standard 3 flavor case,
only one term dominates:
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— Interpretation of behavior of probability is difficulit.
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2.3 Implications of NP for ongoing experiments
MINOS (2005-) Major channel is dlsappearance (V Y ) but

appearance (V Ve ) can be also measured
L=730km
0.25 .

. _ . 0.2 | I 843=0, E”ﬂ< present bound ——
Baseline L=730km is /\\ $in22043=0.1, £,3=0 ——
larger than K2K, so il $in%2043=0.01, £,3=0 —
matter effect at -1 i $in“2613=0.0001, =0 ——
MINOS plays a more In | ~CHOOZ bound
important role thanat | =~ %'/ i
K2K |

0.05 |
Kitazawa-Sugiyama-OY, o i
hep-ph/0606013
For some values of €., , €., €., ~O(1) within the allowed region,

there is enhancement in the channel V —)V which cannot be
explained only by the standard oscﬂlatlon scenario with 913



Summary: current constraints on NP parameters €., €., €,

various v experiments - inside of :_ 1 js allowed
Davidson et al (JHEP 0303:011,2003) - -1
atmospheric neutrinos+K2K — inside of iIs excluded
Friedland-Lunardini (Phys.Rev.D72:053009,2005)
_ leer]?
excluded by v, and K2K| 7~ 11
1.9y T~ 771  Roughly, l€er| < |1+ ceel
1.5 €| < 1.9
€er| ; : / [ | :allowed region by
L | all data
0.5 \ /
. ¥ allowed by various |
4 3 -2 4 0 1 226

VvV experiments !



MINOS

(1) In case MINOS observes v, events: If values of

Eae and €, _lie in the colored region, then
MiNOS can verify existence of NP

region where MINOS can prove (€., €..)7#(0,0) for each 0,5

excluded by V_i,, and K2K
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In these cases, number of appearance events becomes so large (> 70)
that it cannot be explained only by 0,5 which would yield (<50 events)




MINOS (2) In case no v, events are observed at MINOS:

constraint is slightly improved in the (€., | €¢; |)
plane.

excluded region by MINOS
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3. Summary

New Physics in V oscillation (during propagation) was

discussed in the case where the €_,; parameters are of

O(1). This kind of search of New Physics is
complementary to those at LHC and ILC.

The analytical formula was obtained for

P(v,~vV, ) in the presence of NP (in
propagatlon) in the limit Am2, — 0.

At ongoing MINOS, if values of €., and €., liein a
certain region, then MINOS can verlfy existence of NP.

If no v, events are observed at MINOS, then a
constraint is slightly improved in the (€., | €., |) plane.

Many more works yet have to be done (analysis for
future intense LBL; global analysis of NP in
production, propagation, detection, etc.)





