Phenomenology of θ_{13}

Tokyo Metropolitan University

Osamu Yasuda

JPS meeting 11 September 2012@Kyoto Sangyo Univ.

Contents

Introduction Parameter degeneracy Near future experiments Summary

1. Introduction

Both hierarchy patterns are allowed

Framework of 3 flavor v oscillation

Functions of mixing angles θ_{12} , θ_{23} , θ_{13} , and CP phase δ

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

3 mixing angles have been measured :

 v_{solar} +KamLAND (reactor)

$$\theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} \, eV^2$$

v_{atm}+K2K,MINOS(accelerators)

$$heta_{23} \cong rac{\pi}{4}$$
, | Δm^2_{32} | \cong 2.5 $imes$ 10⁻³ eV²

DCHOOZ+Daya Bay+Reno (reactors), T2K+MINOS, others

$$oldsymbol{ heta}_{13}\cong rac{\pi}{20}$$

One hint at nu2012: θ₂₃ appears to be nonmaximal

Forero, Tortola, Valle arXiv:1205.4018 (nu2012 data included)

MINOS+T2K+sol+ KL+DC+DB+RENO

MINOS+T2K+sol+ KL+DC+DB+RENO+atm

π/4- θ₂₃ <0 is preferred

Forero, Tortola, Valle arXiv:1205.4018

5

1σ

2σ

3σ

Octant of θ_{23} ($\pi/4-\theta_{23}$ >0?) appears to be subtle

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno Phys.Rev. D86 (2012) 013012 arXiv:1205.5254

Info on MH seems necessary

ltow@v2012

A word on theory: Simple theoretical ansatz to predict θ_{13} successfully

Anarchy Hall, Murayama, Weiner, PRL 84 (2000) 2572

sin²2θ₁₃∼ 0.1

Quark-lepton complementarity Minakata, Smirnov, PR D70 (2004) 073009

$$\theta_{12} + \theta_{c} = 45 \text{ deg}$$

 $\theta_{13} = 8.9 \text{ deg}$
 $\theta_{12} = 35.4 \text{ deg}$
 $\theta_{23} = 42.1 \text{ deg}$
Dighe, Goswami, Roy
PR D76 (2007) 096005

sin²2θ₂₃∼ 1

2. Parameter degeneracy

$$\mathbf{U} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu1} & \mu^2 & \mu^3 \\ \mathbf{U}_{\tau1} & \mathbf{U}_{\tau2} & \mathbf{U}_{\tau3} \end{pmatrix} \cong \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & \mathbf{E} \\ -\mathbf{S}_{12}/\sqrt{2} & \mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \\ \mathbf{S}_{12}/\sqrt{2} & -\mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Both
 mass
 hierarchies
 are allowed

Next task is to measure sign(Δm_{31}^2), $\pi/4-\theta_{23}$ and δ .

To determine δ , accelerator long baseline experiments with $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ are necessary.

Parameter degeneracy

Even if we know $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ in a long baseline accelerator experiments with approximately monoenergetic neutrino beam, precise determination of θ_{13} , θ_{23} , sign(Δm^{2}_{31}) and δ is difficult because of the 8-fold parameter degeneracy.

Plots in $(\sin^2 2 \theta_{13}, 1/s^2_{23})$ plane

$$\mathbf{P} \equiv \mathbf{P} \left(\mathbf{v}_{\mu} \to \mathbf{v}_{e} \right)$$
$$\overline{\mathbf{P}} \equiv \mathbf{P} \left(\overline{\mathbf{v}_{\mu}} \to \overline{\mathbf{v}_{e}} \right)$$

OY, New J.Phys. 6 (2004) 83

In this plot, the region of P=const or P=const is described by quadratic curves (hyperbolic or elliptic).

• octant degeneracy

$$\theta_{23} \Leftrightarrow \pi/2 - \theta_{23}$$

(a) $\cos 2\theta_{23} = 0 \rightarrow (b)\cos 2\theta_{23} \neq 0$

• intrinsic degeneracy (δ, θ_{13})

(a)
$$\frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} = 0 \rightarrow (b) \frac{\Delta m_{21}^2}{|\Delta m_{31}^2|} \cong \frac{1}{35} \neq 0$$

• sign degeneracy

$$\Delta m_{31}^2 \leftrightarrow -\Delta m_{31}^2$$

(a)AL/2 = 0 \rightarrow (b)AL/2 \neq 0
 $A \equiv \sqrt{2}G_{E}N_{e} \cong 1/2000$ km

 $\sin^2 2\theta_{13}$

1

0

In total we have **8-fold parameter** degeneracy

Each point has

For precise measurements of δ , one has to resolve parameter degeneracy.

Differences in values of CP phases

$$\theta_{13} := \theta_{13} \text{(true)}, \quad \theta_{13} := \theta_{13} \text{(false)}$$

$$\delta := \delta$$
(true), δ':= δ (false)

sign degeneracy

$$\sin^2 2\theta'_{13} = \sin^2 2\theta_{13} \tan^2 \theta_{23} + \frac{\alpha^2 g^2 \sin^2 2\theta_{12}}{f\bar{f}} (1 - \tan^2 \theta_{23}),$$

$$\sin 2\theta'_{13} \sin \delta' = \sin 2\theta_{13} \sin \delta + \frac{\alpha g (f - \bar{f}) \sin 2\theta_{12}}{f\bar{f}} \frac{\cot 2\theta_{23}}{\sin \Delta},$$

octant degeneracy

$$x'^{2} = \frac{x^{2}(f^{2} + \bar{f}^{2} - f\bar{f}) - 2yg(f - \bar{f})x\sin\delta\sin\Delta}{f\bar{f}},$$
$$x'\sin\delta' = x\sin\delta\frac{f^{2} + \bar{f}^{2} - f\bar{f}}{f\bar{f}} - \frac{x^{2}}{\sin\Delta}\frac{f^{2} + \bar{f}^{2}}{f\bar{f}}\frac{f - \bar{f}}{2yg}.$$

Barger Marfatia Whisnant Phys.Rev.D65:073023,2002

Sign degeneracy is more serious than octant one, because $sin\delta(sign)=0 \Rightarrow sin\delta'(sign)=O(1)\neq 0$

To solve parameter degeneracy, various combinations have been proposed: (A) LBL measurement at $|\Delta m_{31}^2|L/4E = \pi/2$ \rightarrow hyperbola shrinks to a straight line (B) reactor measurement of θ_{13} v \rightarrow v \rightarrow \rightarrow depends only on θ_{13} (C) LBL measurement of $\,v_{\mu}^{} \rightarrow v_{e}^{}\,$ (or $v_{e}^{} \rightarrow v_{\mu}^{}\,$) with different L/E

(D) measurement of $V_e \rightarrow V_T$

Current status of appearance experiments

18

68% CL

90% C.L

0.4

 $\sin^2 2\theta_{13}$

68% C.L

0.4

 $\sin^2 2\theta_{13}$

- Best fit

- Best fit

Current status: T2K+atm+reactors

To perform precise measurements of θ_{13} and δ , one has to have a lot of numbers of events to improve statistical errors.

→We need high intensity beam

Candidates for high intensity beam in the future:

• (conventional) superbeam

neutrino factory

 $\boldsymbol{\mu}$ in a storage ring

beta beam

RI in a storage ring

$$\begin{cases} \mathbf{\pi}^{+} \rightarrow \mathbf{\mu}^{+} + \mathbf{V}_{\mathbf{\mu}} \\ \mathbf{\pi}^{-} \rightarrow \mathbf{\mu}^{-} + \mathbf{V}_{\mathbf{\mu}} \\ \mathbf{\pi}^{-} \rightarrow \mathbf{\mu}^{-} + \mathbf{V}_{\mathbf{\mu}} \\ \mathbf{\mu}^{+} \rightarrow \mathbf{e}^{+} + \mathbf{V}_{\mathbf{e}} + \mathbf{V}_{\mathbf{\mu}} \\ \mathbf{\mu}^{-} \rightarrow \mathbf{e}^{-} + \mathbf{V}_{\mathbf{e}} + \mathbf{V}_{\mathbf{\mu}} \\ \mathbf{\mu}^{-} \rightarrow \mathbf{e}^{-} + \mathbf{V}_{\mathbf{e}} + \mathbf{V}_{\mathbf{\mu}} \\ \begin{cases} \frac{6}{2} \text{He} \rightarrow \frac{6}{3} \text{Li} + \mathbf{e}^{-} + \mathbf{V}_{\mathbf{e}} \\ \frac{18}{2} \text{Ne} \rightarrow \frac{18}{2} \text{F} + \mathbf{e}^{+} + \mathbf{V}_{\mathbf{e}} \end{cases} \end{cases}$$

Future LBL exp. (under construction / proposed)

superbeam

T2K phase II (2.2MW+HK(+Okinoshima), E~1GeV, L=295km, 658km)

NOvA (FNAL \rightarrow Ash River (MN), E~2GeV, L=810km)

LBNE (FNAL→Homestake, E~a few GeV, L=1290km)

CN2PY (CERN→Pyhasalmi, E~several GeV, L=2300km) ■ neutrino factory (E_v~20GeV, L~4000km)

beta beam (E_v=0.5-1.5GeV, L~130km)

Future exp. vs MH

Bertolucci et al., arXiv:1208.0512

Project			Separation of IH and NH	Pre-requisite and date of achievement	Reference
DayaBay II	reactor 60km	20 kt LS	3 σ in 6 years	R&D on E-resolution 2020 ?	Karsten Heeger at Neutrino 2012
ICAL@INO	atmospherics	50 kt MID (RPCs)	2.7 σ in 10 years	2027	Sandhya Choubey at Neutrino 2012
HyperK	atmosherics	1 Mt Water Cerenkov	3 σ in 5 years 4 σ in 10 years	2027/28 2033/34	HyperK LOI Sandhya Choubey at Neutrino 2012
Т2НК	LBL accel. 295 km	1 Mt Water Cerenkov	03 σ in 10 years	2028	Masashi Yokoyama at Neutrino 2012
PINGU	atmospheircs	Ice (South pole)	311 σ in 5 years	feasibility study ongoing, understanding of resolution and systematics on atmospherics Around 2020 if it works.	Uli Katz at neutrino Town meeting
GLADE	LBL accel. 810 km	LAr 5 kt	In combination with NOvA and T2K: ≤ 2 σ	Letter-of-Intent	Jenny Thomas at neutrino Town meeting
NOVA	LBL AshRiver 810 km	TASD 14 kt	$\begin{array}{c} 03 \ \sigma \ \text{in 6 years} \\ \text{depending on } \delta \end{array}$	Full operation in 2014 2020	Ryan Patterson at Neutrino 2012
LBNE	LBL Homestake LBL Soudan LBL AshRiver	LAr 10 kt LAr 15 kt LAr 30 kt	1.57 σ in 10 y 03 σ in 10 y 0.55 σ in 10 y	2030	Bob Swoboda at Neutrino 2012
LBNO	LBL accel. 2300 km	LAr 20 kt	$> 5\sigma$ in a few y.	2023 + If decision in 2015	André Rubbia at Neutrino 2012
LENA	LBL accel. 2300 km	Liq. Scint. 50 kt	5 σ in 10 years	2028 + number of years to the decision	Lothar Oberauer at Neutrino 2012
Neutrino Factory	LBL accel.	MIND 100kton	»> 5 σ	-	Ken Long

Huber et al., arXiv:0907.1896v1

T2K&Nova

Mass Hierarchy and Reactor \overline{v}_e Oscillation Heeger@v2012

Daya Bay II

Sub-1% precision 3-v oscillation physics in $\Delta m_{12}^2 \Delta m_{23}^2$, and $sin^2 \theta_{12}$ possible

Karsten Heeger, Univ. of Wisconsin

Neutrino2012, Kyoto, June 4, 2012

Mass Hierarchy

CPV

Hyper-Kamiokande LOI, arXiv:1109.3262v1 [hep-ex]

LBNE

Comparison of Phase 1 Sensitivities to Mass Hierarchy and CP Violation

Svoboda@v2012

European sites: LAGUNA-LBNO

Three far sites considered in details

- Large Water Cerenkov Detector. CERN-Fréjus is a short baseline. It offers good synergy for enhanced physics reach with βbeam at γ=100
- Liquid Argon TPC & magnetized iron + Liquid Scintillator detectors CERN-Pyhäsalmi is the longest baseline. It offers good synergy for enhanced physics reach with a NF
- [CNGS is an existing beam but is considered at lower priority (missing near detector, limited power upgrade scenarios)]

arXiv:1003.1921 [hep-ph]

Rubbia@v2012

MH determination

 $\Delta \chi^2$

CPV discovery

4. Summary

Three mixing angles have been determined : $\theta_{12} \simeq \pi/6, \theta_{23} \simeq \pi/4, \theta_{13} \simeq \pi/20.$

The remaining parameters to be measured are sign(Δm_{31}^2), sign(θ_{23} - $\pi/4$) and δ .

To determine δ , parameter degeneracy (particularly of mass hierarchy) must be resolved.

Accelerator and reactor experiments are expected to determine sign(Δm^2_{31}) and δ in 10-20 years.

Backup slides

Global Fits:

Global Fit Forero, Tortola, Valle arXiv:1205.4018 Fogli, Lisi, Marrone, Montanino , Palazzo, Rotunno Phys.Rev. D86 (2012) 013012 arXiv:1205.5254

Rotunno 12

parameter	best fit $\pm 1\sigma$	best fit $\pm 1\sigma$
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.62 ± 0.19	$7.54_{-0.22}^{+0.26}$
$\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	$2.53^{+0.08}_{-0.10} \\ -(2.40^{+0.10}_{-0.07})$	$2.43^{+0.07}_{-0.09}_{-(2.42^{+0.07}_{-0.10})}$
$\sin^2 heta_{12}$	$0.320\substack{+0.015\\-0.017}$	$0.307\substack{+0.018\\-0.016}$
$\sin^2 heta_{23}$	$\begin{array}{c} 0.49\substack{+0.08\\-0.05}\\ 0.53\substack{+0.05\\-0.07}\end{array}$	$\begin{array}{c} 0.398\substack{+0.030\\-0.026}\\ 0.408\substack{+0.035\\-0.030}\end{array}$
$\sin^2 heta_{13}$	$\begin{array}{c} 0.026\substack{+0.003\\-0.004}\\ 0.027\substack{+0.003\\-0.004} \end{array}$	$\begin{array}{c} 0.0245^{+0.0034}_{-0.0031} \\ 0.0246^{+0.0034}_{-0.0031} \end{array}$
δ	$ig(0.83^{+0.54}_{-0.64} ig) \pi \ 0.07 \pi^{-a}$	$(0.89^{+0.29}_{-0.44})\pi$ $(0.90^{+0.32}_{-0.43})\pi$

3 flavor atmospheric v oscillations

$$\frac{\Phi(\nu_e)}{\Phi_0(\nu_e)} - 1 \approx P_2 \cdot (r \cdot \cos^2 \theta_{23} - 1)$$

$$-r \cdot \sin \tilde{\theta}_{13} \cdot \cos^2 \tilde{\theta}_{13} \cdot \sin 2\theta_{23} \cdot (\cos \delta \cdot R_2 - \sin \delta \cdot I_2)$$

$$+2 \sin^2 \tilde{\theta}_{13} \cdot (r \cdot \sin^2 \theta_{23} - 1)$$
Normal Hierarchy Hierarchy stands, inverted hierarchy stands, inve