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Abstract

In dense matter like the Supernovae and at high energy, neutri-
nos have two points where the nonadiabatic transitions could occur.
With the present values of the oscillation parameters in the standard
three flavor scenario, two nonadiabatic transitions can be regarded
as independent, i.e., two can be treated by the two flavor formalism
separately. However, in the presence of new physics, it is not clear in
general whether such independence holds. We examine this question
by assuming hypothetical range of the neutrino energy and by varying
the mixing angles and the mass squared differences in the standard
case. We found the cases where Independent Crossing Approximation
breaks down for some unrealistic range of ∆m2

31 and θ13. We also
discuss the criterion which gives such independence.
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1 Introduction

We now understand the solar neutrino problem [1], i.e., we now know that
the deficit of the electron neutrino flux from the Sun can be accounted for
approximately as the two flavor neutrino oscillations in matter. From the
precise experiments, we know the mixing angle of the neutrino oscillations
is large. It is called Large Mixing Angle solution. Historically, the so-called
Small Mixing Angle solution has also been discussed [2], because it gave
good fit to the solar neutrino data in the past. In this case, the nonadiabatic
transitions, which are jumping between the different neutrino energy levels
in matter, would become important. On the other hand, we also understand
now the atmospheric neutrino problem [1], i.e., the deficit of the muon neu-
trino flux from the cosmic ray can be explained approximately as the two
flavor neutrino oscillations. We also know the oscillation channel of the at-
mospheric neutrino differ from the solar neutrino. These lead us to conclude
that the neutrino oscillation is described by three flavor neutrino oscillations.

In the case of the environments with high density, such as supernovae, it is
important to consider the neutrino oscillations with the three flavor exactly,
since there can be two energy level crossings. Furthermore, if nonadiabatic
transitions occur at each level crossing at all, then we need to take them
into account. In this case, there could be two nonadiabatic transitions [3].
The three flavor neutrino oscillations with two nonadiabatic transitions are
very complicated in general. Although little is known about the exact so-
lution of this very complicated problem, for instance, Ref. [4] assumes the
Independent Crossing Approximation (ICA), which regards two nonadiabatic
transitions as independent. In this approximation, we can regard each nona-
diabatic transition locally as that between the two levels, and then we can
get the total nonadiabatic transition just by multipling each probability of
the nonadiabatic transition [4]:

P̂c = P̂Lower × P̂Higher

.
The reason that ICA has been assumed is (i) because the two energy

ranges which give a resonance do not overlap for the solar and atmospheric
neutrino oscillation parameters and (ii) because the energy of the supernovae
neutrino is so low and the solar neutrino mixing angle is so large that we
would not have nonadiabatic transitions at both of the energy level crossings.

However, if we have new physics beyond the standard model, then the
standard matter effect may be modified [5, 6, 7] and it becomes unclear
whether these reasonings always hold. The purpose of this paper is to exam-
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ine whether ICA holds or not in the three flavor neutrino oscillations, and
to discuss under which condition ICA breaks down. For simplicity we take
only the three flavor case with the standard matter effect as an example and
we will assume hypothetical neutrino energy and hypothetical values of the

oscillation parameters to have nonadiabatic transitions at both energy level
crossings.

From numerical calculations, we found that ICA breaks down for some
range of ∆m2

31 and θ13. We found that ICA breaks down when the ratio
∆m2

31/∆m2
21 is of order one and the mixing angle θ13 is large. In the realistic

range of the oscillation parameters, since ∆m2
31/∆m2

21 is much larger than
one and the mixing angle θ13 is small, the two neutrino energy ranges for the
resonance never overlap. This is the reason why the treatment in Ref. [4] is
regarded as correct. However, it turns out that it is not the correct criterion
because we find that two level crossings become independent even if the two
resonances overlap. Instead of using the notion of the overlapping resonances,
we will introduce the new parameters which gives the criterion of ICA. With
this criterion of ICA, we interpret the breaking of ICA as the sign of a large
contribution of the extra off–diagonal coefficients. Our numerical calculations
confirm this analytic treatment very well.

Although we discuss the simplest case only with the neutrino–electron
interaction in this paper, we can apply our treatment to any other cases even
if it is not known whether the nonadiabatic transitions are independent or
not. For example, even if the effective ratio (∆m̃2

31/∆m̃2
21) in the presence of

new physics is small, or the effective θ̃13 is large, we can discuss independence
of the nonadiabatic transitions.

2 Neutrino oscillations with two flavor in mat-

ter

In this section, we review the standard treatment of the neutrino oscillations
with two flavor.

2.1 Adiabatic transitions

The positive energy part of the Dirac equation for the flavor eigenstates
να(t) (α = e, µ) propagating at time t in matter is given by

i
d

dt
να(t) = H να(t), (1)
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where H is given by

H = U

(
0 0
0 ∆

)
U−1 +

(
A 0
0 0

)
, (2)

here ∆ ≡ ∆m2/2E, A ≡
√
2GFne(R) is the extra potential in medium at a

distance R = ct from the initial point, and U is the 2 × 2 MNS matrix [8].
H can be diagonalized as

H = exp(iσ2θ̃)diag(Ẽ1, Ẽ2) exp(−iσ2θ̃). (3)

where σ2 is the Pauli matrix and the effective mixing angle θ̃ is given by

sin2 2θ̃ =
(∆ sin 2θ)2

(∆ cos 2θ − A)2 + (∆ sin 2θ)2
. (4)

sin2 2θ̃ becomes the maximum at the point A(Rres) = ∆cos 2θ, which is called
the Resonance point.

In the adiabatic case, the positive energy part of the Dirac equation for
the mass eigenstates can be written as

i
d

dt

(
ν̃1
ν̃2

)
=

(
Ẽ1 0

0 Ẽ2

)(
ν̃1
ν̃2

)
, (5)

where ν̃j ≡ exp(−iσ2θ̃) να (j = 1, 2). Integrating Eq.(5), we obtain the
survival probability of the electron neutrino

P (νe → νe;R) = cos2
(
θ̃(R)− θ̃(0)

)
− sin

θ̃(R)

2
sin

θ̃(0)

2
sin2

∫ R

0

∆Ẽ

2
dr, (6)

where the difference of the eigenvalues is

∆Ẽ ≡ Ẽ2 − Ẽ1 =
√
(∆ cos 2θ − A)2 + (∆ sin 2θ)2. (7)

In the case of the solar neutrino, since
∫ R

0
∆Ẽdr ≫ 1 and |A(0)/∆| ≫ 1, we

get
P (νe → νe) = sin2 θ. (8)

2.2 Nonadiabatic transition

Let us now discuss Eq.(1) in the nonadiabatic case, i.e., in the case where
we cannot ignore the variation of the effective mixing angle. In this case, we
have

i
d

dt

(
ν̃1
ν̃2

)
=

(
Ẽ1 −i

˙̃
θ

i
˙̃
θ Ẽ2

)(
ν̃1
ν̃2

)
. (9)
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The off–diagonal elements in Eq.(9) stand for an effect in which neutrino

jumps the energy gap between Ẽ1 and Ẽ2, and such an effect becomes non-
negligible when the following the adiabatic condition breaks down:

γ ≡
∣∣∣∣
∆m2

2E

sin2 2θ

cos 2θ (ṅe/ne)res

∣∣∣∣≫ 1, (10)

which can be derived by comparing the diagonal and off–diagonal elements
at the resonance point.1

Zener [11] derived the jumping probability of spins in a linear magnetic
field. In order for Zener’s method to apply for neutrino, the density profile
of electron has to be approximately linear. In that case, using the adiabatic
condition Eq.(10), the jumping probability is given by

PZener = exp
(
−π

2
γ
)
. (11a)

Kuo and Pantaleone [12] showed that the differential equation for the
exponential profile can be solved exactly. The analytical expression for the
jumping probability is given by

Pexact =

exp
[
−π

2
γ(1− tan2 θ)

]
− exp

[
−π

2
γ

(
1− tan2 θ

sin2 θ

)]

1− exp

[
−π

2
γ

(
1− tan2 θ

sin2 θ

)] . (11b)

Using the jumping probability Pc , we can write down a simple expression for
the survival probability of the electron neutrino. Again by taking the limits∫ R

0
∆Ẽdr ≫ 1 and |A(0)/∆| ≫ 1, we obtain

P (νe → νe) =
(
cos2 θ sin2 θ

)( 1− Pc Pc

Pc 1− Pc

)(
0
1

)

= sin2 θ + Pc cos 2θ. (12)

The formulae of Eqs.(11) for the jumping probability differ when the
mixing angle is large. In this case, especially for the extreme nonadiabatic
transition, i.e., γ → 0, the jumping probability Pc reaches the maximum
value, i.e., complete conversion, in the Zener’s solution, but it does not in
the exact solution.

1Here the resonance point differs from the Point of Maximal Violation of Adiabaticity [9,
10].
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3 Neutrino oscillations with three flavor in

matter

The positive energy part of the Dirac equation with three flavor in matter is
given by

i
d

dt
να(t) = H(t)να(t), (13a)

where α = e, µ, τ , the Hamiltonian is

H(t) = U




0 0 0
0 ∆21 0
0 0 ∆31



U−1 +




A(t) 0 0
0 0 0
0 0 0



 , (13b)

and the standard parametrization [1] for the 3× 3 MNS matrix is

U =




c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 .

Here sij ≡ sin θij , cij ≡ cos θij , θij are the mixing angles and δ is the CP
phase as in the quark sector [13].

3.1 ICA with two nonadiabatic transitions

For the nonadiabatic transitions with three flavor, the neutrino can have two
jumping points. When these two points are approximately far apart, from
the analogy with Eq.(12), we get the survival probability of the electron
neutrino [4]:

P (νe → νe) =
(
|Ue1|2 |Ue2|2 |Ue3|2

)
P̂LP̂H




0
0
1




= |Ue1|2PLPH + |Ue2|2PH(1− PL) + |Ue3|2(1− PH), (14)

where

P̂L =




1− PL PL 0
PL 1− PL 0
0 0 1





P̂H =




1 0 0
0 1− PH PH

0 PH 1− PH


 .

Here, PL and PH are the jumping probabilities at the lower and higher cross-
ing point each other, and Uei are the elements of the three flavor MNS matrix.

6



3.2 The setting of our analysis

What we would like to discuss here is whether the ICA in Eq.(14) holds or
not. Let us start our study by assuming several situations.

Throughout this paper, we will take the following reference values for
the oscillation parameters and the reference function for the electron density
ne(R) at distance R from the initial point:

sin2 2θ12 = 0.87 (15a)

sin2 2θ23 = 1.0 (15b)

∆m2
21 = 7.9× 10−5 eV2 (15c)

δ = 0 (15d)

ne(R) ≃ 50× ne⊙(R) cm−3 (15e)

ne⊙(R) ≃ 245NA exp(−10R/R⊙) cm−3, (15f)

where NA is the Avogadro’s number, ne⊙(R) stands for the electron density
in the solar standard model [14], and R⊙ is the solar radius.

A few remarks are in order. (i) We refer to the standard value [1] for
the first three oscillation parameters. (ii) We assume that the CP phase δ is
equal to zero. This is because the transition probability of νe → νe (and its
antineutrino) did not depend on the CP phase δ [15]. (iii) We assume the
electron density which is proportional to the one in the Sun but is larger by a
factor 50, in order to get the two energy level crossing.2 For the exponential
density profile, we can get a simple value ṅe/ne = const. for Eq.(10).

On the other hand, In order to have nonadiabatic transitions at the two
level crossings, we will have to assume hypothetical values for the following
parameters:

sin2 2θ31

∆m2
31

E,

where we will assume ∆m2
31 > 0, i.e., we will assume the so-called normal

hierarchy, throughout this paper for νe (instead of ν̄e) to have two level
crossings.

Furthermore, we adopt the expression Eq.(11b) for PL and PH for the
low (high). Here we take each of the adiabatic conditions, γL and γH as two

2If |A/∆31| ≫ 1, then it follows that ν̃e(0) ≃ ν̃3(0)
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levels at each crossing point. From the analogy with Eq.(10) we have

γL ≡
∣∣∣∣

∆21 sin
2 2θ12

cos 2θ12 (ṅe/ne)res

∣∣∣∣ (16a)

γH ≡
∣∣∣∣

∆sin2 2θ13
cos 2θ13 (ṅe/ne)res

∣∣∣∣ , (16b)

where we have defined,

∆21 ≡ ∆m2
21/2E

∆31 ≡ ∆m2
31/2E

∆ ≡ ∆31 −∆21 sin
2 θ12 . (17)

In our study, we use the numerical calculation to check whether ICA holds
or not. We use the Runge–Kutta method to solve numerically the positive
energy part of the Dirac equation for three flavor (see Eqs.(13)).

3.3 Energy dependence of ICA

First of all, let us comment on the energy dependence of ICA. Since the
Hamiltonian in vacuum is inversely proportional to the neutrino energy (see
Eq.(13b)), the higher the neutrino energy is, the closer the distance of the
two crossing points becomes. Figure 1 shows the asymptote of the energy di-
agram, in which the neutrino energy is 50MeV. Although the density profile
is of the exponential type, the higher point is so near to the lower point that
the density profile looks like linear. We would like to discuss this problem in
more detail.

In Fig.2, we have plotted the probability P (νe → νe) by the analytic
solution assuming ICA and that by the numerical one for each neutrino
energy. The broken line (the box points) indicates the analytic (numerical)
solution, respectively. The set of the oscillation parameters assumed here are

sin2 2θ13 = 0.08

∆m2
31 = 2.4× 10−3 eV2.

We assume the error of the numerical calculation within 0.005, and we find
no difference between the two solutions in Fig.2. This result indicates that
ICA holds even if the distance between two crossing points is close, i.e., the
neutrino energy is high.
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Figure 1: The diagonal elements of the neutrino in matter. Two crossing
points are close.
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Figure 2: The difference of P (νe → νe) between by the analytic solution
assuming ICA (the broken line) and by the numerical calculation (the box
points). Here, sin2 2θ13 = 0.08 and ∆m2

31 = 2.4× 10−3 eV2.
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From the analogy with Eq.(4), we get

sin2 2θ̃12 =
(∆21 sin 2θ12)

2

(∆21 cos 2θ12 − A)2 + (∆21 sin 2θ12)2
(18a)

sin2 2θ̃13 =
(∆ sin 2θ13)

2

(∆ cos 2θ13 − A)2 + (∆ sin 2θ13)2
, (18b)

where ∆ has been defined in Eq.(17). In Fig.3, we have plotted the shapes
of Eq.(18a)—the right line, and of Eq.(18b)—the left line, in the case:

sin2 2θ13 = 1× 10−6

∆m2
31 = 2.4× 10−3 eV2

E = 700MeV,

as the neutrino propagate in the medium to vacuum. Thus, two resonances
seem to be far apart.
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Figure 3: Each shape of two resonances, non–overlapping. The left line is the
higher resonance—Eq.(18b). The right line is the lower resonance—Eq.(18a).
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Introducing the notations

y ≡ A/∆21

α ≡ ∆/∆21 .

we can rewrite Eqs.(18),

sin2 2θ̃12 =
sin2 2θ12

(cos 2θ12 − y)2 + sin2 2θ12
(19a)

sin2 2θ̃13 =
(α sin 2θ13)

2

(α cos 2θ13 − y)2 + (α sin 2θ13)2
. (19b)

Thus, each resonance point is

yH = α cos 2θ13 (20a)

yL = cos 2θ12 , (20b)

and each half width at half maximums is

ΓH = α sin 2θ13 (21a)

ΓL = sin 2θ12 . (21b)

These quantities are independent of the neutrino energy. This means that
two resonances never overlap even though the neutrino energy gets higher,
i.e., even if the distance between two crossing points gets closer. From this
one might be tempted to conclude that ICA always holds. The question we
have to ask here is the validity of the non–overlapping resonance to judge
whether ICA holds or not.

3.4 ICA for overlapping resonances

Let us now imagine the hypothetical situation:

∆m2
31 → 0.04×∆m2

31 ∼ ∆m2
21 ,

that is,
∆m2

31/∆m2
21 ≃ O(1).

This parameter realizes the overlapping resonances (see Fig.4). Or, let us
here imagine another hypothetical situation,

sin2 2θ13 = 0.75 (θ13 = 30◦).
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Figure 4: The modified resonances—overlapping. Here, ∆m2
31/∆m2

21 ≃ O(1).
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Figure 5: The difference of P (νe → νe) between by the analytic solution
assuming ICA (the broken line) and by the numerical calculation (the box
points). Here, sin2 2θ13 = 0.75 and ∆m2

31 = 2.4× 10−3 eV2.
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This parameter realizes the overlapping resonance too.
In Fig.5, we have plotted the both probabilities P (νe → νe) for the second

situation (sin2 2θ13 = 0.75). Again we find no difference between the two
solutions. From this we observe that overlapping of the two resonances is
not a sufficient condition for ICA to break down.

3.5 Dependence of ICA on the mixing angle and the

mass squared difference

To search for the parameter range of ICA, we have examined several cases
for θ13 and ∆m2

31, and tested whether ICA held or not. For example, in the
case:

∆m2
31/∆m2

21 ≃ O(1)

sin2 2θ13 = 0.08,

we found that the ICA breaks down (see Fig.6).
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Figure 6: The ICA breaking (∆m2
31/∆m2

21 ≃ O(1), sin2 2θ13 = 0.08).
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Table 1: The difference of P (νe → νe) between by the analytic solution
assuming ICA and by the numerical calculation. Nonzero terms mean that
ICA is broken.

In Tab.1, we have shown the difference between P (νe → νe) by the an-
alytic solution assuming ICA and the one by the numerical one for several
sets of sin2 2θ13 and ∆m2

31/∆m2
21. The numerical value 0.000 indicates that

the difference is less than 0.005, the error of the numerical calculations. In
such cases, we interpreted that ICA holds. The result implies that ICA is
not applicable when θ13 is large and when ∆m2

31/∆m2
21 is small.3

3.6 The criterion of ICA

Let us again consider the positive energy part of the Dirac equation for the
neutrino in medium. From Eq.(13b), we obtain

i
d

dt
ν̃i = Ũ−1Hf Ũ ν̃i − iŨ−1dŨ

dt
ν̃i . (22)

In the adiabatic case, we can ignore the second term on the right hand side
of Eq.(22). Doing this matrix arithmetic, we have

i
d

dt




ν̃1(t)

ν̃2(t)

ν̃3(t)




=




Ẽ1 −i
˙̃
θ12 −ic̃12

˙̃
θ13

i
˙̃
θ12 Ẽ2 is̃12

˙̃
θ13

ic̃12
˙̃
θ13 −is̃12

˙̃
θ13 Ẽ3







ν̃1(t)

ν̃2(t)

ν̃3(t)




. (23)

3This is equal to the condition for which the two flavor approximation fails.
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In order for ICA to apply to Eq.(23), the Hamiltonian HL at the lower
resonance has to be:

HL =




Ẽ1 −i
˙̃
θ12 0

i
˙̃
θ12 Ẽ2 0

0 0 Ẽ3


 . (24a)

Likewise, we have to have the following Hamiltonian HH at the higher reso-
nance, for ICA to apply:

HH =




Ẽ1 0 0

0 Ẽ2 i
˙̃
θ13

0 −i
˙̃
θ13 Ẽ3


 . (24b)

In this case, we can get Eq.(14). From this, we observe that the ICA breaks

down, for example, when the extra teams depending on dθ̃13/dt becomes
large in HL at the lower resonance.

Let us introduce the new parameter for the indicator of the ICA:

κL ≡
(
dθ̃13
dt

/
∆Ẽ21

)

L

. (25)

When this parameter is large, it means that the contribution of dθ̃13/dt is
large in HL.

In Fig.7, where the x–axis (y–axis) is ∆m2
31/∆m2

21 (sin2 2θ13), we have
drawn the contour lines of κL with the neutrino energy satisfying γL = 1 (see
Eq.(10)), for κL = 1.0, 0.5, 0.1. Thus, the new parameter κL describes the
results in Tab.1 very well.

We can rewrite κ−1
L as

κ−1
L = ∆21 sin 2θ12

/(
Ȧ sin2 2θ̃13
∆sin 2θ13

)

L

=
∆sin 2θ12

cos 2θ12 (ṅe/ne)L
× (cos 2θ13 − (∆21/∆) cos 2θ12)

2 + sin2 2θ13
sin 2θ13

.

Fixing the neutrino energy by the condition γL = 1, we get

κ−1
L (E; γL = 1) =

(
∆

∆21

)
(cos 2θ13 − (∆21/∆) cos 2θ12)

2 + sin2 2θ13
sin 2θ12 sin 2θ13

. (26a)
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Figure 7: The contour map of κL.

As in Eq.(26a), we can get κ−1
H at the higher resonance

κ−1
H (E; γH = 1) =

(
∆21

∆

)
((∆/∆21) cos 2θ13 − cos 2θ12)

2 + sin2 2θ12
sin 2θ12 sin 2θ13

. (26b)

Eqs.(26) are nothing but the condition of whether ICA holds or not, i.e., the
condition for ICA as functions of θ13 and ∆m2

31/∆m2
21. It is remarkable that

these parameters in Eqs.(26) are independent of the density profile ne(R).

4 Disccusion

In the previous section, we have investigated whether ICA held or not, and
the neutrino energy which requires ICA to break down ranges in the interval
5MeV ≤ E ≤ 50TeV. At high energy, the effect of the absorption of the
neutrino by medium becomes nonnegligible. Let us consider this effect first.
The reaction number of the neutrino N(/sec) is

N = L× σ(νN)

= NA × ρ× σ × R

σ(νN) = 0.68× 10−38 × E (cm2),

where L is the luminosity of neutrino, σ(νN) is the cross section of neutrino–
nucleus and ρ is the matter density. Here we estimated the matter density
ρ = ne(R) at ne(0) = const. Thus, the flight ranges at each neutrino energy
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for the present density profile Eq.(15e) are

R ≃ 2× 10−1 km (1PeV)

≃ 2× 102 km (1TeV)

≃ 2× 105 km (1GeV).

Although this is a rough estimate, we find that the neutrino, whose energy is
not less than 1TeV, cannot reach the vacuum area. Therefore, our hypothesis
that high energy neutrinos are emitted at the center of a supernova and are
observed outside of the supernova may not make sense.

Secondly, in dense matter for which there are two crossing points, the neu-
trino density nν(R) becomes large too. In such a case, the neutrino–neutrino
interaction is strong [16, 17, 18, 19, 20, 21, 22]. Adding this effect, we need
to incorporate nν(R), which is time–dependent, into the off–diagonal parts
for H (see Eqs.(13)). No formula of the nonadiabatic transitions attended
by this effect have been established even the formulae with two flavor. In
our study, we have assumed that the two jumping points are far apart from
the range where the neutrino–neutrino interactions become important.

5 Conclusion

In this paper, we addressed the question whether the Independent Crossing
Approximation (ICA) holds or not. Ref. [4] has focused on the picture of the
non–overlapping resonance by which they judge whether two nonadiabatic
transitions are independent or not. One of the purposes of this study is to
check whether this interpretation is correct or not.

First of all, we have checked the dependence of ICA on the neutrino
energy. Namely, we checked the dependence of ICA on the distance between
the higher and lower crossing points. By numerical calculations, we showed
that ICA is independent of the neutrino energy, that is, the distance between
two crossing points.

Secondly, we have checked the validity of the picture of the non–overlapping
resonance for ICA by varying the parameters θ13 and ∆m2

31 in the hypothet-
ical ranges. We found numerically that ICA can hold even if two resonances
overlap, i.e., ICA does not always break down even if two resonant widths
overlap.

Thirdly, we have searched for the case in which ICA breaks down. We
found that ICA breaks down when θ13 is large and when ∆m2

31/∆m2
21 is

small.
Finally, we have introduced the new parameters as the criterion of ICA.

With this criterion of ICA, we interpret the ICA breaking as the sign of a large

17



contribution of the off–diagonal coefficients, for example, the contribution of
dθ̃13/dt at the lower resonance. We have shown that the new parameters—the
criterion of ICA, taking the extra contribution into consideration, describe
well whether ICA holds or not.

From the recent experiments, we know that the ratio ∆m2
31/∆m2

21 is
large [1] and the mixing angle θ13 is small [23]. Therefore the ICA breaking
is tiny enough for the two nonadiabatic transitions to be regarded as inde-
pendent, and all we need is just to multiply P̂H and P̂L which are obtained
by the two flavor formalism, as in Ref. [4].

In this paper, we have dealt with the only the neutrino–electron interac-
tion. In other cases, for example, where neutrino transition moments cou-
ple to the large magnetic fields [25, 26, 27, 28], under the influence of the
neutrino–neutrino interaction [16, 17, 18, 19, 20, 21, 22], or under the influ-
ence of the Non–Standard Interaction [5, 6, 7], our procedure is necessary.
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