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Chapter 1

Introduction and Summary

The standard model of particle physics is one of the most successful theory in physics. It

is consistent with almost all results of experiments up to now. It does not, however, seem

to be ultimate one because, for example, the standard model does not include the gravity.

Furthermore, the standard model has many parameters such as the Yukawa coupling

constants between Higgs and each of the fermions; The values of the coupling constants

are not predicted in the model but only tuned to produce observed masses of fermions.

Thus, we crave to uncover phenomena which can not be explained in the natural way by

the model as the hints for the physics beyond the standard model.

The neutrino is rather strange particle in the standard model. It had been regarded

as unique massless fermion in the standard electro-weak model [1] which constitutes the

standard model. Even after the discovery of the neutrino mass by the atmospheric neutrino

measurement with Super-Kamiokande [2], the neutrino is unnaturally light compared with

other fermions. It is interesting because smallness of the mass can be an indication of the

existence of very large energy scale [3] where the physics beyond the standard model will

unfold itself. On the other hand, the existence of neutrino masses leads to the lepton

flavor mixing similarly to the quark mixing. However, it turned out that the structure

of the flavor mixing in the lepton sector is quite different from that in the quark sector.

Neutrino oscillation experiments have shown that the lepton sector has two large mixing

angle in contrast to the small mixing nature of the quark sector. From those points of

view, neutrino physics is interesting field, and exploring its properties is very important.

In this thesis, the subject is how to determine their mixing parameters precisely.

The lepton flavor mixing is expressed with the Maki-Nakagawa-Sakata (MNS) ma-

trix [4]. In the three neutrino scheme, the MNS matrix is parameterized by three mixing

angles (θ12, θ23, and θ13), two differences of squared masses (∆m2
21 and ∆m2

31), and a CP

violating phase δ. The values of those parameters can be determined by the measurement

of the neutrino oscillation due to the lepton flavor mixing. By measuring the deficit of
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µ-flavor neutrinos produced in the atmosphere, Super-Kamiokande has shown that the

neutrino oscillation occurs and neutrinos have their masses in 1998 [2]. Since nothing

happened for e-flavor atmospheric neutrinos, the deficit of µ-flavor ones is understood as

the oscillation to τ -flavor ones. Since the oscillation is characterized by the mixing of the

2-3 sector, the parameters in the sector have been explored by the measurement of atmo-

spheric neutrinos. The consistent result is exhibited by the K2K experiment [5] which is

the first long baseline experiment of the neutrino oscillation with the accelerator neutrino.

On the other hand, the parameters in the 1-2 mixing sector have been determined as the

solution of the solar neutrino problem. The solar neutrino problem, namely the remark-

able deficiency of νe from the sun, was first recognized in the late 1960’s [6, 7] and had

been long-term problem. The deficiency is explained by the oscillation of νe characterized

by the 1-2 mixing. Recently, the solution of the problem was pinned down by combin-

ing solar neutrino measurements [6, 8, 9, 10, 11] and the long baseline reactor neutrino

measurement [12]. The atmospheric and solar neutrino measurements disclosed that the

mixings of 2-3 and 1-2 sectors are both large.

The 1-3 mixing sector which includes CP violating phase have not been determined

yet because of the smallness of the mixing. We have only an upper bound on the mixing

sin2 2θ13 < 0.15 imposed by the CHOOZ reactor experiment [13]. Measuring θ13 is very

important because the value is directly related with the possibility of observing leptonic

CP violation. The experiments for the observation of CP violation can not be started

without finding that θ13 is not extremely small.

We discuss in this thesis the possibility to measure θ13 by the future reactor experiment

with Kashiwazaki-Kariwa nuclear power plant [14] which is the most powerful (24.3GWth)

in the world. Reducing systematic errors is crucial to improve the CHOOZ bound signif-

icantly. For this purpose, we develop two detector method by placing identical detectors

at near and far from a reactor. It is estimated that the systematic error can be reduced

from 2.7% of the CHOOZ experiment to 1% level by virtue of the cancellation of corre-

lated systematic errors between the measurements with near and far detectors; Examples

of correlated errors are the error on neutrino flux, the error on the cross section for the

detection, and so on. Then, we find that the sensitivity to sin2 2θ13 is improved by about

one order of magnitude. It is emphasized that the reactor measurement of sin2 2θ13 is the

pure one without any ambiguity caused by other neutrino mixing parameters. We discuss

also the application of the measurement of sin2 2θ13 with reactor νe.

The other way to measure sin2 2θ13 is the utilization of the long baseline (LBL) os-

cillation experiment of the accelerator neutrino. The appearance measurement by the

LBL experiment is, however, afflicted with the problem of the so-called parameter degen-

eracy [15, 16, 17, 18] while the experiment potentially has high sensitivities to θ13 and

4



δ. There can be eight sets of parameter values that explain P (νµ → νµ), P (νµ → νe),

and P (νµ → νe) because of the problem. Hence, studying how to resolve the problem is

important for the determination of parameter values. Throughout this thesis, we focus

on the J-PARC (Japan Proton Accelerator Research Complex) neutrino project [19] as

the LBL experiment. In the J-PARC experiment with the beam of the first oscillation

maximum energy E = |∆m2
31|L/2π, eight solutions of sin2 2θ13 are effectively reduced to

two solutions which correspond to the ambiguity of θ23 ↔ π/2 − θ23[18, 20]; The ambi-

guity of θ23 is caused by the fact that the information of θ23 is obtained as sin2 2θ23 by

νµ disappearance measurement: sin 2θ23 = sin(π − 2θ23). We investigate the possibility of

resolving the {θ23, θ13} degeneracy in this thesis by combining the reactor experiment of

θ13 with the J-PARC experiment [14]. The analysis is based on the comparison between

the sensitivity of reactor experiment and the split of two sin2 2θ13 due to the degeneracy

problem. If the reactor sensitivity is enough to exclude the fake solution, the θ23 degener-

acy is resolved, and then the precise determination of unique values of θ13 and θ23 will be

achieved.

We quest for also the leptonic CP violation. The conventional way to search for

the CP violation is combining measurements of P (νµ → νe) and P (νµ → νe) in the

LBL experiment. We consider, as a new possibility, combining P (νµ → νe) measurement

in the J-PARC phase II, where 4MW beam and Hyper-Kamiokande of 540kt fiducial

mass are assumed, with P (νe → νe) measurement in the reactor experiment [21]. It is

fruitful because the reactor experiment does not need to wait the completion of ν mode

measurement of P (νµ → νe) while ν mode measurement must do. Thus, the reactor-LBL

combined method can provide the first indication of the leptonic CP violation. We examine

also the possibility of detecting CP violation by combining the reactor experiment with

the J-PARC experiment without upgraded beam nor Hyper-Kamiokande, namely very

long exposure with 0.75MW beam and Super-Kamiokande of 22.5kt fiducial mass.

This thesis is composed as follows. First of all, we overview the theory of neutrinos

and their masses in Chapter 2. The theory of the neutrino oscillation is explained also in

the chapter. Chapter 3 is devoted to a review of the recent status of neutrino oscillation

experiments. We survey the future long baseline accelerator experiments in Chapter 4

with particular emphasis on the J-PARC neutrino project. The problem of parameter

degeneracy, from which LBL experiments suffer, is also described in this chapter. The

reactor experiment for θ13 measurement with Kashiwazaki-Kariwa nuclear power plant,

which plays the most important role in this thesis, is addressed in Chapter 5. Then, we

discuss about the possibility of resolving the parameter degeneracy problem by combining

reactor and the J-PARC (ν mode and ν mode) experiments. The discussion in this chapter

is based on [14]. Finally, we investigate the possibility of observing the leptonic CP
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violation by combining reactor and J-PARC (ν mode) experiments in Chapter 6. The

work in this chapter rests on [21]. We conclude in Chapter 7. The prescription for

statistical analysis is explained briefly in Appendix.

Throughout this thesis, we use the data summarized in the reference [22] and the

natural unit in which each of the reduced Planck constant (~ ≡ h/2π = 6.6×10−22MeV ·s)
and the speed of light (c = 3 × 108m · s−1) is regarded as unity. I mention also an useful

website [23] on neutrinos.
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Chapter 2

Massive Neutrinos in a Minimal

Extension of the Standard Model

2.1 Massless Neutrinos in the Standard Model of Particle

Physics

The standard model of the particle physics is so powerful that it explains most of the

results of existing experiments. It is made up of the Quantum ChromoDynamics (QCD)

and the standard electroweak model [1] which includes neutrinos. In this section, only

the standard electroweak model is overviewed with emphasis on neutrinos. The standard

electroweak model is based on the SU(2)L × U(1)Y gauge symmetry. The gauge bosons

are denoted as W i
µ(i = 1, 2, 3) and Bµ for SU(2)L and U(1)Y , respectively. All of fermion

fields ψ can be projected to the left-handed and right-handed ones as

ψL ≡ 1

2

(

1 − γ5
)

ψ, ψR ≡ 1

2

(

1 + γ5
)

ψ, γ5 ≡
(

−1 0

0 1

)

. (2.1)

The left-handed leptons and quarks form the doublets with respect to SU(2)L:

L1, L2, L3 ≡
(

ν′eL

e′L

)

,

(

ν′µL

µ′L

)

,

(

ν′τL

τ ′L

)

, (2.2)

Q1, Q2, Q3 ≡
(

u′L

d′L

)

,

(

c′L

s′L

)

,

(

t′L

b′L

)

, (2.3)

where the “prime” is used for convenience in the following part. On the other hand, the

right-handed fermions are regarded as the singlets under SU(2)L transformation:

e′R, · · · , u′R, · · · , d′R, · · · . (2.4)
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Note that the right-handed neutrinos are not included because neutrinos are assumed

to be massless in the model. We deal with only the particles of the first generation for

the time being for simplicity. The gauge symmetries forbid not only the gauge bosons

but also the fermions to have their mass terms because ψL and ψR belong to different

representations of SU(2)L; The mass terms mψR ψL are not invariant with respect to the

gauge transformations. The Higgs mechanism enable us to get over the difficulty. We

introduce Higgs bosons as a SU(2)L doublet

φ ≡
(

φ+

φ0

)

, (2.5)

and their potential

V (φ) ≡ −λ2v2φ†φ+
λ2

2

(

φ†φ
)2
. (2.6)

The potential has the minimum (vacuum) at non-zero φ, and we choose it as

φ0 ≡ 1√
2

(

0

v

)

. (2.7)

Any other choice of the vacuum can be made to the above one by an appropriate SU(2)L

transformation. Once we have chosen a vacuum, the symmetry SU(2)L × U(1)Y is spon-

taneously broken in the theory constructed on the ground state. Then, the mass terms of

the gauge bosons arise from the kinetic term for the Higgs boson

|Dµφ|2 ≡
∣

∣

∣

∣

∣

(

∂µ − igW i
µT̂

i − ig′
Ŷ

2
Bµ

)

φ

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1√
2

(

−igW i
µ

σi

2
− ig′

1

2
Bµ

)

(

0

v

)∣

∣

∣

∣

∣

2

+ · · ·

=
1

2

v2

4

{

g2(W 1
µ)2 + g2(W 2

µ)2 + (−gW 3
µ + g′Bµ)2

}

+ · · · , (2.8)

where T̂ i = σi/2 and Ŷ /2 represent the generators of SU(2)L and U(1)Y , respectively;

The charge assignments for each particles are listed in the Table 2.1. We can identify the

three massive bosons in (2.8) as W± and Z bosons:

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, mW = g
v

2
,

Zµ =
1

√

g2 + (g′)2

(

gW 3
µ − g′Bµ

)

, mZ =
√

g2 + (g′)2
v

2
(2.9)

The fourth gauge boson Aµ, which is orthogonal to Z, is massless and identified as the

photon:
(

Zµ

Aµ

)

=

(

cos θw − sin θw

sin θw cos θw

)(

W 3
µ

Bµ

)

,
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uL dL νeL eL uR dR eR φ+ φ0

T 3 for SU(2)L 1/2 −1/2 1/2 −1/2 0 0 0 1/2 −1/2

Y/2 for U(1)Y 1/6 1/6 −1/2 −1/2 2/3 −1/3 −1 1/2 1/2

QEM for U(1)EM 2/3 −1/3 0 −1 2/3 −1/3 −1 1 0

Table 2.1: Listed are the charge assignments for the particles in the standard electroweak

model of SU(2)L×U(1)Y . The electro-magnetic charges are obtained by QEM = T 3+Y/2.

cos θw ≡ g
√

g2 + (g′)2
, sin θw ≡ g′

√

g2 + (g′)2
. (2.10)

Note that mW and mZ have the relation

mW = mZ cos θw. (2.11)

The experimental results, which are mZ = 91GeV [24] and mW = 80GeV [24, 25], show

cos θw = 0.88; It is consistent completely with the result sin2 θw = 0.23 obtained by the

measurement of νµe and νµe elastic scatterings [26]. Eventually, the original SU(2)L ×
U(1)Y is spontaneously broken by the Higgs boson to U(1)EM which conserves the electro-

magnetic charge. In terms of those massive gauge bosons, the covariant derivative becomes

Dµ = ∂µ − igW i
µT̂

i − ig′
Ŷ

2
Bµ

= ∂µ − i
g√
2

(

W+
µ T̂

+ +W−
µ T̂

−
)

− i
g

cos θw
Zµ

{

T̂ 3 −
(

T̂ 3 +
Ŷ

2

)

sin2 θw

}

− ig sin θw Aµ

(

T̂ 3 +
Ŷ

2

)

, (2.12)

where T̂± ≡ T̂ 1 ± iT̂ 2. It is found by the last term in (2.12) that the coupling constant of

the electro-magnetic interaction, which is the electron charge e, is

e = g sin θw ' 0.47 g, (2.13)

and the generator Q̂EM for U(1)EM is

Q̂EM = T̂ 3 +
Ŷ

2
. (2.14)

It is seen in Table 2.1 that T3 and Y are assigned to each particle so that the values of the

charge QEM are consistent with the measurement. The fermions couple with those gauge
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bosons as

∑

j

ψj(i /D)ψj = L (i/∂)L+ e′R (i/∂)e′R + · · ·

+ g
(

W+
µ J

µ+
CC +W−

µ J
µ−
CC + ZµJ

µ
NC

)

+ eAµJ
µ
EM, (2.15)

where

Jµ+
CC = (Jµ−

CC)† ≡ 1√
2

(

ν′eL γ
µe′L + u′L γ

µd′L

)

, (2.16)

Jµ
NC ≡ 1

cos θw

{

ν′eL γ
µ
(

T̂ 3 − Q̂ sin2 θw

)

ν′eL + · · ·
}

, (2.17)

Jµ
EM ≡ e′L γ

µ Q̂ e′L + · · · . (2.18)

On the other hand, the fermion mass terms emerge out of the Yukawa interaction

terms with φ:

−yee Lφ e
′
R − yuu ε

αβ Qα φ
†
β u

′
R − yddQφd

′
R

= − 1√
2
yee v e

′
R e

′
L +

1√
2
yuu v u

′
R u

′
L +

1√
2
ydd v d

′
R d

′
L + · · · . (2.19)

The omitted terms are the Yukawa interaction terms with the physical Higgs boson h which

is the fluctuation around the vacuum (2.7). Since the Yukawa coupling constants are the

free parameters of the model, the fermion masses are not predicted but just explained.

Now, let us consider multiple generation case. In general, the matrix of the Yukawa

coupling constants is not diagonal with respect to generation index, namely off-diagonal

elements yuc etc. are allowed. The matrix Yu for up-type quarks is diagonalized as

U †
uLYu UuR =

√
2 v diag(mj

u), (2.20)

where UuL and UuR are unitary matrices, and mj
u (> 0) denote the masses of up-type

quarks. In the similar way, the matrix for down-type quarks is also diagonalized as

U †
dLYd UdR =

√
2 v diag(mj

d). (2.21)

The unitary matrices are eliminated from the mass matrix by the redefinition of the quarks

(u′R)j ≡ U
jk
uR u

k
R, (u′L)j ≡ U

jk
uL u

k
L,

(d′R)j ≡ U jk
dR d

k
R, (dL′)j ≡ U jk

dL d
k
L. (2.22)

This redefinitions affect only the terms of the charged-current weak interaction (2.16)

because each of those includes both up-type and down-type quarks:

(u′L)i γµ (d′L)i = (uL)j γµ V jk(dL)k, V ≡ U †
uLUdL. (2.23)
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The matrix V is what we call the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [27,

28]. Since neutrinos are massless in the standard model, there is no mixing in the lepton

sector.

2.2 Physics of Massive Neutrinos

2.2.1 Neutrino oscillations in vacuum

When neutrinos have their masses, the mass eigenstates are not necessarily the same as

the flavor eigenstates. Then, we can introduce the neutrino mixing

|να〉 =
∑

i

Uαi|νi〉, |νi〉 =
∑

α

U∗
αi|να〉, (2.24)

where |να〉 (|νi〉) represents the flavor (mass) eigenstate and U denotes the Maki-Nakagawa-

Sakata (MNS) matrix [4] which is similar to the CKM matrix in the quark sector. The

propagation of the mass eigenstates are controlled by the Schrödinger equation

i
d

dt
|νi(t)〉 = Ei|νi(t)〉, (2.25)

where Ei =
√

p2 +m2
i . Assuming that the neutrinos are relativistic, the equation becomes

i
d

dL
|νi(L)〉 '

(

P +
m2

i

2p

)

|νi(L)〉, (2.26)

where L is the variable of the distance. Here, suppose that a neutrino was born as

να: |να(0)〉 =
∑

i Uαi|νi(0)〉. Then, after the propagation for a distance L, the neutrino

becomes

|να(0)〉 =
∑

i

Uαi e
i

m2
i L

2E |νi(L)〉 (2.27)

=
∑

β

∑

i

Uαi e
i

m2
i L

2E U∗
βi|νβ(L)〉, (2.28)

where we used p ' E and ignored an irrelevant common phase exp(−ipL). The transition

probability P (να → νβ) is obtained as

P (να → νβ) = |〈νβ(L)|να(0)〉|2

= δαβ − 4
∑

j>k

Re
(

UαjU
∗
βjU

∗
αkUβk

)

sin2

(

∆m2
jkL

4E

)

− 2
∑

j>k

Im
(

UαjU
∗
βjU

∗
αkUβk

)

sin

(

∆m2
jkL

2E

)

, (2.29)
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lα

W
να

Uαj

νj

U
∗

βj

νβ

lβ

W

Figure 2.1: Flavor transition of neutrinos.

where ∆m2
jk ≡ m2

j −m2
k. We can find that the probability oscillates with respect to the

distance L, and that is the neutrino oscillation. Note that the oscillation probabilities

depend on not mj but ∆m2
jk. Thus, the neutrino masses themselves can not be measured

by oscillation experiments though an evidence for oscillation implies that at least one of

the neutrino masses is non-vanishing.

When CPT is conserving, the oscillation probabilities in vacuum obey the following

relation

P (ν̄α → ν̄β ;U) = CPT [P (ν̄α → ν̄β ;U)] = P (νβ → να;U)

= P (να → νβ ;U∗). (2.30)

Therefore, non-real U leads the CP violation P (ν̄α → ν̄β ;U) 6= P (να → νβ ;U). It is clear

that the CP violating effect, which is the effect of non-real U , comes out from the last term

in eq. (2.29). Since the term vanishes for α = β, disappearance probabilities 1−P (να → να)

are CP invariant. The number of phase (non-real) parameters of the mixing matrix are

obtained as follows. A general N ×N unitary matrix has N 2 parameters. N (N − 1)/2 of

those are angle (real) parameters, where the number is of the parameters of a generalN×N
orthogonal matrix. Furthermore, the redefinition of the relative phases of 2N fermions can

eliminate 2N − 1 of phase parameters, excluding an overall phase. Eventually, the mixing

matrix includes N (N − 1)/2 angle parameters and (N − 1)(N − 2)/2 phase parameters.

It is found that N ≥ 3 is necessary for CP violation [28].

In the case of two neutrinos, the neutrino mixing can be described as
(

νe

νµ

)

=

(

cos θ sin θ

− sin θ cos θ

)(

ν1

ν2

)

. (2.31)

The explicit forms of the oscillation probabilities are

P (να → νβ) = P (ν̄α → ν̄β) = sin2 2θ sin2

(

∆m2L

4E

)

, (2.32)

P (να → να) = P (ν̄α → ν̄α) = 1− sin2 2θ sin2

(

∆m2L

4E

)

, (2.33)

12



where α 6= β. Although the actual number of neutrinos is not two, those probabilities are

useful enough because two neutrino approximation is applicable for many experiments.

For such a case, the value of sin2 2θ and ∆m2 can be measured by a single oscillation ex-

periment. Even if ∆m2
jk is tiny, the effect of the oscillation can be observed by performing

experiments at long enough L or low enough E so that ∆m2
jkL/(4E) is of order unity. It

is worth to remember that it can be expressed as

∆m2
jkL

4E
' 1.27

∆m2
jk(eV

2) L(km)

E(GeV)
(2.34)

in the natural unit c~ = 197MeV·fm = 1.

In the case of three neutrinos, the mixing matrix has three angles and one phase

parameters. Throughout this thesis, we use the standard parametrization [29, 30] of the

mixing matrix

U ≡









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13 e
−iδ

0 1 0

−s13 eiδ 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









=









c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13









, (2.35)

where sjk ≡ sin θjk and cjk ≡ cos θjk, and δ is the CP violating phase. We can choose

those parameters as 0 ≤ θjk ≤ π/2 and 0 ≤ δ ≤ 2π without loss of the generality [30].

Note that CP invariance holds for θ13 = 0 because the CP violating phase δ lives with s13.

The explicit formula of Im(UαjU
∗
βjU

∗
αkUβk), which controls the CP violation, is expressed

simply with the Jarlskog factor J as

∣

∣Im(UαjU
∗
βjU

∗
αkUβk)

∣

∣ = J ≡ 1

4
c213 s13 sin 2θ12 sin 2θ23 sin δ, (2.36)

where α 6= β and j 6= k are assumed.

2.2.2 Neutrino oscillations in matter

So far we dealt with the neutrino oscillations in vacuum. The oscillations in matter are,

however, different from that in vacuum due to the matter effect, which is the so-called

Mikheev-Smirnov-Wolfenstein (MSW) effect [31]. This section is devoted to the discus-

sion about the oscillations in matter. Although all active neutrinos interact with matter

by exchange of Z boson, only electron-flavor neutrinos have the charged-current interac-

tion with matter because electrons are the unique leptons that are contained in ordinary

matter. The effect of the flavor-symmetric interactions such as Z exchange gives the
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flavor-symmetric potential which is irrelevant to the neutrino oscillation. Therefore, the

relevant potential comes from the charged-current interaction of electron-flavor neutrinos.

The interaction is described by neglecting the momentum of W boson as

2
√

2GF (νeLγ
µeL) (eLγµνeL) = −2

√
2GF (νeLγ

µνeL) (eLγµeL) , (2.37)

where GF (≡
√

2g2/8M 2
W ' 1.2 × 10−5GeV−2) denotes the Fermi coupling constant and

we used the Fierz identity

(σµ)αβ (σµ)γδ = 2εαγεβδ, σµ ≡
(

1,−σi
)

. (2.38)

In the rest frame of matter, we obtain

〈eLγ
µeL〉 =

1

2
δ0µNe, (2.39)

where Ne denotes the electron number density which is ∼ 1024cm−3 in the Earth crust. It

is found that νeL feels the potential

a ≡
√

2GFNe. (2.40)

Then, the propagation of mass eigenstates in matter is determined by

i
d

dL
|να(L)〉 =

(

Uαi
∆m2

i1

2E
U∗

βi +
√

2GFNeδeαδeβ

)

|νβ(L)〉. (2.41)

For 2ν case, the matrix in the right-hand side of (2.41) is described as

1

2E

(

∆m2 sin2 θ +A ∆m2 sin θ cos θ

∆m2 sin θ cos θ ∆m2 cos2 θ

)

, A ≡ 2
√

2EGFNe. (2.42)

The matrix is diagonalized by the effective mixing matrix in matter

UM ≡
(

cos θM sin θM

− sin θM cos θM

)

, (2.43)

sin2 2θM ≡
(

∆m2
)2

sin2 2θ

(∆m2 cos 2θ −A)2 + (∆m2)2 sin2 2θ
. (2.44)

Then, the eigenvalues (effective mass in matter) are

m2
M± ≡ 1

2

{

∆m2 +A ±
√

(∆m2 cos 2θ − A)2 + (∆m2)2 sin2 2θ

}

. (2.45)

It is interesting that the effective mixing becomes maximal, sin 2θM = 1, forA = ∆m2 cos 2θ

even if the original mixing is very small.1 (See Fig. 2.2.) If the matter density is constant,

1If A > 2∆m2 cos 2θ, sin 2θM becomes smaller than sin 2θ.
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Figure 2.2: Left top: The figure shows the relation between vacuum parameters (∆m2 and

θ) and those in matter (∆m2
M and θM). Right top: An example of sin2 2θM is presented

as a function of A = 2
√

2EGFNe. The mixing in vacuum is assumed as sin2 2θ = 0.02.

Left bottom: An example of m2
M± is presented as a function of A. Solid and dashed lines

are of m2
M− and m2

M+, respectively. Right bottom: Oscillation probabilities in matter

(solid line) and in vacuum (dashed line). Parameter values are chosen so that E = 60GeV

corresponds to A = 0.012.
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the oscillation probability in matter is obtained by simply replacing θ and ∆m2 with θM

and ∆m2
M ≡ m2

M+ −m2
M− as

P (νe → νµ) = sin2 2θM sin2

(

∆m2
ML

4E

)

. (2.46)

The calculation for 3ν case is much more complicated, but a smart derivation of exact

3ν oscillation probabilities in matter was presented recently [32].

2.2.3 Majorana neutrinos

Similarly to other fermions, massive neutrinos can have the Dirac mass term

νR mD νL (2.47)

with new particle νR which is neglected but not be prohibited in the standard model. Since

neutrinos have no electro-magnetic charge differently from other fermions in the standard

model, the neutrinos can be identified as their anti-particles: ν = ν. Then, it is possible

to have another mass term (Majorana mass term)

(νL)CMνL, ψC ≡ −iγ2ψ∗. (2.48)

Therefore, the left-handed neutrinos can have their mass terms without the right-handed

neutrinos. The neutrinos with the Majorana mass term are referred to as the Majorana

neutrinos, and ones without the term are called the Dirac neutrinos. Note that the Ma-

jorana mass term prohibit us redefining the phase of the neutrino. Then, the N − 1 extra

phases, which are called the Majorana phases, remain in the MNS matrix for N generation

case as

U −→ U × diag
(

1, e−iβ, e−iγ, · · ·
)

. (2.49)

The oscillation probability (2.29) is independent of the Majorana phases because

UαiU
∗
βi −→ Uαie

−iβieiβiU∗
βi = UαiU

∗
βi. (2.50)

Conversely, it means that we can not know by oscillation experiments whether the neu-

trinos are Majorana or Dirac particles. Distinguishing them is possible, for example, by

observation of neutrinoless double beta decay which does not occur for Dirac neutrinos.

In general, the neutrino mass term should be

(

(νL)C , νR

)

(

ML mD

mD MR

)(

νL

(νR)C

)

, (2.51)

16



where mD represents the Dirac mass, and ML and MR the Majorana masses for the left-

handed and right-handed neutrinos, respectively. The general mass term can be diagonal-

ized and the absolute values of the eigenvalues give the masses of the physical neutrinos.

The eigenvalues of the mass matrix are

m± =
1

2

{

MR +ML ±
√

(MR +ML)2 + 4m2
D

}

. (2.52)

Here, we assume 1 � mD/MR > ML/mD because MR can be very large while large ML

interferes with experimental results which agree with the standard electroweak model.

Then, the eigenvalues are approximated as

m+ 'MR, m− ∼ m2
D

MR
, (2.53)

where we pushed the minus sign of m− on to the eigenstate. Although the Dirac mass mD

is expected to be & MeV as for other fermions, it is suppressed by the small factor mD/MR

and the result can be . eV. The neutrino that corresponds to the small eigenvalue m2
D/MR

can be identified as the light neutrino we observe, and the remaining heavy neutrino is

decoupled from the standard model. This is the so-called seesaw mechanism [3] which

can give a reason for the smallness of neutrino masses. The smallness of neutrino masses

may be an indication of very high energy (∼ MR) physics where the heavy Majorana

neutrinos live. Since the Majorana mass term plays the crucial role for the mechanism, it

is important to confirm that neutrinos are Majorana particles.

2.3 Number of Light Active Neutrinos

The measurement of decay width of Z produced in e+e− collisions gives the most stringent

constraint on the number nν of light active neutrinos. The light active neutrinos are what

can be produced by Z decay, namely their masses are less than mZ/2 and they receive

the electroweak interaction. nν is determined by comparing the predicted Z decay width

into a neutrino pair, (Γ
(1)
ν )SM, with the invisible width Γinv. The width Γinv is obtained

by subtracting the contribution of quark pairs and charged lepton pairs from the total

width. The width Γinv will be proportional to the number of light active neutrinos. (See

Fig. 2.3.) In order to reduce uncertainties, the ratio to the decay width into the charged

lepton pairs is used:

nν =
Γinv

Γl

(

Γl

Γ
(1)
ν

)

SM

. (2.54)

The combined result from four LEP experiments [24] (the ALEPH, DELPHI, L3, and

OPAL experiments) is

nν = 2.9841 ± 0.0083. (2.55)
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Figure 2.3: The ALEPH result of hadronic cross section of Z boson decay as function of

center of mass energy. Expectations for 2, 3, and 4 neutrinos are superimposed. You can

find this figure in [33].

2.4 Direct measurement of Neutrino Mass

The neutrino is originally introduced in 1930 by W. Pauli to explain the energy loss

in the beta decay without laying aside the energy conservation law. The energy loss

was understood as the energy took away by the unobserved particle “neutrino”. From

the present point of view, the neutrino take away the energy correspond to not only its

momentum but also its mass. Thus, the neutrino mass can be measured in principle by the

precise measurement of the beta decay. Although the possibility have been well known,

this is a typical example of the proverb “saying is one thing and doing another” because

the neutrino mass is so small. Nevertheless, the precise measurement of the beta decay

is extremely important because the absolute mass can not be determined by oscillation

experiments which can, however, probe smaller mass scale; The oscillation probabilities

depend on the mass squared difference ∆m2 as we observed in the previous discussion.

Although the neutrino from the beta decay is νe and it is the mixed state of the

mass eigenstates, we can approximate those masses as a degenerate one mν because the

mass splitting are much smaller than the energy scale probed by recent beta decay mea-

surements. Then, the neutrino moves the endpoint of the energy spectrum of the emitted

electrons by just mν. The recent bounds on the neutrino mass are obtained by 3H (tritium)

beta decay measurement. The results of Mainz group [34] is

mν < 2.2eV (95%CL), (2.56)

and that of Troitsk group [35] is

mν < 2.5eV (95%CL). (2.57)
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The future KATRIN experiment [36] (KArlsruhe TRItium Neutrino experiment) is ex-

pected to probe the mass down to

mν ' 0.3eV. (2.58)

2.5 Neutrinoless Double Beta Decay

Double beta decay is a rare decay of a nucleus described as

(Z, A) → (Z + 2, A) + 2e− + 2νe, (2.59)

where Z and A denote the atomic number and the mass number. The decay occur for some

even-even nuclei for which the beta decay to the odd-odd nuclei is energetically forbidden

by the pairing energy. Here, if neutrinos are Majorana particles, the neutrinoless double

beta decay (0νββ) is also possible:

(Z, A) → (Z + 2, A) + 2e−. (2.60)

This process is interesting because it does not conserve the lepton number which is pro-

tected in the standard model. In order to know whether neutrinos are Majorana or Dirac

particles, 0νββ searches are very important because oscillation experiments can not give

the answer. If the decay is dominated by the exchange of Majorana neutrinos, the leptonic

part of the interaction is

∑

j

eL γ
ρUej

〈

νjL (νjL)C
〉

Uej γ
σ (eL)C

=
∑

j

eL γ
ρ 1

2

(

1 − γ5
)

U2
ej

i(/q +mj)

q2 −m2
j

1

2

(

1 − γ5
)

γσ (eL)C

=
∑

j

U2
ej mj eL γ

ρ i

q2 −m2
j

γσ (eL)C . (2.61)

For light neutrinos (mj . 10MeV), mj in the denominator of (2.61) can be neglected and

(2.61) is simply proportional to
∑

j U
2
ejmj. Then, we obtain the half life (the observable)

(

T 0ν
1/2

)−1
= G0ν |M 0ν |2〈m〉2ββ, (2.62)

〈m〉ββ ≡

∣

∣

∣

∣

∣

∣

∑

j

mjU
2
ej

∣

∣

∣

∣

∣

∣

, (2.63)

where G0ν represents the phase space integral, M0ν is the nuclear matrix element which

has the information of the nucleus and of the neutrino propagator, and 〈m〉ββ is the

effective mass of the electron neutrino for 0νββ. Note that (2.63) depend on not |U |2 but

U2 because the C transformation includes taking complex conjugate.
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Figure 2.4: Left: The diagram for the neutrinoless double beta decay by the exchange of

light Majorana neutrinos. Right: Detail of the leptonic part of the left figure.

The most stringent bounds to date on the half-life T 0ν
1/2 were obtained by the Heidelberg-

Moscow [37] and IGEX [38] collaborations. The Heidelberg-Moscow group used 125.5

moles (' 10kg) of enriched2 germanium (86% 76Ge) as the 0νββ source and detector, and

the IGEX group 90 moles (' 7kg). If 0νββ occurs in 76Ge, a peak appears at 2039keV

(Q value of the double beta decay) in the spectrum for the total energy of two emitted

electrons. The negative results of the observation of the peak lead to the upper bounds

on T 0ν
1/2:

T 0ν
1/2 > 1.9 × 1025 yr (Heidelberg-Moscow), (2.64)

T 0ν
1/2 > 1.57 × 1025 yr (IGEX). (2.65)

Those are translated to the bounds on 〈m〉ββ by (2.62) as

〈m〉ββ < 0.35 eV (Heidelberg-Moscow), (2.66)

〈m〉ββ < 0.33-1.31 eV (IGEX). (2.67)

Note that the translation of the lifetime limit to mass limit involves the value of G0ν |M 0ν |2.
(Examples are listed in Table 2.2.) Thus, it is important to obtain the precise value of

G0ν |M 0ν |2 for utilization of 〈m〉ββ which has the information of neutrino masses and

mixing.

On the other hand, an evidence of the 0νββ signal was announced in late 2002 [45].

The result at 95% CL and the best fit value are

T 0ν
1/2 = 0.8-18.3 × 1025 yr,

(

T 0ν
1/2

)best
= 1.5 × 1025 yr, (2.68)

and those are interpreted as

〈m〉ββ = 0.05-0.84 eV, 〈m〉best
ββ = 0.39 eV, (2.69)

2Natural Ge consists of 36.5% 74Ge, 27.4% 72Ge, 20.5% 70Ge, 73% 73Ge, and 7.8% 76Ge.
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bound on 〈m〉ββ (eV)

Heidelberg-Moscow IGEX

G0ν |M 0ν|2 (eV−2 · yr−1) T 0ν
1/2 > 1.9 × 1025 yr T 0ν

1/2 > 1.57 × 1025 yr

5.97 × 10−25 [39] < 0.30 < 0.33

4.63 × 10−25 [40] < 0.34 < 0.37

4.37 × 10−25 [41] < 0.35 < 0.38

4.29 × 10−25 [42] < 0.35 < 0.39

5.40 × 10−26 [43] < 0.99 < 1.09

3.70 × 10−26 [44] < 1.19 < 1.31

Table 2.2: Upper bounds on 〈m〉ββ by the results of Heidelberg-Moscow and IGEX group

with several values of translation factor G0ν |M 0ν |2.

where ±50% error due to the uncertainty of the nuclear matrix element is taken into

account.3

After the announcement, a comment paper was written by several authors [46], and

the replies also appeared [47, 48]. Since it seems to be not conclusive yet, it is important to

probe the region of the announced evidence by other experiments. The future experiments

are listed in Table 2.3, and some of them will be able to inspect the announced evidence.

Note that precise values of G0ν |M 0ν |2 for each 0νββ nuclei are necessary for also the

consistency check of results obtained by some different nuclei. More detailed review is

found in [60]. For a review of theoretical aspects of 0νββ, see e.g. [61] and the references

therein.

3The +50% (−50%) error in 〈m〉ββ corresponds to −33% (+100%) error in |M0ν |2.
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experiment source detector size sensitivity to T 0ν
1/2 (yr) sensitivity to 〈m〉ββ (eV)

COBRA[49] 130Te 10kg CdTe 1.2 × 1024 (5yr run) 6.5 × 10−1

116Cd 3 × 1023 (5yr run) 1.26

DCBA[50] 150Nd 20kg enriched Nd 2 × 1025 3.5 × 10−2

NEMO[51] 100Mo 10kg 0νββ isotopes (7kg 100Mo) 4 × 1024 (5yr run, 90% CL) 5.6 × 10−1

82Se (1kg 82Se) 1.5 × 1024 (5yr run, 90% CL) 6.3 × 10−1

CAMEO[52] 116Cd 65-1000kg CdWO4 ' 1026-1027 2.2-6.9 × 10−2

CANDLES[53] 48Ca ∼ t enriched (2%) CaF2 2-4 × 1026 (5yr run)

CUORE[54] 130Te 750kg TeO2 1.1-3.6 × 1026 (1yr run) 3.7-6.7 × 10−2

EXO[55] 136Xe 1t enriched (65%) Xe 8.3 × 1026 (5yr run) 5.1 × 10−2

GENIUS[56] 76Ge 1t enriched (86%) Ge 5.8 × 1027 (1yr run, 68% CL) 2.0 × 10−2

Majorana[57] 76Ge 0.5t enriched (86%) Ge 4.2 × 1027 (10yr run, 90% CL) 2.4 × 10−2

MOON[58] 100Mo 1t enriched (80%) Mo 1.6 × 1027 (10yr run) 2.8 × 10−2

XMASS[59] 136Xe 10t liquid Xe 3.3 × 1026 (5yr run) 8.2 × 10−2

Table 2.3: Listed are future experiments of neutrinoless double beta decay search. Sensitivities to 〈m〉ββ are calculated with G0ν |M 0ν |2

obtained in [42] for each isotope: (T 0ν
1/2)

−1 = G0ν |M 0ν |2〈m〉2ββ.
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Chapter 3

Recent Status of Neutrino

Oscillation Experiments

3.1 The 2-3 Sector

3.1.1 Atmospheric neutrino measurement

The atmosphere is a source of ∼GeV-TeV neutrinos. The cosmic rays, which are mainly

composed of protons, produce pions in collision on nuclei in the atmosphere. The pions

then decay as

π+ (π−) → µ+νµ (µ− νµ). (3.1)

The muons decay also into neutrinos subsequently:

µ+ (µ−) → e+νeνµ (e−νeνµ). (3.2)

Thus, the ratio Nνµ+νµ/Nνe+νe is predicted to be 2 for Eν . 1GeV.1 The measured val-

ues of the ratio, however, were significantly smaller than the prediction in Kamiokande

(Kamioka Nucleon Decay Experiment) [62, 63]. Although the anomaly indicated the neu-

trino oscillation, the result seemed to be insufficient to be regarded as the evidence. It

was because that IMB (Irvine-Michigan-Brookhaven) [64] experiment excluded almost all

the region allowed by Kamiokande in the oscillation parameter space though the experi-

ment also observed the deficit of µ-flavor neutrinos. Moreover, there were negative results

of the deficit (with rather low statistics) in Fréjus [65] and NUSEX (NUcleon Stability

EXperiment) [66] experiments.

In 1998 the Super-Kamiokande (Super Kamioka Neutrino Detection Experiment. Here-

after it is referred to as SK.) [2] proved with high statistics that the atmospheric neutrino
1For higher Eν , the ratio becomes larger because the high energy parent muon reaches to the ground

before the decay to high energy e-flavor neutrino.
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events (535 days) depends on the zenith angle, which was first observed in Kamiokande [63].

Fig. 3.1 is the recent SK result for 1489 day exposure [67]. The SK detector (22.5kt fidu-

cial mass) has an advantage for reconstruction of neutrino direction because the larger

detector can investigate higher energy final state leptons whose directions correlate more

to those of initial neutrinos. The result shows the significant up-down asymmetry of µ-

flavor neutrino events which would be up-down symmetric if nothing happened during the

flight of the neutrinos. The asymmetry is a clear evidence for the atmospheric neutrino

anomaly without ambiguities of initial fluxes because the initial flux is probably radial

symmetric. Since the zenith angle dependence of the deficit is the dependence on the

flight length of neutrinos, the result convinced us that the deficit was the evidence for

neutrino oscillation. The reason why the downward going νµ do not disappear is under-

stood that the travel distance L to the detector (∼ 20km) is too short for neutrinos to

oscillate while the distance for upward going ones (∼ 10000km) is enough. In 3ν frame-

work, the disappearance of µ-flavor neutrino is regarded as the effect of the oscillation to

τ -flavor neutrino because there was no anomaly in e-flavor events. Actually, vanishingly

small P (µµ → νe) is consistent with vary small value of θ13 which is constrained by re-

actor experiments (See Sect. 3.3). The smallness of θ13 enables us to use the simple 2ν

framework for the analysis of the atmospheric neutrino oscillation. Fig. 3.2(left) presents

the allowed region obtained for 2ν case in the most recent analysis. For 3ν case, ∆m2 and

θ of atmospheric neutrino oscillation are understood approximately as ∆m2
32 and θ23 of

the standard parametrization (2.35), and the parameters are constrained at 90% CL as

|∆m2
32| = 1.3-3.0 × 10−3eV2, |∆m2

32|best = 2.0 × 10−3eV2, (3.3)

sin2 2θ23 = 0.9-1, sin2 2θbest
23 = 1. (3.4)

Consistent results were obtained by MACRO (Monopole, Astrophysics, and Cosmic Ray

Observatory) [68] and Soudan2 [69] experiments.

3.1.2 K2K experiment

The KEK to Kamioka experiment (K2K) [5], which is the first long baseline accelerator

neutrino experiment, started in 1999 to confirm the SK result of atmospheric neutrino

measurement by using an accelerator νµ beam. The neutrino source is the KEK proton

synchrotron whose power is 5kW producing every 2.2 seconds about 6 × 1012 protons of

12GeV within a 1.1µs beam spill. The neutrino beam is a wide band beam whose peak

energy is about 1.3GeV, and the beam spectrum is measured by the 1t near detector at

300m baseline length. The detector is SK and the baseline length is 250km. Therefore,
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Z Z

Figure 3.1: Zenith angle θz dependence of multi-GeV events whose visible energy is grater

than 1.33GeV. cos θz = 1 corresponds to downward direction. The left and right figures

are for e- and µ-flavor neutrinos, respectively. Dashed (solid) line is the expectation with

no oscillation (best fit νµ → ντ oscillation). The excess around cos θz = 0 of expected

value is because that longer flight length in the atmosphere enable also high energy muons

to decay before arrival to the ground. µ-like events include also partially contained events

(PC) which have exiting particles from the inner detector.

68% C.L.

90% C.L.

99% C.L.

FC + PC + up-going µ
   combined

1489 days

68%
90%
99%

Figure 3.2: Allowed region for 2ν oscillation parameters which are understood in a good

approximation as |∆m2
32| and sin2 2θ23 for 3ν case. Left figure is for SK and right one is

for K2K.
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+ + νe (pp ν)

99.75%

p + e
− + p →

2H + νe (pep ν)

0.25%

2H + p →
3He + γ

86%

3He + 3He → α + 2p 3He + p → α + e
+ + νe (hep ν)

14%

3He + α →
7Be + γ

99.85% 0.15%

7Be + e
−
→

7Li + νe (7Be ν)

7Li + p → 2α

7Be + p →
8B + γ

8B →
8Be∗ + e

+ + νe (8B ν)

8Be∗ → 2α

Figure 3.3: The chain of nuclear fusion reactions in the sun. The branching ratios are

shown also. The neutrinos of each reaction are referred to as pp neutrino etc. which are

presented in parentheses.

the experiment focuses on

∆m2 =
π

2

1.3(GeV)

1.27 × 250(km)
' 6× 10−3eV2, (3.5)

and it is possible to probe the region around the SK atmospheric neutrino result. The

neutrino events at SK due to the KEK neutrino beam are distinguished precisely from

backgrounds such as atmospheric neutrinos by timing synchronization with the Global

Positioning System (GPS). The result that was obtained with 4.8×1019 protons on target

(POT) is presented also in Fig. 3.2(right) for 2ν case at 90% CL. At sin2 2θ = 1, the result

shows |∆m2
32| = 1.5-3.9 × 10−3eV2 which is consistent with the SK result of atmospheric

neutrino measurement. The best fit values in K2K are sin2 2θbest
23 = 1.0 and |∆m2

32|best =

2.8 × 10−3eV2.

3.2 The 1-2 Sector

3.2.1 Solar neutrino measurement

The sun shines due to the nuclear fusion reaction, 4p → α+ 2e+ + 2νe. (See Fig. 3.3.)

Thus, we are in the neutrino window from the sun. In 1968, the solar neutrino observation

26



Figure 3.4: Solar νe spectra at the Earth (taken from the second reference of [7]). The

unit for pp, 8B, and hep neutrinos is cm−2s−1MeV. The lines for 7Be and pep neutrinos

show the peak energies and the fluxes in the unit of cm−2s−1. Estimated uncertainties are

also presented. The lightly shadowed energy range is probed by gallium experiments, the

shadowed one by also chlorine experiment, and the dark shadowed one by also SK and

SNO.

started by using a radiochemical method with liquid C2Cl4 (tetrachloroethylen) [6]. The

solar neutrino produces 37Ar, which is not a natural isotope, in the detector by the inverse

beta decay 37Cl + νe → 37Ar + e− whose threshold energy is 0.814MeV. Since argon is

a light noble gas, it is not chemically attached to tetrachloroethylen and it can be easily

removed with helium gas. The number of recovered 37Ar is counted after a few month

exposure by the decay which emits Auger electrons of 2.82keV (K shell) total energy.

Curiously, the result showed that the solar νe flux is no more than about 1/3 of the

theoretical prediction with the Standard Solar Model (SSM) [7]. (See Fig. 3.4 as recent

prediction.)

As we see in Figs. 3.3 and 3.4, the chlorine experiment can not observe the pp neutrino

which dominates the fusion reactions in the sun. The result of the chlorine experiment

is controlled by 8B neutrino which covers only 0.02% of the nuclear fusion reaction in

the sun. Therefore, the deficit of solar neutrino observed by the chlorine experiment

might be explained by small changes of the Standard Solar Model. The possibility was

eliminated by SAGE (Russian-American Gallium Experiment2) [8], GALLEX (GALLium

2It had been Soviet-American Gallium Experiment.
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EXperiment) [9] and its successor GNO (Gallium Neutrino Observatory) [70]. Those

experiments employ the similar radiochemical method with 71Ga. The reaction used in

those experiments is 71Ga + νe → 71Ge + e− whose threshold energy is 0.233MeV. SAGE

used Ga metal, and GALLEX did the solution of GaCl3 in water. By virtue of the low

energy threshold, they could observe the pp neutrinos and the deficit was presented. If we

modify the Standard Solar Model to explain the results, it becomes inconsistent with the

luminosity of the sun.

Solar neutrino was observed also by Kamiokande [71] and SK [10] water Cherenkov

detectors with the total mass of 3 and 50kt, respectively. Those experiments observed

the Cherenkov lights of electrons scattered elastically by the solar neutrinos: e− + νe →
e− + νe. Note that νµ and ντ also scatter e− with about 6 times smaller cross sections

than that for νe. The energy thresholds of signal detection are Eν ' 7MeV and 5MeV

for Kamiokande and SK, respectively. The experiments can determine the direction from

which the neutrino comes. It is due to the relation

cos θES =
2Eν

√

m2
e + p2

e −m2
e

2Eνpe
' 1 (3.6)

at relativistic energy pe � me, where θES denotes the angle of recoiled electron to the

direction where the initial neutrino comes, and pe is the momentum of the recoil electron

whose mass me = 0.511MeV is smaller enough than detectably large Eν. Thus, they can

identify the neutrinos whose direction point back to the sun. The directionality provides

the powerful selection criterion for signal events against radioactive background. It was

found that the solar neutrino flux on the Earth is about 1/2 times the expectation of

the Standard Solar Model with high statistics. Furthermore, neutrino energy can be

reconstructed and no significant distortion was observed. Those experiments investigated

the day-night variation of the energy spectrum also. There is, however, no significant

variation.

The results of the Cl and Ga experiments are analyzed together with SK experiment

within the framework of two flavor mixing. As a result of such analysis, the allowed regions

are obtained in the mixing parameter space spanned by sin2 2θ and ∆m2, and presented

in Fig. 3.5. In the context of three neutrino mixing, these parameters can be interpreted

as sin2 2θ12 and ∆m2
21 of the standard parametrization (2.35), respectively, in a good

approximation. It is found that there were four allowed regions with matter effect [31],

namely the small mixing angle solution (SMA: ∆m2 ' 8 × 10−6eV2, tan2 θ ' 4 × 10−5),

the large mixing angle solution (LMA: ∆m2 ' 5 × 10−5eV2, tan2 θ ' 0.3), the low ∆m2

solution (LOW: ∆m2 ' 1 × 10−7eV2, tan2 θ ' 0.8), and the vacuum oscillation solution

(VAC: ∆m2 ' 5 × 10−10eV2, tan2 θ ' 2.5). Although large deficit of solar neutrino

indicates that the mixing angle is large, matter effect gives a possibility for the mixing to
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Figure 3.5: The results of solar neutrino observations are combined for two active neutrino

approximation. In terms of 3ν scheme, tan2 ω and δm2 is understood as tan2 θ12 and ∆m2
21,

respectively. The left figure is before the first result of SNO CC measurement, and the

right figure is after the result. (Taken from the first reference in [72].) Note that the small

mixing angle (SMA) solution disappears in the right figure by virtue of SNO result.

be small. Here, tan2 θ < 1 corresponds to m2
1 < m2

2 due to matter effect in the sun.

SNO (Sudbury Neutrino Observatory) [11] observed solar neutrino with a very inge-

nious way. The experiment use 1kt heavy water (D2O) instead of light water (H2O). By

virtue of deuteron, SNO can observe not only elastic scattering (ES: νe + e− → νe + e−),

which can be observed by light water as SK, but also charged-current reaction (CC:

νe+d→ 2p+e−) and neutral-current reaction (NC: νe+d→ νe+n+p). The events of Those

reactions are distinguished kinematically. The CC reaction is observed by Cherenkov light

from the emitted electron while produced protons almost keep resting because of the large

mass; The threshold of signal detection in SNO experiment is Te ≥ 6.75MeV for the

electron kinetic energy. In the energy range of solar neutrino, this reaction is sensible

only to e-flavor one because the energy is not enough to produce heavier charged lep-

tons. It was found that the observed solar νe flux by CC reaction is less significantly than

the precisely measured flux that caused ES events at SK. Remembering that ES can be

caused by µ- and τ -flavor neutrinos also, the deviation is an evidence for the presence of

non-electron-flavor neutrinos in the flux from the sun while only νe deficits were observed

before. Despite attempts to obtain small mixing which is the case of quark sector, the

result of SNO strongly disfavored the SMA solution as we see in Fig. 3.5 which is taken
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Figure 3.6: A 2ν global analysis of solar neutrino, CHOOZ, and KamLAND results.

(Taken from second one of [74].) In 3ν case, δm2 is understood as ∆m2
21. Note that

only the large mixing angle (LMA) solution remains. Global best fit (so-called LMA-

I) is ∆m2
21 = 7.3 × 10−5eV2 and s212 = 0.315. Second best fit (so-called LMA-II) is

∆m2
21 = 15.4 × 10−5eV2 and s212 = 0.300.

from the first reference in [72]. We understood that the mixing angles for atmospheric and

solar neutrino oscillations are both large and the flavor mixing in the lepton sector is very

different from that in the quark sector. Next, the NC reaction also can be observed due

to gamma rays emitted when the recoil neutron is captured by a nucleus. Since capture

efficiency of deuterium (' 20%) is not so large, SNO added 35Cl as 2t NaCl (common salt)

in the heavy water for their second phase referred to as the salt phase. The efficiency of

neutron capture by 35Cl is ' 80%. Needless to say, NC interaction is blind to neutrino

flavor. SNO showed that total flux is consistent with the prediction of the Standard Solar

Model, which is an evidence for the flavor transition of solar νe whose deficit had already

been understood. After the salt phase, SNO plans to use 3He-filled proportional counters

for event-by-event detection of NC reaction with the neutron capture: 3He + n→ p+ 3H.

3.2.2 KamLAND experiment

Although global analyses [73] of solar neutrino experiments preferred the LMA parameter

region over the others, it was not conclusive because e.g. the LOW solution agreed ac-

ceptably with the experimental results. The evidence for the LMA solution was presented

by KamLAND experiment (Kamioka Liquid scintillator Anti-Neutrino Detector) [12] with
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neutrino sources on the ground. In most cases, ∆m2
21 which corresponds to solar neu-

trino oscillation is too small to observe the oscillation with terrestrial sources of neutri-

nos because sin2(∆m2
21L/4E) ' 1 requires long baseline length and low energy neutrino

beam. Both of the requirements make number of events very small due to 1/L2 suppressed

flux and small cross section for low energy neutrinos. A miracle is, however, occurred at

Kamioka site. There are 16 nuclear power plants whose total thermal power is 130GWth for

the maximum operation of all of them and which provide the total flux 13.1×105νe/cm
2/s

at Kamioka site.3 Since the energy of reactor νe is of the order of MeV, the baseline for

the first maximum oscillation with ∆m2
21 ∼ 10−5eV2 (LMA) is

L ∼ π

1.27 × 2

1(MeV)

10−5(eV2)
∼ 100km (3.7)

Conveniently, 80% of the flux at Kamioka site comes from the reactors whose baselines are

138-214km. KamLAND is placed in the cavity where Kamiokande was located, and the

detector is 1kt liquid scintillator (408t fiducial mass) which can be approximately regarded

as CH2. KamLAND detects reactor νe by the inverse beta decay reaction on a free proton

(the nucleus of H in CH2)

νe + p → e+ + n (3.8)

whose energy threshold is 1.8MeV. The produced e+ gives the prompt signal and the

capture of thermalized neutron by a proton does the secondary 2.2MeV signal about

210µs after the prompt one. (See also Sect. 3.3 of short baseline reactor experiments.)

KamLAND observed the disappearance of reactor νe and the result pinned down the LMA

region as the solution of solar νe disappearance [74] assuming CPT invariance:

∆m2 = 7.3 × 10−5eV2, sin2 θ = 0.315 (tan2 θ = 0.46). (3.9)

The so-called LMA-II solution which has high-∆m2
21 is now excluded at 99% CL by

the one with SNO salt phase data [75], and at 3σ CL by the global analysis of all data

with reanalyzed day-night variation of flux at SK [76]. The best fit values with global

analysis by SK group are

∆m2 = 7.1 × 10−5eV2, tan2 θ = 0.45. (3.10)

3The largest contribution (32%) to the total flux comes from Kashiwazaki-Kariwa nuclear power plant

which is used in Chapter 5 and 6.
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3.3 The 1-3 Sector

3.3.1 CHOOZ experiment

The mixing angle θ13 of the standard parametrization for 3ν case (2.35) has not been

measured yet, and we do not know whether θ13 is zero or not. The present upper bound

on θ13 was obtained by the CHOOZ experiment [13]. The CHOOZ experiment measured

νe’s that were yielded by the nuclear fission in reactors. The peak energy of reactor νe

event spectrum without oscillation is Eν ' 4MeV. The power plant at the Chooz village

has two reactors, and the total thermal power is 8.5GWth.
4 A reactor of 1GWth yields

about 1.6 × 1020 νe in each second. The experiment was able to measure the number of

background events in the reactor-off period. The liquid scintillator detector contains a 5ton

of mineral oil loaded with 0.09% Gd (Gadolinium). It was placed about 1km away from

the reactors and in underground of 300mwe (meters water equivalent) as schematically

shown in Fig. 3.7, where the cosmic muon flux of ∼ 10−2cm−2s−1 at surface is reduced to

0.4 × 10−4cm−2s−1.

The νe’s were detected by the inverse β decay

p+ νe → n+ e+. (3.11)

Since the reactor neutrinos have low energy, the inverse β decay occurs only with free

protons (hydrogen nuclei) in the liquid scintillator which is approximately regarded as

CH2. The energy threshold of the reaction is Eν = 1.8MeV. The produced e+ is detected

by prompt signal with 1-8MeV energy which consists of the scintillation light and the

energy of its annihilation with e−. Then, about 30µs (' 6cm) after the prompt signal

the secondary signal of about 8MeV energy occurs due to the neutron capture by Gd and

its subsequent decay by emitting gamma rays. The νe events are identified accurately

by those two signals and the time difference; The procedure is referred to as “delayed

coincidence” which was used with Cd (cadmium) loaded scintillator at the time of the

neutrino discovery [77]. The 1km baseline makes the experiment focus on

∆m2 =
π

2

4(MeV)

1.27 × 1000(m)
' 5 × 10−3eV2. (3.12)

The CHOOZ experiment searched for the deficit of νe is analyzed with the disappearance

probability which can be written in a good approximation in 3ν scheme as

1 − P (νe → νe) = sin2 2θ13 sin2

(

∆m2
31L

4E

)

. (3.13)

The matter effect is neglected because of the short base line and the low energy. There was

no deficit in the measurement of about one year exposure5 accumulating ' 2500 νe signal
4The electrical power is about 0.33 times the thermal power.
5It corresponds to about 100day exposure with the full power of the reactors.
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Figure 3.7: A schematic figure of the configuration of the CHOOZ experiment. The

detector will be the prototype of the detector for proposed Japanese reactor experiment

which is explained in Chapters 5 and 6.
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which means 1/
√

2500 = 2% statistical error and the number of signal events is enough for

the sensitivity with 2.7% systematic error to saturate. Fig. 3.8 shows the excluded region

on the sin2 2θ13-|∆m2
31| plane at 90% CL for 2 degrees of freedom. The upper bound on

θ13 at 90% CL by only the CHOOZ experiment is roughly

sin2 2θ13 . 0.1. (3.14)

The Palo Verde reactor experiment [78] gave a consistent result with the CHOOZ result.

Since solar neutrino and KamLAND results shows that ∆m2
21 is very small and ∆m2

31

is similar to ∆m2
32 which is measured by atmospheric neutrino and K2K experiments, we

need to constrain only sin2 2θ13 by reactor experiments. Therefore, we can rely on the

analysis for 1 degree of freedom, which gives more stringent bound than the analysis for

2 degrees of freedom. The most recent global analysis for 1 degree of freedom [79] results

in at 90% CL

sin2 2θ13 . 0.15. (3.15)

3.3.2 Bugey experiment

The Bugey experiment [80] is another interesting reactor experiment. It is in fact a proto-

type for the future reactor experiment with multi-detector to be discussed in Chapter 5.

The Bugey experiment used two detectors which consist of three identical modules. Those

detectors were placed very short distances from a 2.8GWth reactor; The baselines6 are

15m and 40m. The detectors are of 600 liters liquid scintillator with H/C ratio of 1.4 and

loaded with 6Li of 0.15% in mass, which emits gamma rays of 4.8MeV total energy as

the secondary signal due to a neutron capture. The experiment also could measure in the

reactor off period, and is was possible to estimate background events to subtract.

In 2ν case, the ∆χ2 for the sensitivity to nonzero θ of disappearance experiments at

the oscillation maximum is roughly described as

∆χ2
da ≡

(

N0 sin2 2θ
)2

N0(1 − sin2 2θ) +NBG + σ2
sys{N0(1 − sin2 2θ)}2 + σ2

BGN
2
BG

, (3.16)

where N0 is the number of events without oscillation, NBG is the number of background

events, and σsys (σBG) is the systematic error for signal (background) events. The small

mixing makes the sensitivity dominated by σsys because the statistical error and back-

ground fraction are suppressed by the large number of signal events (∼ 104 events for

6Actually, the Bugey nuclear power plant has four reactors. The near detector position (15m) is also

90m far from the next nearest reactor.
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Figure 3.8: The CHOOZ and the Bugey results at 90% CL for 2 degrees of freedom are

presented by solid and dashed lines, respectively. The right side of each lines is excluded

by those experiments. The 90% allowed region, 1.3×10−3 eV2 < |∆m31| < 3.0×10−3 eV2,

of the SK atmospheric neutrino measurement is superimposed by a shaded band.
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Bugey). Thus, the systematic errors on the number of signal events is the key point for

the precision measurement of small sin2 2θ13 in reactor experiments. The advantage of

reactor θ13 experiments is that it requires rather short time and/or small detectors to

obtain the final result by virtue of the large amount of the observed events due to the

small disappearance probability and the short distance.7 The Bugey experiment reduced

the 5% systematic errors on the normalization to 2% by comparing the total numbers

of events at near and far detectors. The 2% error is smaller than 2.7% of the CHOOZ

experiment. The result did not show significant νe deficit, and the excluded parameter

region is presented in Fig. 3.8. Unfortunately, the relevant bound on sin2 2θ13 is looser

than that of the CHOOZ in the ∆m2 region of ∼ 10−3eV2 where SK favored later despite

their smaller systematic error because the baseline was too short to probe the region.

7Conversely, it can be shown that larger number of signal events does not help us to improve the

sensitivity without any improvement of the systematic errors.
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Chapter 4

Future Long Baseline Experiments

and the Problem of Parameter

Degeneracy

4.1 Future Long Baseline Experiments

4.1.1 An overview

A conventional way to measure θ13 is the appearance measurement in the long baseline

(LBL) neutrino oscillation experiments. This subsection is devoted to a brief overview

of the future LBL experiments. The LBL experiments will explore neutrino oscillations

with respect to ∆m2
31, which relates to the atmospheric neutrino oscillation. The baseline

lengths are ∼ 102-103km, and the large detector and the intense beam are necessary. and

intense neutrino beam. The mixing angle θ13 can be observed by the measurement of the

oscillation probability P (νµ → νe), for example. Then, if θ13 is not too small, precise

measurement of P (νµ → νe) and its CP transform P (νµ → νe) will give us the value of

CP phase δ.

MINOS experiment (Main Injector Neutrino Oscillation Search) [81] will start in De-

cember 2004, and it will be the first one of the next generation LBL experiment. The de-

tector is 5.4kt of magnetized (1.5T) iron-scintillator sandwich calorimeters at the Soudan

mine. The magnetized detector enable us to distinguish particles and anti-particles and to

check CPT invariance. The neutrino beam (νµ or νµ) is produced at Fermilab by NuMI

(Neutrinos at the Main Injector) whose power is 0.4MW providing 4 × 1013 protons of

120GeV for each 1.9s within 8.1µs spill. The neutrino beam is the wide band beam, and

the mean energy of neutrinos can be tuned to 3-18GeV. Unfortunately, since the baseline

is 735km, the neutrino energy is larger than that of the first oscillation maximum for
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|∆m2
31| ' 2.5 × 10−3eV2:

E ' 1.27× 2

π
× 735(km) × 2.5 × 10−3(eV2) ' 1.5GeV. (4.1)

MINOS will be able to reduce the error on |∆m2
31|, whose recent error is about 40%, to 10%

at 90% CL by νµ disappearance measurement. The result will be helpful for succeeding

LBL experiments to tune precisely their beam energy to the oscillation maximum. The

longer baseline length than 250km of K2K may give some information about matter effect,

namely about the sign of ∆m2
31. The experiment seems, however, to be rather far from

optimal one for νe appearance search in the present state of affairs because the search with

wide band beam suffers from large number of background,

NuMI beam is planed to be used as off-axis beam also [82]. Off-axis beam is a better

option for νe appearance search as described in the next subsection. The NuMI off-

axis experiment is proposed to use 50kt detector at the direction of 0.8◦ off-axis, and

the baseline is 810km. The experiment can probe smaller θ13 (' 10−2) than MINOS

experiment by νµ → νe oscillation search.

CNGS (CERN Neutrinos to Gran Sasso) project aims to observe ντ appearance due

to νµ → ντ oscillation. The baseline is 732km. The neutrino beam is produced by the

400GeV super proton synchrotron, and the mean energy of the neutrinos (' 17GeV)

is large enough to produce τ (mτ = 1.776GeV) by charged-current interaction of ντ .

There are two proposed detectors, OPERA (Oscillation Project with Emulsion-tRacking

Apparatus) and ICARUS (Imaging Cosmic And Rare Underground Signals). OPERA uses

1.8kt detector composed of Pb plates and emulsion firms. Emulsion detectors can record

particle tracks precisely, and the high spatial resolution enable us to see the track of τ

who has very short lifetime ' 2.9×10−14s. The expected result of the number of τ events

is 10.3 for 5 year run (2.25 × 1020 protons on target) assuming |∆m2
31| = 2.5 × 10−3eV2

and θ23 = π/4; The expected number of background is 0.65. The νe appearance search

of OPERA can probe sin2 2θ13 ' 0.06 at 90% CL. On the other hand, ICARUS detector

is 3kt time projection chamber filled with liquid argon. ICARUS selects out τ events

kinematically from backgrounds. The expected result of the number of τ events is 11.9 for

5 year run (2.25 × 1020 protons on target) with |∆m2
31| = 2.5 × 10−3eV2 and θ23 = π/4,

and the number of expected background is 0.7. The sensitivity of ICARUS to sin2 2θ13 is

expected to be ' 0.04 at 90% CL.

J-PARC to Kamioka experiment [19] will use off-axis 2◦ νµ beam from J-PARC (Japan

Proton Accelerator Research Complex) at Tokai village, and the neutrinos will be detected

by the existing Super-Kamiokande (50kt total mass) in its phase I. The baseline is 295km

and the peak energy of the beam is about 0.7GeV which corresponds approximately to

the first oscillation maximum for the baseline and |∆m2
31| = 3.0 × 10−3eV2. The νmu
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disappearance measurement in the experiment can measure |∆m2
31| and sin2 2θ23 with the

errors of . 10−4eV2 (10%) and . 0.01 (1%) at 90% CL, respectively. By searching for

νe appearance, J-PARC experiment is expected to probe sin2 2θ13 down to ' 0.006 at

90% CL. In its phase II, beam power is expected to be upgraded from 0.75MW to 4MW,

and a much large detector Hyper-Kamiokande (1Mt total mass) is to be build. By using

νµ beam after the exposure with νµ one, the experiment can observe CP violating phase δ

at 3σ CL if it is larger than 20◦ and sin2 2θ > 0.01. In the following parts of this thesis, we

focus on J-PARC experiment because it has the largest reality and the highest sensitivity

to θ13 and δ among various proposals. The next subsection is devoted to explain the

experiment more for better understanding of the discussions in the later sections.

The experiments described above use the so-called conventional super-beam. Other

possibilities are also proposed. One is the so-called neutrino factory [86] which produces

intense νe or νe beam by the decay of muons in the storage ring. In order to observe

νe → νµ oscillation, charge discrimination of final state leptons is necessary because muon

decay produces not only e-flavor neutrino but also wrong sign µ-flavor neutrino: µ+ →
e+ + νe + νµ. The other possibility is referred to as the beta beam [87] which is obtained

by the beta decay of accelerated nucleons, 18Ne for νe and 6He for νe. Note that each

beam is pure without contaminations of other neutrinos. The mean energies of νe and νe

beams are 0.36 and 0.24GeV, respectively. Those energies are close to the first oscillation

maximum one for |∆m2
31| = 2.5 × 10−3eV2 and about 150km which corresponds to the

baseline of 130km between CERN and Fréjus. Although the neutrino factory and the

beta beam experiments are expected to have extremely high sensitivity to θ13 and δ, the

realization of such experiments seems, however, to require long time for the research and

the development.

4.1.2 J-PARC to Kamioka experiment

Hereafter, we concentrate our attention to the J-PARC to Kamioka experiment [19] among

future LBL experiments. The J-PARC at Tokai village is a research complex with 50GeV

proton synchrotron as a principal machine whose intensity is 3.3× 1014 protons per pulse

of 0.285Hz; The design beam power is 0.75MW and the beam spill is ' 5.2µs. The

accelerator is to deriver 1021 protons on target (POT) in each year which corresponds to

123 days operation with the full power. The proton bombardment on target yields pions

and the decay of π+ (π−) produces νµ (νµ) beam. The selection of νµ or νµ is achieved by

the magnetic horn with the right polarity to eliminate wrong sign pions. The intensity of

low energy neutrino is approximately proportional to the proton beam power. The proton

beam power may be upgraded to 4MW in the future. On the other hand, the detector

is the existing Super-Kamiokande with fully reconstructed 11,146 photo-multiplier tubes,
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whose fiducial mass is 22.5kt of the 50kt total mass. The baseline length is 295km.

The signal in the appearance (disappearance) measurement is the single ring e-like (µ-

like) events due to final state charged leptons produced by charged-current quasi-elastic

interaction with nucleons in the water, νen → e−p (νµn → µ−p). The background comes

from pions produced by inelastic interactions of high energy neutrinos, νN → νN ′π or

νN → lN ′π. The main background for the νµ disappearance measurement is caused by

charged pions because they can imitate muon produced by the charged-current quasi-

elastic interaction of lower energy νµ. On the other hand, the background in the νe

appearance search is due to π0; They decay into two γ, and it can be misidentified as a

electron when one γ is missed. Here, we should take into account also that νµ beam is not

pure due to νe contamination1 which mimics perfectly the signal of νµ → νe oscillation.

An possibility to reduce high energy neutrinos, which give low energy background, and

the νe contamination is to use the narrow band beam (NBB) instead of the wide band

beam (WBB). The NBB is obtained by selecting parent pions with bending magnets.

The peak energy of the neutrino beam is controlled by the pion energy selection as we

see in Fig. 4.2(a). NBB1.5GeVπ and NBB3GeVπ mean NBB with 1.5 and 3GeV pions,

respectively. On the other hand, νe contamination is reduced also by using off axis beam

(OAB) [88], namely by placing the detector in the direction of a few degrees off the

direction of the parent π± beam. The daughter neutrino energy Eν of π → νµ decay

relates to the off axis angle φ as

Eν =
m2

π −m2
µ

2
(

Eπ −
√

(E2
π −m2

π) cosφ
) , (4.2)

where Eπ denotes the parent pion energy, and mπ ' 0.14GeV and mµ ' 0.1GeV are π±

and muon masses, respectively. The peak energy of neutrinos is adjustable by taking an

appropriate off axis angle φ.(See Fig. 4.1 and Fig. 4.2.) In order to maximize the oscillation

of νµ and νµ into other flavor neutrinos, the neutrino beam energy is tuned to

E =
2

π
× 1.27 × L(km) × |∆m2

31|(eV2) ' 0.6GeV, (4.3)

where |∆m2
31| ' 2.5 × 10−3 eV2. Thus, NBB1.5GeVπ and the off axis 2◦ beam may be

appropriate for the value of |∆m2
31|. The OAB2◦ has, however, higher intensity and lower

νe contamination at the peak energy than those for NBB1.5GeVπ as we see in Table 4.1.

Therefore, OAB2◦ may be the better choice. Roughly speaking, the 0.2% νe contamination

in OAB2◦ at the energy of the oscillation maximum shows that 0.2% is the sensitivity limit

to the measurement of the νe appearance probability. Remaining backgrounds by pions

are reduced by stringent event selections. (See also Sect. 6.3.1.)

1The low energy νe is due to µ+ → e+νeνµ, and high energy one to K+ → π0e+νe or K0
L → π−e+νe.
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Figure 4.1: The relation between the parent pion energy Eπ and the energy Eν of the

daughter neutrino emitted to the direction of off axis angle φ degree. It is seen that

high energy pions produce neutrinos of similar Eν. Thus, neutrino beam of narrow spec-

trum is obtained. The off-axis beam hardly includes high energy neutrinos which cause

background.
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Figure 4.2: Energy spectra for the number of νµ charged-current events within 100MeV

bins. No oscillation and one year exposure (1021 POT) with SK are assumed. (a): The

spectrums for NBB1.5GeVπ and NBB3GeVπ are presented with solid and dashed lines,

respectively. The thin line is for the spectrum of WBB. (b): The spectra for OAB3◦ and

OAB2◦ are presented with normal and dashed lines, respectively. The thin line is for the

spectrum of WBB.
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flux νe/νµ (%) # of interact.

beam Epeak (GeV) νµ µe total Epeak νµ νe

WBB 1.1 25.5 0.19 0.74 0.34 7000 78

NBB1.5GeVπ 0.7 5.3 0.05 1.00 0.39 510 5.7

NBB3GeVπ 1.4 8.0 0.05 0.65 0.16 1400 9.3

OA3◦ 0.55 10.6 0.13 1.21 0.20 1100 29

OA2◦ 0.7 19.2 0.19 1.00 0.21 3100 60

Table 4.1: Beam properties. The unit of the flux is 106/cm2/yr. The “total” column shows

the ratio of the fluxes integrated over neutrino energy, and the “Epeak” column of the ratio

shows the ratio at Epeak. The number of interactions is the sum (0 ≤ Eν ≤ 50GeV) of the

expected numbers of CC and NC events without oscillation in the unit of /22.5kt/yr.

There are three aims of the oscillation experiment. The first is the precise determi-

nation of |∆m2
31| and sin2 2θ23 by the measurement of νµ disappearance probability in 2ν

approximation:

1− P (νµ → νµ) ' sin2 2θ23 sin2 ∆m2
31L

4E
. (4.4)

We ignore the Earth matter effect in this discussion for clarity of explanation of the

essential features. In fact, the matter effect in J-PARC neutrino project is smaller than

that in most of the other LBL experiments by virtue of the rather short baseline (295km).

For the survival probability of νµ, correction to (4.4) due to matter effect and other

oscillation parameters is actually negligible because of the large value of the main term.

The expected precisions of sin2 2θ23 and |∆m2
31| are ∼ 0.01 and ∼ 10−4 eV2 at 1σ CL. I

would like to mention that this oscillation is very unique because it is almost maximal

disappearance. The feature of the statistical analysis for the measurement is similar to

that for appearance experiments. Therefore, applying severe selection on signal events and

accumulation of selected events may improve the accuracy of small cos 2θ23 measurement

similarly to the following νe appearance measurement.

The second is the measurement of sin2 2θ13, whose value is not yet known, by searching

for νµ oscillation to νe:

P (νµ → νe) ' s223 sin2 2θ13 sin2 ∆m2
31L

4E
. (4.5)

Is is found that the precision of sin2 2θ23 measurement is important for the sin2 2θ13 sensi-

tivity. The exposure time with νµ beam for above two aims (simultaneous) is assumed to

be 5 years. In 2ν case, ∆χ2 for the sensitivity to nonzero θ13 at the oscillation maximum
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is roughly understood by

∆χ2
a ≡

(

N0 s
2
23 sin2 2θ13

)2

N0 s
2
23 sin2 2θ13 +NBG + σ2

S(N0 s
2
23 sin2 2θ13)2 + σ2

BGN
2
BG

, (4.6)

where N0 is the number of events for s223 sin2 2θ13 = 1, NBG is the number of background

events, and σS (σBG) is the systematic error for signal (background) events. The first and

second terms in the denominator of the right-hand side are statistical errors which are

negligible for large exposure. Then, we obtain the sensitivity in the limit of large statistics

(s223 sin2 2θ13)
2 ' σ2

BG∆χ2
a

1 − σ2
S∆χ

2
a

N 2
BG

N 2
0

, (4.7)

where ∆χ2
a is fixed for the corresponding CL. Therefore, the key points for high sensitivity

are to perform stringent event selections to make NBG/N0 small, and to accumulate large

number of selected signal events to make statistical errors small. It is an advantage of

appearance experiments that those improvements of the sensitivity can be achieved by

rather brute force without improvements of systematic errors (σS and σBG). The sensitivity

to sin2 2θ13 in the J-PARC neutrino project is expected to reach to 0.006 at 90% CL for 5

years exposure with σBG ≤ 10%. There are, however, rather large additional ambiguities

from the terms ignored in (4.6) due to unknown δ, matter effect, and θ23 ↔ π/2 − θ23

ambiguity (if θ23 6= π/4), because sin2 2θ13 is so small as we will see in the next subsection.

On the other hand, the accuracy of θ13 determination in appearance experiments is

roughly understood by

∆χ2
a2 ≡

(

N0 s
2
23 sin2 2θ13 −N0 s

2
23 sin2 2θbest

13

)2

N0 s223 sin2 2θbest
13 +NBG + σ2

S(N0 s223 sin2 2θbest
13 )2 + σ2

BGN
2
BG

, (4.8)

where θbest
13 is the best fit value of θ13 determined by experiments. Thus, the larger θbest

13

gives less accuracy due to larger value of the denominator of ∆χ2
a2. while the accuracy in

νµ disappearance experiments (reactor experiments) is almost independent of θbest
13 . (See

Chapter 5.)

The third is the observation of the leptonic CP violation due to the CP phase δ. Since

the terms ignored in (4.6) include CP violating one, the observation needs the precise

measurement of νe and νe appearance probabilities (P (νµ → νe) and P (νµ → νe)) with

νµ and νµ beams, respectively. It is necessary for the observation of CP violation that θ13

is not very small because δ appears with θ13 in the mixing matrix (2.35). Since the CP

violating effect is extremely small, the beam power and the detector volume are expected

to be upgraded to 4MW and 540kt fiducial mass of the Hyper-Kamiokande, respectively.

The exposure time of νµ beam must be about 3 times longer than that of νµ beam because

of smallness of antineutrino cross sections (See Fig. 4.3.); The periods are expected to be
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Figure 4.3: Cross sections with one averaged nucleon in H2O [89]. Solid lines are of

charged-current quasi-elastic interaction (CCQE). Dashed lines are of charged-current non-

quasi-elastic interaction (CCnQE). Dash-dotted lines are of neutral-current interaction

(NC).
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2 years and 6.8 years for νµ and νµ beams, respectively. The observation is affected by

the parameter degeneracy problem [15, 16, 17, 18] as described in Sect. 4.2. The confusion

between CP conservation and violation due to the intrinsic degeneracy is, however, avoided

by tuning the neutrino energy to the oscillation maximum energy (E ' 0.6GeV) [18, 20].

The sensitivity limit to CP violation (non-zero δ) is expected to be δ ' 20◦ at 3σ CL for

sin2 2θ13 > 0.01.

4.2 The Problem of Parameter Degeneracy

4.2.1 An overview of the problem

The most important goal of neutrino oscillation experiment is to measure CP violating

phase δ. Naively, it can be determined by measurement of P (νµ → νe) and P (νµ →
νe) = CP [P (νµ → νe)] in long baseline (LBL) experiments. The measurement of δ has,

however, a notorious problem so-called “parameter degeneracy” which prevents us from

determining uniquely the values of oscillation parameters [15, 16, 17, 18]. There are three

kinds of the degeneracy, and I will give a brief review of the problem below.

In LBL experiments, we should take the matter effect into account because the neu-

trino beams pass through the Earth matter in a long distance. The oscillation probabilities

Pµe ≡ P (νµ → νe) and P µe ≡ P (νµ → νe) in matter are complicated functions of the os-

cillation parameters. Fortunately, there are small expansion parameters ε ≡ ∆m2
21/∆m

2
31

and sin2 2θ13 by which the probabilities can be expanded: |ε| ' 0.03, sin2 2θ13 . 0.1.

Then, the probabilities up to second order in ε and sin 2θ13 are obtained [91, 92] as

Pµe =
∣

∣

∣X sin 2θ13 + Z ei(δ+∆31/2)
∣

∣

∣

2

= X2 sin2 2θ13 + 2XZ sin 2θ13 cos

(

δ +
∆31

2

)

+ Z2, (4.9)

P µe =
∣

∣

∣X sin 2θ13 + Z ei(δ−∆31/2)
∣

∣

∣

2

= X
2
sin2 2θ13 + 2XZ sin 2θ13 cos

(

δ − ∆31

2

)

+ Z2, (4.10)

where

∆jk ≡
∆m2

jkL

2E
, (4.11)

X ≡ fs23, X ≡ fs23, (4.12)

Z ≡ ε c23 sin 2θ12
sin(Â∆31/2)

Â
, (4.13)

f, f ≡ sin((1 ∓ Â)∆31/2)

1 ∓ Â
, Â ≡ 2

√
2GFNeEν

∆m2
31

. (4.14)
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case I case II case III case IV

θ23 < π/4 < π/4 > π/4 > π/4

sign
(

∆m2
31

)

+ − + −

Table 4.2: Possible cases of discrete undetermined values relate with the parameter de-

generacy problem. In each case, the intrinsic degeneracy (See Fig. 4.4.) occurs.

For simplicity, let us first deal with the case of one sign of ∆m2
31 and fix parameter values

except for sin2 2θ13 and δ. In this case, when a value of Pµe is given, we can obtain sin 2θ13

as unique function of δ:

sin 2θ13 = − Z

X
cos

(

δ +
∆31

2

)

+

√

{

Z

X
cos

(

δ +
∆31

2

)}2

+
1

X2
(Peµ − Z2). (4.15)

The sign in front of the square-root is chosen so that θ13 ≥ 0 because mixing parameters

are defined as 0 ≤ θjk ≤ π/2 and 0 ≤ δ ≤ 2π without loss the generality [30]. The first

term mainly determines the δ-dependence: sin 2θ13 ∼ cos(δ+ ∆31/2). On the other hand,

a given Pµe provides another constraint: sin 2θ13 ∼ cos(δ − ∆31/2). It is clear that those

two cosine curves of experimental constraints intersect at two points in the δ-θ13 space.

(See Fig. 4.4.) One of those intersections is the true solution, and another is the fake

solution. We can not determine which is the true solution of {δ, θ13}; This is the so-called

”intrinsic degeneracy” which is a part of the parameter degeneracy problem.

The problem includes two discrete degeneracy problems also. The appearance prob-

abilities (4.9) and (4.10) depend on s223 which is to be constrained stringently by the

νµ disappearance measurement. The observable in the disappearance measurement is,

however, not s223 but sin2 2θ23:

1 − P (νµ → νµ) = sin2 2θ23 sin2

(

∆m2
31L

4E

)

. (4.16)

Thus, two values of s223 are allowed because θ23 and θ′23 ≡ π/2 − θ23 give the same value

of sin2 2θ23: sin 2θ23 = sin(π − 2θ23). Furthermore, the sign of ∆m2
31 have not been

determined yet. The ambiguity affects the oscillation probabilities (4.9) and (4.10) in

LBL experiments through the matter effect. Therefore, there are four allowed cases as

listed in Table 4.2. Since the intrinsic degeneracy problem occurs for each case, there are

eight solutions of {δ, θ13} in the end (eight-fold degeneracy).

The parameter degeneracy problem is very serious because δ = 0 can be allowed even

if the true value is δ = π/2, and vice versa. It means that the confusion between CP
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Figure 4.4: The situation of δ-sin2 2θ13 degeneracy problem by using Pµe and P µe or Peµ

and Peτ , namely (4.9) and (4.10) or (4.17) and (4.18). There are two intersections in each

figure; One is the true solution and the other is a fake one. True values of parameters

are chosen as δ = 0, sin2 2θ13 = 0.1, ∆m2
21 = 7.3 × 10−5eV2, 0 < ∆m2

31 = 2.5 × 10−3eV2,

tan2 θ12 = 0.38, sin2 2θ23 = 0.5, ρ = 2.3g · cm−3, Ye = 0.5. The measurement is assumed

to be done with L = 3000km and Eν = 20GeV (mono-energetic beam) for figures (a) and

(b). (a): The situation with Pµe and P µe. This is similar to that with Peµ and P eµ. Since

two curves in (a) are similar to each other, rather wide allowed region will be obtained by

considering experimental errors. (b): This is the situation with Peµ and Peτ which is called

the “silver channel”. Note that two solutions have a value of θ13. The difference between

the central values of those cosine curves are due to the matter effect. (c): The situation

with Pµe and Pµe, but differently from (a) the beam energy is tuned to the oscillation

maximum energy (' 6GeV). Note that two solutions give a set of {sin δ, θ13} which does

not cause the confusion between CP conservation and violation. The allowed region will

concentrate well around the solution.
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conservation and violation can arise. Moreover, even if we obtain rather large θ13, it can

be the fake solution of small true value. Since the problem is intrinsic to the nature of the

neutrino oscillation, the problem can not be solved however accurate the measurement is.

A way to break the degeneracy is to combine information obtained with different

oscillation modes or L/E . Actually, the eight-fold degeneracy exists for a measurement of

three measurement: P (νµ → νµ), P (νµ → νe), and P (νµ → νe). The seven fake solutions

do not necessarily explain results of LBL experiments using different E/L or oscillation

channels. Since there are three types of degeneracy, the eight-fold degeneracy is resolved

by three other results (totally five results) of LBL experiments even at the worst [93]. In

principle, precise shape analysis of event spectrum helps us because the analysis is similar

to using results of several LBL experiments with different energies.

Among other oscillation modes, the measurement of Peτ ≡ P (νe → ντ ) is interesting

though ντ detection is rather difficult [94]. The oscillation is referred to as the “silver

channel” in the neutrino factory in contrast to the “golden channel” Peµ. The oscillation

probabilities up to second order in ε ≡ ∆m2
21/∆m

2
31 and sin 2θ13 are

Peµ = X2 sin2 2θ13 + 2XZ sin 2θ13 cos

(

δ − ∆31

2

)

+ Z2, (4.17)

Peτ = X2
τ sin2 2θ13 − 2XZ sin 2θ13 cos

(

δ − ∆31

2

)

+ Z2
τ , (4.18)

where

Xτ ≡ fc23, Zτ ≡ ε s23 sin 2θ12
sin(Â∆13/2)

Â
. (4.19)

Peµ is obtained from Pµe of (4.10) by replacing A with −A, namely X with X . Note that

Xτ is obtained from X by exchanging s23 and c23. Consequently, the difference between X

and Xτ can help us to resolve the θ23 degeneracy if θ13 is rather large so that the terms of

sin2 2θ13 in (4.17) and (4.18) dominate over other terms. Next, note that the δ-dependent

term of (4.18) has the opposite sign to that of Peµ. Thus, although the intrinsic degeneracy

arises also for the measurement of Peµ and Peτ with the same L/E , the two solutions of

{δ, θ13} have the same value of θ13. The opposite behavior of Peµ and Peτ with respect

to δ has the advantage also in statistical analyses, namely it gives rather small allowed

region (precise determination of parameter values) in the δ-θ13 space.

The intrinsic degeneracy in Pµe and Pµe also can be tamed [18, 20]. Assuming the

mono-energetic beam tuned the energy to the oscillation maximum energy (|∆m31|L/4E =

π/2), the oscillation probabilities (4.9) and (4.10) become

Pµe = X2 sin2 2θ13 − 2XZ sin 2θ13 sin δ + Z2, (4.20)

Pµe = X
2

sin2 2θ13 + 2XZ sin 2θ13 sin δ + Z2. (4.21)
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Note that the phase of the δ-dependent term in (4.20) is different from that in (4.21)

by just π. Thus, two solution of {δ, θ13} caused by intrinsic degeneracy collapse into a

solution of {sin δ, θ13} for the measurement of Pµe and P µe with mono-energetic beams at

the oscillation maximum. It is remarkable that the way of determination of sin δ never

cause the confusion between CP conservation and violation. Of course, the large difference

of δ dependence leads to rather precise determination of the parameters as the case of using

Peτ . The essential point of the reduction is the elimination of cos δ term from oscillation

probabilities. Even for non-mono-energetic νµ beams, we can eliminate cos δ term in

principle from the predicted total number of signal νe events by tuning the beam energy

so as to satisfy

∫ Emax

Emin

φ σXZ cos
∆31

2
= 0, (4.22)

where Emin < Eν < Emax is the neutrino energy range in which signal events are counted,

and φ and σ represent the beam flux and the cross section, respectively; The same argu-

ment holds for νµ beam also.

4.2.2 Another viewpoint of the problem

In this subsection, the eight-fold degeneracy is explained from another point of view with

the sin2 2θ13-s
2
23 space for convenience of understanding the discussion in Chapter 5.

Let us first define the symbols x ≡ sin2 2θ13 and y ≡ s223. If |ε| ≡ |∆m2
21/∆m

2
31|

and |Â| ≡ |A/∆m2
31| are vanishing (or extremely small), Pµe and Pµe become a vacuum

oscillation probability of two generation neutrinos: Pµe = Pµe = xy. A given value of

Pµe puts a constraint xy = constant. On the other hand, the disappearance probability

1 − Pµµ with θ23 = π/4 gives a constraint y = constant. Then, those constraints can

determine a solution as shown in Fig. 4.5(a).

If the 2-3 mixing angle is not maximal one, θ23 6= π/4, the disappearance probability

becomes two constraints y = y1 and y2, where y2 = 1 − y1 corresponding to the θ23 ↔
π/2− θ23 ambiguity. It is then obvious in Fig. 4.5(b) that there are two crossing points of

these curves. This is the simplest version of the (θ13, θ23) degeneracy problem.

Next, We discuss what happens when finite |ε| ≡ |∆m2
21/∆m

2
31| is took into account.

In this case, P µe is not necessarily the same as Pµe due to CP phase δ. A given set

of Pµe and P µe puts a contour that crosses two y = constant lines at four points in

general (Fig. 4.5(c)). It results in the four-fold degeneracy. Each point on the contour

corresponds to a value of δ. Simultaneously, the two y = constant lines are slightly bent

and the splitting between those two curves becomes smaller at larger sin2 2θ13, though the

effect is too tiny to be clearly seen.
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Figure 4.5: Schematic figures to see how the seven fake solutions arise (the eight-fold

degeneracy) in the sin2 2θ13-s
2
23 space. See the explanation in Sect. 4.2.2.
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If the baseline distance is longer, the Earth matter effect Â ≡ A/∆m2
31 comes in

and splits each appearance contour into two, depending upon the sign of ∆m2
31. Then,

there are eight solutions in general as displayed in Fig. 4.5(d). This is a simple pictorial

representation of the maximal eight-fold parameter degeneracy with the sin2 2θ13-s
2
23 space.

Additionally, if we tune the beam energy to that of the oscillation maximum |∆31| = π

(strictly speaking, (4.22) should be satisfied), two appearance contours are collapsed as

we see in Fig. 4.5(e). In this case, the eight-fold degeneracy becomes four-fold one in the

sin2 2θ13-s
2
23 space because there is a solution of sin2 2θ13 for each case of Table 4.2. (See

also Fig. 4.4(c).) Furthermore, small matter effect makes the degeneracy simple two-fold

one in the space, which is the fact that we use in Chapter 5.
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Chapter 5

Reactor Measurement of θ13 and

Its Complementarity to Long

Baseline Experiments

5.1 Possibility to Measure θ13 by the Future Reactor Exper-

iment

5.1.1 Reactor experiment as a clean laboratory for θ13 measurement

In this thesis, we explore the possibility of measuring θ13 by the disappearance measure-

ment of νe from nuclear reactors. Since the reactor νe is low energy neutrino (E ' 4MeV),

the oscillation becomes maximal at short distance, ' 1km for |∆m2
31| = 2.5 × 10−3eV2.

Thus, the reactor experiment can accumulate large number of events with rather small

detector and/or short time scale. In this thesis, it is emphasized that the reactor νe

disappearance experiment provides particularly clean environment for the measurement

of θ13 while the measurement by the long baseline (LBL) experiment with only neutrino

beam suffers from large uncertainty due to unknown CP phase δ.1 Thus, the reactor

measurement of θ13 will give us valuable information complementary to the one from LBL

experiments. The complementary nature is discussed in later parts of this chapter, and let

us first study in this section how clean the measurement of θ13 by the reactor experiments

is. We examine possible ”contamination” on the reactor θ13 measurement by δ, the matter

effect, the sign of ∆m2
31, and the solar parameters one by one.

We first note that, due to its low neutrino energy of a few MeV, the reactor experiments

are inherently disappearance experiments, which can measure only the survival probability

1Even for the long baseline experiment with neutrino and antineutrino beam, the determination of

parameter values is disturbed by the parameter degeneracy problem which is discussed in Sect. 4.2.
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P (ν̄e → ν̄e). It is well known that the survival probability does not depend on the CP

phase δ in arbitrary matter densities [95].

In any reactor experiment on the Earth, short or long baseline, the matter effect is

very small because the neutrino energy E is quite low and can be ignored to a good

approximation. It can be seen by comparing the matter and the vacuum effects (as the

matter correction comes in only through this combination in the approximate formula

in [91])

|Â| =
2aE

|∆m2
31|

= 2.8 × 10−4

( |∆m2
31|

2.5 × 10−3 eV2

)−1(
E

4 MeV

)(

ρ

2.3 g · cm−3

)(

Ye

0.5

)

, (5.1)

where a =
√

2GFNe denotes the index of refraction in matter with GF being the Fermi

constant, and Ne the electron number density in the Earth; Ne is related to the Earth

matter density ρ as Ne = Yeρ/mp where Ye is proton fraction and mp = 0.938GeV is

proton mass. Hereafter, the Earth matter density is taken to be ρ = 2.3 g · cm−3 based

on the estimate given in [96]. The electron fraction Ye is taken to be 0.5. The best

fit value of |∆m2
31| is given by |∆m2

31| = 2.5 × 10−3 eV2 from the Super-Kamiokande

(SK) atmospheric neutrino data [97], and we use this as the reference value for |∆m2
31|

throughout this thesis.2

Since |Â| is negligible for reactor experiments, the vacuum probability formula applies.

The exact expression of P (ν̄e → ν̄e) for 3ν case in vacuum is given by

1 − P (ν̄e → ν̄e) = 4
∑

j>k

|Uej|2|Uek|2 sin2

(

∆m2
jkL

4E

)

= sin2 2θ13 sin2 ∆31

2
− 1

2
s212 sin2 2θ13 sin ∆31 sin ∆21

+ c413 sin2 2θ12 sin2 ∆21

2
+ s212 sin2 2θ13 cos∆31 sin2 ∆21

2
, (5.2)

where the parametrization (2.35) has been used in the second line and we used ∆ij ≡
∆m2

ijL/2E . Note that only the second term in the last equality depends on the sign of

∆m2
31. Relatively to the main depletion term which is the first term in the last equality

of (5.2), other three terms are suppressed by ε, ε2/ sin2 2θ13, ε
2, respectively, where ε ≡

∆m2
21/∆m

2
31. Assuming that |∆m2

31| = 1.3-3.0 × 10−3 eV2 [67], we obtain |ε| ' 0.1-0.01

for the LMA MSW solar neutrino solution, ∆m2
21 = 3-9×10−5 eV2 [74]. Then, the second

and the fourth terms in the last equality can be ignored, although the second term can be

comparable to the main depletion term by |ε| ' 0.1. (Notice that we are considering the

2|∆m2
31| = 2 × 10−3 eV2 is the most recent best fit value obtained by SK atmospheric neutrino analy-

sis [67] but K2K data prefers larger value |∆m2
31| = 2.8 × 10−3 eV2 [97].
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measurement of sin2 2θ13 in the range of 0.1-0.01.) Therefore, assuming that |∆m2
31| is

determined precisely by LBL experiments, the reactor ν̄e disappearance experiment gives

us a clean measurement of θ13 which is independent of any solar parameters except for

the case of rather large |ε| and extremely small θ13.

5.1.2 Near-far detector complex: basic concepts and estimation of sen-

sitivity

In order to obtain a good sensitivity to sin2 2θ13, the selection of an optimized baseline

and having small systematic errors are crucial. For instance, the baseline length that gives

the first oscillation maximum for reactor ν̄e’s which have typical energy 4MeV is about

1.7km for ∆m2 ' 2.5×10−3 eV2. Along with this baseline selection, an order of magnitude

improvement for the sin2 2θ13 sensitivity is possible at ∆m2 ' 2.5 × 10−3 eV2 if the total

systematic error can be reduced to 1% level which is 2.7 times better than the CHOOZ

experiment [13]. In this section, we demonstrate that such kind of experiment is certainly

possible.

The experiment with 1% systematic error should accumulate 104 νe events in order

to obtain 1% statistical error. Thus, we consider the Kashiwazaki-Kariwa nuclear power

plant which is the most powerful in the world at this moment and whose maximum energy

generation is 24.3GWth. Although the power plant consists of seven reactors we take the

approximation of one reactor of 24.3GWth thermal power in this thesis. A CHOOZ-like

detector of Gd loaded liquid scintillator, is assumed to be placed with 1.7km baseline

' 200m underground near the single reactor.

The major part of systematic errors is caused by the uncertainties in the neutrino

flux calculation, number of protons (including the uncertainty of the detector volume),

and the detection efficiency. For instance, in the CHOOZ experiment, the uncertainty

of the neutrino flux is 2.1%, that of number of protons is 0.8%, and that of detection

efficiency 1.5% as is shown in the Table 5.1. The uncertainty of the neutrino flux includes

ambiguities of the reactor thermal power generation, the reactor fuel composition, the

neutrino spectra from fissions, and so on. The uncertainty of the detection efficiency

includes the ambiguity of the cross section of the inverse beta decay (νe + p → e+ + n).

These systematic uncertainties, however, cancel out if we compare data taken by the

detectors placed near and far from the reactor because these systematic uncertainties are

correlated ones between the detectors. Furthermore, if the detectors are identical, many

other errors such as the errors on the number of protons will be correlated ones and cancel

out also. Therefore, it is better that the near detector is identical to the far detector as

much as possible. This is more or less the strategy taken in the Bugey experiment [80].3

3The Krasnoyarsk group also plans in their Kr2Det proposal [98] to construct two identical 50ton liquid
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We assume that a near detector, which is identical to the far detector, is located at 300m

away from the reactor we consider.4 In the actual setting with the Kashiwazaki-Kariwa

power plant, two near detectors may be necessary due to extended array of seven reactors.5

To estimate how good the cancellation will be, we study the case of the Bugey experi-

ment, which uses two detectors of three identical modules to detect νe at 15 and 40m from

a reactor. For the Bugey case, the uncertainty of the neutrino flux were completely can-

celed out, the error on the detection efficiency improved from 3.5 % to 1.7 %, and the error

on the solid angle (the error on the baseline length) remained the same (0.5 % → 0.5 %)

because it is proper to each detector. If each ratio of the improvement of errors in the

Bugey case is applicable to the case considered in this thesis, the total systematic error

will improve from 2.7 % (the systematic error in CHOOZ experiment) to 0.8 % as shown

in the Table 5.1. The error on the solid angle is neglected because it will be small enough

due to much longer baselines (300m and 1.7km) than the Bugey one. In this chapter, we

take 2% and 0.8 % as the reference values of the relative systematic error σrel.sys for the

total number of ν̄e events in our analysis. Let us examine the physics potential of such

a reactor experiment assuming these reference values for the systematic error. We take

the Kashiwazaki-Kariwa reactor of 24.3 GWth thermal power and assume its operation

with 80% efficiency. Two identical liquid scintillation detectors are located at 300 m and

1.7 km away from the reactor and assumed to detect ν̄e by delayed coincidence with 70%

detection efficiency. The ν̄e’s of 1-8MeV visible energy, Evisi = Eν̄e − 0.782 MeV, are used

and the number of events are counted in 14 bins of 0.5 MeV.

In order to calculate theoretical numbers of νe events, we need the energy spectrum of

reactor νe flux and the cross section for the inverse β decay. We use a phenomenological

spectrum [100]

dNreact

dEνe

= exp
(

a0 + a1Eνe + a2E
2
νe

)

, (5.3)

where the left-hand side denotes the number density of νe emitted with Eνe by a fission;

The values of fitting parameter a’s are obtained for each isotope [100] as listed in Table 5.2.

A fission yields about 5 νe. The fissions in reactors are dominated by that of 235U which is

contained in the fuel uranium to the fraction of a few %. Our reference fission rates of each

isotope to the total number of fissions are listed in Table 5.3. For simplicity, the rates are

fixed in our analysis though the fuel composition varies during the reactor operation. In

Table 5.3 the thermal powers that are generated by a fission of each isotope [101] are also

scintillators at 1100m and 150m away from the Krasnoyarsk reactor.
4The closer the near detector to reactor, the better the sensitivity in the single-reactor case because of

smaller oscillation probability. The situation is, however, more subtle for multiple-reactor case [99].
5It is shown even in this case that an effective 1 reactor and 2 detector approximation can give a very

good estimation of the sensitivity [99].
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Bugey absolute relative relative/absolute

flux 2.8% 0.0% 0

number of protons 1.9% 0.6% 0.32

solid angle 0.5% 0.5% 1

detection efficiency 3.5% 1.7% 0.49

total 4.9% 2.0%

new experiment absolute relative relative/absolute

(Kashiwazaki-Kariwa) (CHOOZ) (expected)

flux 2.1% 0.0% 0

number of protons 0.8% 0.3% 0.38

detection efficiency 1.5% 0.7% 0.47

total 2.7% 0.8%

for bins 8.1% 2.4%

Table 5.1: Systematic errors in the Bugey experiment and a new experiment with two

detectors similar to the CHOOZ one. In the Bugey experiments, absolute errors were

reduced to relative errors by comparing events at near and far detectors. Relative errors

in the new experiment are expectation with the same reduction rates of errors as those of

Bugey. Bin-by-bin errors are estimated rather pessimistically as three times the errors for

total numbers by (5.6).

isotope 235U 239Pu 238U 241Pu

a0 0.870 0.896 0.976 0.793

a1 (MeV−1) −0.160 −0.239 −0.162 −0.080

a2 (MeV−2) −0.0910 −0.0981 −0.0790 −0.1085

Table 5.2: Parameters of the phenomenological spectra (5.3) of reactor νe for each iso-

tope [100].
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isotope 235U 239Pu 238U 241Pu

fission rate 0.562 0.31 0.063 0.065

thermal power per fission (MeV) 201.7 205.0 210.0 212.4

Table 5.3: Contributions from each isotope to the thermal power of the reactor. The

“fission rate” row shows an example of the values though the rates vary during the reactor

operation; The main fuel 235U decreases faster than other fuels, 239Pu is produced easily

from 238U by a neutron capture and two times beta decay, and 241Pu is produced from

239Pu by a neutron capture twice. The values in the last row are taken from [101].
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Figure 5.1: The spectrum of the number of events without oscillation expected in a

40 ton-year measurement at the distance of 1.7km from a 24.3GWth reactor. Evisi =

Eνe − 0.782MeV is the energy of the prompt signal. The bin width is 0.5MeV. The

total number of event within Evisi =1-8MeV is about 80,000 which corresponds to

1/
√

80, 000 = 0.35% statistical error.

presented. On the other hand, the cross section [102] of νe detection (νe + p→ e+ + n) is

σ(Eνe) = 9.5 × 1044 pe(MeV)Ee(MeV) cm2, (5.4)

where pe represents the positron momentum and Ee = Eνe − 1.293MeV is the positron

energy. Without oscillation, a 10 (40) ton-year measurement at the far detector yields

20,000 (80,000) ν̄e events which is corresponds to a 0.7 (0.35) % statistical error. Fig. 5.1

shows the spectrum of the number of events expected in the 40 ton-year measurement.

The definition of ∆χ2, which quantifies the deviation from the best fit point of the

57



“experimental data”, is given by

∆χ2(|∆m2
31|, sin2 2θ13) ≡

14
∑

i=1

{

Nfi −
Nbest

fi

Nbest
ni

Nni

}2

Nbest
fi +

(

Nbest
fi

Nbest
ni

)2

Nbest
ni + (σbin

rel.sys)
2
(

Nbest
fi

)2

. (5.5)

σbin
rel.sys is the relative systematic error for each bin which is assumed to be the same for all

bins; Nai denotes the theoretical number of ν̄e events at a-detector (near or far) within the

ith energy bin, and Nbest
ai does the number of events with the best fit values of parameters.

The derivation of the ∆χ2 is briefly explained in Appendix A.2. Assuming that the relative

systematic error is uncorrelated among bins and distributed equally into bins, σbin
rel.sys is

estimated from the relative systematic error σrel.sys for the total number of events by

(σbin
rel.sys)

2 = σ2
rel.sys

(

∑

iN
best
fi

)2

∑

i

(

Nbest
fi

)2 , (5.6)

since the uncertainty squared of the total number of events is obtained by adding up the

squared values of the bin-by-bin systematic uncertainties σbin
rel.sysN

best
fi ; The ratio σbin

rel.sys/σrel.sys

is about 3 in our analysis. In order to compare two numbers of events, we use not the ratio

Nfi/Nni but a liner combination of the numbers of events Nfi− (Nbest
fi /Nbest

ni )Nni because

the statistical analysis with ratios is not well defined.6(See, e.g., [103].) We assume that

the value of |∆m2
31| is known to a precision of 10−4 eV2 by the J-PARC → SK (hereafter,

it is referred to as JPARC-SK). Then, |∆m2
31| can be regarded as a given number in the

analysis of the reactor experiment. Therefore, we can rely on the analysis for 1 degree

of freedom where we can obtain more stringent bound on θ13 than that for 2 degrees of

freedom by protecting the information from outflowing to the other dimension of |∆m2
31|.

In practice, a consistency check will be necessary between |∆m2
31| obtained by LBL and

reactor experiments with the analysis for 2 degrees of freedom before the analysis for 1

degree of freedom of the reactor experiment.

First, let us calculate how severely we can constrain sin2 2θ13 from above. For this pur-

pose, we assume θbest
13 = 0. The 90% CL exclusion limits, which corresponds to ∆χ2 = 2.7

for 1 degree of freedom, are presented in Fig. 5.2 for two cases: a 10 ton-year measurement

with the 2 % systematic error in the total number of events and a 40 ton-year measurement

with the 0.8 % error. The figure shows that it is possible to measure sin2 2θ13 down to 0.02

at the maximum sensitivity with respect to |∆m2
31|, and to 0.04 for larger |∆m2

31| by a

40 ton-year measurement, provided the quoted values of the systematic errors are realized.

6The ratios or products of two provability variables that follow Gaussian probability distribution func-

tions (p.d.f.) do not follow Gaussian p.d.f. while any liner combination of the original two variables does.
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Figure 5.2: Shown are the 90% CL exclusion limits on sin2 2θ13 which can be placed by the

reactor measurement as described in Sect. 5.1.2. From the left to right, the dash-dotted and

the thin-dotted (the long-dashed and short-dashed) lines are based on analyses with 1 and 2

degrees of freedom, respectively, for σrel.sys=0.8 %, 40 t·yr (σrel.sys=2 %, 10 t·yr). The solid

line is the CHOOZ result, and the 90%CL interval 1.6×10−3 eV2 ≤ ∆m2
31 ≤ 3.9×10−3 eV2

of the Super-Kamiokande atmospheric neutrino data [97] is shown as a shaded strip.
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The CHOOZ result [13] for 2 degrees of freedom is also depicted in Fig. 5.2. For a fair

comparison with the CHOOZ contour, we also present in Fig. 5.2 the results of analysis

with 2 degrees of freedom, which correspond to ∆χ2 = 4.6 for 90%CL, without assuming

any precise knowledges on |∆m2
31| from other experiments.

Next, let us examine how precisely we could measure sin2 2θ13 around non-zero θbest
13 .

We fixed |∆m2
31| as |∆m2

31|best = 2.5× 10−3 eV2. The 90% CL allowed regions of 1 degree

of freedom, whose bounds correspond to ∆χ2 = 2.7, are presented in Fig. 5.3 for the values

of sin2 2θbest
13 from 0.05 to 0.08 (0.02 to 0.08) in the unit of 0.01 in the case of a 10 ton-year

(40 ton-year) measurement with systematic error σrel.sys = 2.0(0.8) %. We can read off

the uncertainty at 90%CL in sin2 2θ13 and it is almost independent of the central value

sin2 2θbest
13 . Thus, we have

sin2 2θ13 = sin2 2θbest
13 ± 0.043 (at 90%CL, d.o.f. = 1)

for sin2 2θbest
13 & 0.05

in the case of σrel.sys = 2 % with a 10 ton-year measurement, and

sin2 2θ13 = sin2 2θbest
13 ± 0.018 (at 90%CL, d.o.f. = 1)

for sin2 2θbest
13 & 0.02

in the case of σrel.sys = 0.8 % with a 40 ton-year measurement.

5.2 Resolving the Parameter Degeneracy by Reactor Mea-

surement of θ13

While the reactor experiment is a pure measurement of θ13 as we see in Sect 5.1.1, LBL

experiments are enriched with some other parameters which cause the complicate problem

of parameter degeneracy. In this section we discuss how reactor experiments can contribute

to resolve the parameter degeneracy. To make our discussion as concrete as possible we use

the particular long-baseline experiment, the J-PARC neutrino project [19], to illuminate

the complementary role played by reactor and long-baseline experiments. It is likely that

the experiment will be carried out at around the first oscillation maximum (|∆31| = π) for

a number of reasons: the dip in energy spectrum in disappearance channel is the deepest,

the number of appearance events are nearly maximal, and the two-fold degeneracy in δ

becomes simple (δ ↔ π − δ) for each mass hierarchy [18, 20]. With the distance L =

295km, the oscillation maximum is at around E = 0.6GeV. We assume, for definiteness,

that a long-baseline disappearance measurement has resulted in sin2 2θ23 = 0.92 and

∆m2
31 = 2.5 × 10−3 eV2. For the LMA solar neutrino parameters we take tan2 θ12 = 0.38
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Figure 5.3: Shown is the accuracy of determination of sin2 2θ13 at 90% CL for the case

of positive evidence based on analysis with 1 degree of freedom, ∆χ2 = 2.7. Figures (a)

and (b) are for σrel.sys=2%, 10 t·yr, and σrel.sys=0.8%, 40 t·yr, respectively. The lines

correspond to the best fit values of sin2 2θ13, from left to right, 0.05 to 0.08 in the unit of

0.01 in Fig. 5.3(a), and 0.02 to 0.08 in the unit of 0.01 in Fig. 5.3(b). The reference value

of |∆m2
31|best is taken to be 2.5 × 10−3eV2, which is indicated by a gray line.

and ∆m2
21 = 6.9 × 10−5 eV2 [10]. We use the values of these parameters throughout this

chapter unless otherwise stated.

5.2.1 Illustration of how reactor measurement helps resolve the {θ13, θ23}
degeneracy

Let us first give an illustrative example showing how reactor experiments could help to

resolve the {θ13, θ23} degeneracy. If θ23 is not maximal, we have two solutions for θ23

(θ23 and θ′23 = π/2 − θ23), even though we ignore the uncertainty in the determination of

sin2 2θ23. For example, if sin2 2θ23 = 0.95, which is perfectly allowed by the most recent

atmospheric neutrino data [67], then s223 can be either 0.39 or 0.61. Since the dominant

term in the appearance probability depends upon s223 instead of sin2 2θ23, it leads to ±20 %

difference in the number of appearance events in this case. On the other hand, even in the

case of maximal mixing, it still leaves a rather wide range of θ23, despite such fantastic

accuracy of the measurement. 1 % accuracy in sin2 2θ23 implies about 10% uncertainty in

s223. Thus, whenever we try to determine sin2 2θ13 from the appearance measurement, we

have to face the ambiguity due to the two-fold nature of the solution for s223.

To present a clear step-by-step explanation of the relationship between LBL and reactor

experiments, we first plot in Fig. 5.4 the allowed regions in the sin2 2θ13–s
2
23 plane by

measurements of P (νµ → νe) alone and P (ν̄µ → ν̄e) alone separately. The former is
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Figure 5.4: The allowed regions are shown in the sin2 2θ13–s
2
23 plane determined with a

given value of P ≡ P (νµ → νe) alone (in this case P = 0.025), or P̄ ≡ P (ν̄µ → ν̄e) alone

(in this case P̄ = 0.035) at the oscillation maximum |∆31| = π of the J-PARC experiment.

Each allowed region is the area bounded by the black solid (for ∆m2
31 > 0 with P only),

the black dashed (for ∆m2
31 < 0 with P only), the gray solid (for ∆m2

31 > 0 with P̄

only), the gray dashed (for ∆m2
31 < 0 with P̄ only), respectively, where the line with a

definite value of the CP phase δ sweeps out each region as δ varies from 0 to 2π. The

oscillation parameters are taken as follows: ∆m2
31 = 2.5×10−3eV2, ∆m2

21 = 6.9×10−5eV2,

tan2 θ12 = 0.38. The Earth density is taken to be ρ=2.3 g/cm3.
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indicated by the regions bounded by black lines and the latter by gray lines. The solid

and dashed lines are used for cases with positive and negative ∆m2
31. The values of

disappearance and appearance probabilities are chosen arbitrarily for illustrative purpose

and are given in the caption of Fig. 5.4. Notice that the negative ∆m2
31 curve is located

right (left) to the positive ∆m2
31 curve in neutrino (antineutrino) channel. A plot with

only measurement in neutrino mode goes beyond academic interest because the J-PARC

experiment is expected to run only with the neutrino mode in its first phase. We observe

that there is large intrinsic uncertainty in the θ13 determination due to unknown δ, the

problem addressed in [20]. The two regions corresponding to positive and negative ∆m2
31

heavily overlap due to small matter effect. When two measurements of ν and ν̄ channels

are combined, the allowed solution becomes a line which lies inside of the overlap of the ν

and ν̄ regions for each sign of ∆m2
31 in Fig. 5.4. In Fig. 5.5 we have plotted such solutions

as two lines, one for positive ∆m2
31 (the solid curve) and the other for negative ∆m2

31 (the

dashed curve) at the first oscillation maximum |∆31| = π. It may appear curious that the

two curves with positive and negative ∆m2
31 almost overlap with each other in Fig. 5.5. In

fact, a slight splitting between the solid (∆m2
31 > 0) and dashed (∆m2

31 < 0) lines is due

to the fact that both |ε| ≡ ∆m2
21/|∆m2

31| and the matter effect in the case of the J-PARC

experiment are small. Thus, the degeneracy in the set {θ13, θ23} is effectively two-fold in

this case.

To have a feeling on whether the reactor experiment described in Sect. 5.1.2 will be

able to resolve the degeneracy, we plot in Fig. 5.5 two sets of degenerate solutions by taking

a particular value of θ23, sin2 2θ23 = 0.92, the lower end of the region allowed by Super-

Kamiokande. We denote the true and fake solutions as (sin2 2θ13, s
2
23) and (sin2 2θ′13, s

2
23

′
),

respectively, assuming the true θ23 satisfies θ23 < π/4. We overlay in Fig. 5.5 a shadowed

region to indicate the accuracy to be achieved by the reactor measurement of θ13. If the

experimental error δre(sin
2 2θ13) in the reactor measurement of sin2 2θ13 is smaller than

the difference

δde(sin
2 2θ13) ≡ | sin2 2θ′13 − sin2 2θ13| (5.7)

due to the {θ13, θ23} degeneracy, then the reactor experiment may resolve the degeneracy.

Notice that once the θ23 degeneracy is lifted one can easily obtain four allowed sets of

{δ,∆m2
31} (though they are still degenerate at almost the same point on the sin2 2θ13–s

2
23

plane) because the relationship between them is given analytically in a completely general

setting [90].
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Figure 5.5: The allowed region in the sin2 2θ13–s
2
23 plane becomes a line when both P (νµ →

νe) and P (ν̄µ → ν̄e) are given (in this case P (νµ → νe) = 0.025, P (ν̄µ → ν̄e) = 0.035)

at the oscillation maximum (|∆31| = π, E = 0.6 GeV for the J-PARC experiment), as

indicated in the figure. The solid and the dashed lines are for ∆m2
31 > 0 and ∆m2

31 < 0

cases, respectively. Assuming θ23 6= π/4, two solutions of (sin2 2θ13, s
2
23) are plotted; In

this figure sin2 2θ23 is taken as 0.92. It is assumed arbitrarily that the solution of θ23

in the first octant (θ23 < π/4) is the genuine one, while the one in the second octant

(θ23 > π/4) with primes is the fake one. Superimposed in the figure as a shaded region

is the anticipated error in the reactor measurement of θ13 estimated in Sect. 5.1.2. If the

error δre(sin
2 2θ13) is smaller than the difference δde(sin

2 2θ13) ≡ | sin2 2θ′13 − sin2 2θ13| due

to the degeneracy, then the reactor experiment may be able to resolve it.
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5.2.2 Resolving power of the {θ13, θ23} degeneracy by a reactor measure-

ment

Let us make a semi-quantitative estimate of how powerful the reactor method is for resolv-

ing the {θ13, θ23} degeneracy.7 For this purpose, we compare in this section the difference

of the two θ13 solutions due to the degeneracy with the resolving power of the reactor

experiment. We consider, for simplicity, the special case |∆31| = π, i.e., energy tuned at

the first oscillation maximum. The simplest case seems to be indicative of features of more

generic cases.

As we saw in the previous section, there are two solutions of θ13 due to doubling of θ23

for a given sin2 2θ23 in each sign of ∆m2
31. Then, we define the fractional difference due

to the degeneracy
δde(sin

2 2θ13)

sin2 2θ13
. (5.8)

It is to be compared with δre(sin
2 2θ13)/ sin2 2θ13 of the reactor experiment, where δre(sin

2 2θ13)

denotes the experimental uncertainty estimated in Sect. 5.1.2, i.e., 0.043 or 0.018. In

Fig. 5.6(a) we plot the normalized error δre(sin
2 2θ13)/ sin2 2θ13 which is expected to be

achieved in the reactor experiment described in Sect. 5.1.2. We restrict ourselves to the

analysis with 1 degree of freedom, because we expect that the JPARC-SK will provide

us accurate information on ∆m2
31 by the time when the issue is really addressed. The

fractional difference (5.8) can be computed from the relation [18]

sin2 2θ′13 = sin2 2θ13 tan2 θ23 +

(

∆m2
21

∆m2
31

)2
tan2 (aL/2)

(aL/π)2

×
[

1 − (aL/π)2
]

sin2 2θ12
(

1 − tan2 θ23
)

, (5.9)

and the result for δde(sin
2 2θ13)/ sin2 2θ13 is plotted in Fig. 5.6(b) as a function of sin2 θ23

for two typical values of ε. We notice that the fractional differences differ by up to

a factor of ∼ 2 in small sin2 2θ23 region between the first (θ23 < π/4) and the second

octant (θ23 > π/4). For the best fit value of the two mass squared differences ∆m2
21

(6.9×10−5 eV2) and |∆m2
31| (2.5×10−3 eV2), for which |ε| ≡ ∆m2

21/|∆m2
31| = 0.028, there

is little difference between the case with sin2 2θ13 = 0.03 and the one with sin2 2θ13 = 0.09.

In this case they are all approximated by the first term in (5.9) and δde(sin
2 2θ13)/ sin2 2θ13

depends approximately only on θ23, making the analysis easier. On the other hand, if the

ratio |ε| ≡ ∆m2
21/|∆m2

31| is much larger than that at the best fit point, then the second

term in (5.9) is not negligible. In Fig. 5.6(b), δde(sin
2 2θ13)/ sin2 2θ13 is plotted in an

extreme case of |ε| = 1.9 × 10−4 eV2/1.6 × 10−3 eV2 = 0.12, which is allowed at 90% CL

7An alternative way to resolve the ambiguity is to look at νe → ντ channel because the main oscillation

term in the probability P (νe → ντ ) depends upon c2
13.
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Figure 5.6: (a): The normalized error at 90%CL in the reactor measurement of θ13 is

given for σrel.sys=2 %, 10 t·yr (d.o.f.=1, δre(sin
2 2θ13) = 0.043) and for σrel.sys=0.8 %, 40 t·yr

(d.o.f.=1, δre(sin
2 2θ13) = 0.018), respectively. Notice that the degrees of freedom becomes

1 once the value of |∆m2
31| is known from JPARC-SK. (b): The fractional difference

δde(sin
2 2θ13)/ sin2 2θ13 due to the degeneracy is plotted as a function of sin2 2θ23. Here,

δde(sin
2 2θ13) ≡ | sin2 2θ′13 − sin2 2θ13| stands for the difference between the true solution

sin2 2θ13 and the fake one sin2 2θ′13, and ε ≡ ∆m2
21/∆m

2
31; |ε| = 6.9 × 10−5 eV2/2.5 ×

10−3 eV2 = 0.028 is for the best fit and an extreme case with |ε| = 1.9 × 10−4 eV2/1.6 ×
10−3 eV2 = 0.12, which is allowed at 90% CL (atmospheric) or 95%CL (solar), is also

shown for illustration. The horizontal axis is suitably defined so that it is linear in sin2 2θ23,

where the left half is for θ23 < π/4 whereas the right half is for θ23 > π/4. The solar mixing

angle is taken as tan2 θ12 = 0.38. sin2 2θ23 ≥ 0.92 has to be satisfied due to the constraint

from the Super-Kamiokande atmospheric neutrino data. If the value of cos2 2θ23 is large

enough, the value of δde(sin
2 2θ13)/ sin2 2θ13 increases and lies outside of the normalized

error of the reactor experiment, then the reactor result may resolve the θ23 ambiguity.
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Figure 5.7: The shadowed area stands for the region in which δre(sin
2 2θ13) < δde(sin

2 2θ13)

is satisfied for σrel.sys=0.8 %, 40 t·yr, d.o.f.=1 and for the best fit values of the solar and

atmospheric oscillation parameters. In this shadowed region, the (θ13, θ23) degeneracy

may be solved. The vertical axis is the same as the horizontal axis of Fig. 5.6(b).

(atmospheric) or 95% CL (solar), with sin2 2θ13 = 0.03, 0.06, 0.09. From this, we observe

that the suppression in the first term in (5.9) is compensated by the second term for

sin2 2θ13 = 0.03, i.e., the degeneracy is small and therefore resolving the degeneracy is

difficult in this case. To clearly illustrate the resolving power of the degeneracy by the

reactor measurement, assuming the best fit value |ε| = 0.028, we plot in Fig. 5.7 the region

where the degeneracy can be lifted in the sin2 2θ13–sin2 2θ23 plane. It is evident that the

reactor measurement will be able to resolve the (θ13, θ23) degeneracy in a wide range inside

its sensitivity region, in particular for θ23 in the second octant.
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Chapter 6

Exploring Leptonic CP Violation

by Reactor and Neutrino

Superbeam Experiments

6.1 Measurement of CP Violation in Long Baseline Exper-

iments

Detecting leptonic CP violation is one of the most challenging goals in particle physics.

In this chapter we raise the possibility that leptonic CP violation may be explored by

combining the reactor experiment with νµ → νe measurement of the long baseline (LBL)

accelerator experiment. It constitutes the core part of this thesis. Let us start by recalling

some basic features of the detection of CP violation in LBL experiments. A conventional

way of measuring the CP violating phase δ is by LBL experiments with not only neutrino

but also antineutrino beams. (See Sect. 4.1 for a review of LBL experiments.) These

measurement would allow us to determine the CP-violating phase δ with a certain accuracy

by measuring P (νµ → νe) and P (νµ → µe). For instance, J-PARC neutrino project with

upgraded 4MW beam of 50GeV accelerator at J-PARC and Hyper-Kamiokande (hereafter

abbreviated as JPARC-HK) is expected to observe CP violation at 3σ CL if δ & 20◦ [19].

Running the experiment with antineutrino mode is, however, possible only by over-

coming a variety of grater difficulties than those in neutrino mode operation. Even if we

ignore the issue of slightly less intense π− beam compared to π+ beam, the antineutrino

cross sections are smaller by factor of ' 3 than neutrino cross sections, which results in

three times longer period of data taking, 6 years of ν-mode compared to 2 years of ν-

mode operation in JPARC-HK experiment. Moreover, the background in νe appearance

detection, according to the current estimate, are larger by factor of ' 2 compared with
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those in νe detection because of 3 times longer running and 3 times larger cross section for

the background due to wrong sign final-state leptons. Hence, antineutrino-mode measure-

ment may be better characterized as an independent experiment rather than the in-situ

measurement. Considering three times longer running time, it is certainly worthwhile to

think about an alternative that can run simultaneously with neutrino-mode long baseline

experiments. In this thesis, it is pointed out that a reactor experiment can serve for such

purpose. The treatment in this chapter strengthen our viewpoint of the LBL-reactor com-

plementarity discussed in Chapter 5. See Ref. [98, 104, 105, 106] for detailed description

of possible designs of reactor experiments to measure θ13.

6.2 Reactor-LBL Combined Measurement of CP Violation

The principle of detection of leptonic CP violation in a reactor-LBL combined measure-

ment is very simple. As we have discussed in length in Sect. 5.1.1, reactor experiment

can serve for pure measurement of θ13 assuming that ∆m2
31 is accurately determined by

disappearance measurement of P (νµ → νµ) in LBL experiments. Namely, it is not con-

taminated by uncertainties due to unknown CP phase δ, the matter effect, and possibly

to the octant ambiguity θ23 → π/2− θ23 from which νe appearance measurement by LBL

experiment suffers.

Now LBL νe appearance experiment will observe the neutrino oscillation probability

P (νµ → νe). In second order in sin 2θ13, ∆m2
21/∆m

2
31, and ∆21/aL, it takes the form [91]

Pµe ≡ P (νµ → νe) = X2 sin2 2θ13 + 2XZ sin 2θ13 cos

(

δ +
∆31

2

)

+ Z2, (6.1)

where we used the standard parametrization (2.35) of MNS matrix. The coefficients X

and Z are given by

X ≡ s23
∆31

B
sin

(

B

2

)

, (6.2)

Z ≡ c23 sin 2θ12
∆21

aL
sin

(

aL

2

)

(6.3)

with

∆jk ≡
∆m2

jkL

2E
and B ≡ ∆31 − aL, (6.4)

where a =
√

2GFNe denotes the index of refraction in matter with GF being the Fermi

constant and Ne a constant electron number density in the Earth. The mass squared

difference of neutrinos is defined as ∆m2
jk ≡ m2

j −m2
k where mj is the mass of the j-th

eigenstate.
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There exist number of reasons for tuning the beam energy to the oscillation maximum

|∆13| = π in doing the appearance and the disappearance measurement in LBL experi-

ments, as listed in [20]. In this case, X cos
(

δ + ∆13

2

)

= |X | sin δ and (6.1) can be solved

for sin δ as

sin δ =
Pµe − Z −X2 sin2 2θ13

|X |Z sin 2θ13
. (6.5)

We note that, since θ13 can be measured by reactor experiments, the right-hand side of

(6.5) consists solely of experimentally measurable quantities. Therefore, the measurement

of P (νµ → νe) by LBL experiments, when combined with the reactor experiment, implies

measurement of sin δ.

In the rest of this Chapter, we try to elaborate our treatment by including suitably esti-

mated experimental uncertainties of both LBL and the reactor experiments. As indicated

in (6.5), the accuracy of measurement of sin δ solely depends upon how precisely Pµe and

sin 2θ13 in the right-hand side of (6.5) can be determined in LBL and reactor experiments,

respectively. We take the best possible case among the concrete proposals of long baseline

experiments currently available in the community, the JPARC-HK experiment assuming

4MW beam power and 540 kton as the fiducial volume of the detector. However, most

probably our conclusion does not heavily depend on any detailed experimental setting in

the particular experiment, once the accuracy of measurement of the νe appearance proba-

bility reaches to that level and if the baseline is not too long. For the reactor experiment,

we present all results in units of GWth · ton · year exposure to allow application to wider

class of experiments. The results may be useful to indicate what condition must be met

to uncover the leptonic CP violation in such reactor-LBL combined measurement.

6.3 Treatment of Errors in LBL and Reactor Experiments

To carry out quantitative analyses of the sensitivity to CP violation, we must first establish

the method for statistical treatment of long baseline and reactor experiments.

6.3.1 Treatment of errors in the JPARC-HK experiment

We consider neutrino-mode appearance measurement for 2 years in the JPARC-HK exper-

iment. For definiteness, we use the neutrino flux estimated for the off-axis 2◦ beam [19].

We define ∆χ2 for the experiment as

∆χ2
J-PARCν ≡

(

Nν −Nbest
ν

)2

Nbest
ν +NBG + σ2

S(N
best
ν )2 + σ2

BG(NBG)2
, (6.6)

where Nν and NBG represent the expected number of signal and background events, re-

spectively, computed with the cross section in [89]. Nbest
ν is defined as the number of signal
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OAB2◦ νµ beam νe signal νµCC BG νµNC BG νeBG

LOI 301.6 10713.6 4080.3 292.1

ours (0-50GeV) 309.1 10751.5 4072.4 293.2

Table 6.1: Comparison of our results with those in the letter of intent (LOI) [19] as

a consistency check of our calculations. The column of νe signal is for the numbers

of oscillated νe charged-current interaction (CC) events with s223 sin2 2θ13 = 0.05 and

|∆m2
31| = 3 × 10−3eV2. The column of νµCC BG is without oscillation. CC events

include charged-current quasi-elastic (CCQE) and charged-current non-quasi-elastic (CC-

nQE) events. The column of νµNC BG is for the numbers of νµ → νxNC BG, namely

unoscillated νµNC BG because of flavor blindness of NC interaction. The column of νeBG

is for the numbers of CC+NC events of νe contaminates initial flux. Other parameters

are fixed as ∆m2
21 = 0 and ρ = 0.

OAB2◦ νµ beam νe signal νµBG νµBG νeBG νeBG

0-5GeV CC 4139.9 139434.8 22195.7 7553.8 836.7

NC 1577.5 161251.5 11628.5 2543.7 328.9

total 5717.7 300686.2 33824.1 10097.5 1165.6

Table 6.2: The numbers of events before cut in our calculation. The numbers correspond

to those in Fig. 6.1.

event Nν calculated with the best-fit values of the “experimental data”, which is to be

tested against the CP conserving hypothesis, δ = 0. σS and σBG represent the fractional

uncertainties of the estimation of the number of signal and background events, respectively.

Following the letter of intent of J-PARC neutrino project [19], we use σS = σBG = 2% in

our analysis. (See Sect. 6.4 for more about how to use ∆χ2 in our procedure to determine

the sensitivity region to CP violation.)

While we do not use the spectral information in a direct way in our analysis, we

need to estimate how the experimental event selection affects the spectrum to calculate

the numbers of signal and background events. The most important cut is to suppress

the background events due to π0 which is produced by charged-current non-quasi-elastic

interaction (CCnQE) or neutral-current interaction (NC) and whose daughter gamma rays

can mimic νe signal event. We use the simulated spectra after the cut, Nac, calculated

by the J-PARC experiment group [107] with δ = π/4 and sin2 2θ13 = 0.03 in each energy

bin of 50MeV width. Those spectra are presented in Fig. 6.2. (See also Table 6.3.) On

the other hand, we can calculate the number of events before cut, Nbc(δ, sin
2 2θ13), for
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Figure 6.1: Event spectra in our calculation before event selections. Assumed values of

parameters are same as those of Fig. 6.2. The histograms with solid line are of total number

of CC and NC events while those with dashed line are for the number of NC events. In

low energy region . 0.3GeV, our calculation seems to be not accurate because of high

frequency of the oscillation probability. Most of the error may be, however, canceled by

the ratio in the right-hand side of (6.7).
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Figure 6.2: The spectra are calculated with Monthe-Carlo simulation by J-PARC experi-

ment group [107]. Those are spectra after event selections except for the energy window

restriction (0.4GeV ≤ Erec ≤ 1.2GeV); Erec is reconstructed energy by assuming CCQE

interaction. The histograms with solid line are of total number of CC and NC events while

those with dashed line are for the number of NC events. We use approximated relations

Erec = Eν for CC events and Erec = Eν −300MeV for NC events. The assumed values are

4MW accelerator power, OAB2◦, 1Mt fiducial mass, 2yr exposure, ∆m2
21 = 5 × 10−5eV2,

∆m2
31 = 3 × 10−3eV2, sin2 2θ12 = 0.8, sin2 2θ13 = 0.03, sin2 2θ23 = 1, δ = π/4, and

ρ = 2.8g · cm−3.
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OAB2◦ νµ beam νe signal νµBG νµBG νeBG νeBG

0-5GeV CC 3323.6 121.5 22.5 1762.8 120.2

NC 5.7 2802.1 321.8 88.7 20.1

total 3329.3 2923.6 344.3 1851.6 140.3

0.4-1.2GeV CC 2670.4 45.2 3.6 893.5 48.3

NC 2.0 1075.3 151.0 51.1 6.8

total 2672.4 1120.5 154.5 944.6 55.0

Table 6.3: The numbers of events after event cuts, which correspond to the spectrum of

Fig. 6.2 calculated by the J-PARC experiment group [107]. The lower three rows are final

results of event cuts including the energy cut (0.4-1.2GeV).

Figure 6.3: Energy resolution of νµ events [19]. The shaded histogram is of true CCQE

events. We assume that the resolution for νe events is similar to this histogram, and we

use Erec = Eν for CC events and Erec = Eν − 300MeV for NC background events.

74



any parameter values in each energy bin of 100MeV width. Table 6.1 presents the result

of comparison between our calculation and the numbers in the letter of intent (LOI) of

J-PARC experiment as a consistency check. It is found that our calculation reproduces

well the numbers calculated by the J-PARC experiment group. Fig. 6.1 shows the spectra

with the same parameter values as those of Fig. 6.2. (See also Table 6.2.) Then, we

estimate the number of signal events within each 100MeV bin after the cut for any values

of mixing parameters as

Nac(δ, sin
2 2θ13) =

Nbc(δ, sin
2 2θ13)

Nbc(π/4, 0.03)
Nac(π/4, 0.03). (6.7)

Since reconstructed energy Erec for background events is less than true neutrino energy

Eν for signal events by about 300MeV (Fig. 6.3), we use the prescription that the energy

of NC background events before cut is sifted to 300MeV smaller value in (6.7). In this

way, the total numbers of signal and background (µ-like and e-like) events within energy

range 0.4-1.2GeV are estimated and used in our analysis. Note that bin-by-bin conversion

through (6.7) is necessary because shape of the event spectrum before the cut depends on

δ and θ13.

6.3.2 Treatment of errors in the reactor experiment

Similarly to Chapter 5, we consider the case of single reactor and two (near and far)

detector complex. The far detector is placed 1.7km away from the reactor, the optimal

distance for |∆m2
31| = 2.5 × 10−3 eV2. We assume that a near detector identical with the

far detector is placed 300m away from the reactor to reduce systematic errors.

We consider four types of systematic errors: σDB, σDb, σdB, and σdb. The subscript

D (d) represents the fact that the error is correlated (uncorrelated) between detectors.

The subscript B (b) represents that the error is correlated (uncorrelated) among bins. To

indicate nature of these respective errors, we list below some examples of the errors in

each category:

σDB: error in estimation of reactor power

σDb: error in estimation of detection cross sections

σdB: error in estimation of fiducial volume of each detector

σdb: errors inherent to detectors such as artificial firing of photomultiplier tubes

Although the values of σdB for far and near detectors, for example, can be different from

each other, we neglect such difference for simplicity. The values of systematic errors we

assume are listed in Table 6.4.

As will be briefly explained in Appendix A.2, the errors σD and σd for the total number
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between detectors

correlated uncorrelated single detector

between bins correlated σDB = 2.5% σdB = 0.5% σB ' 2.6%

uncorrelated σDb = 2.5% σdb = 0.5% σb ' 2.6%

total number of events σD ' 2.6% σd ' 0.5% σsys ' 2.7%

Table 6.4: Listed are assumed values of systematic errors σDB, σDb, σdB, and σdb. The

subscripts D (d) and B (b) are represent the correlated (uncorrelated) error among de-

tectors and bins, respectively. Using those four values, the errors for the total number of

events and for single detector are calculated.

of events are obtained as

σ2
D = σ2

DB + σ2
Db

∑

i(N
best
ai )2

(
∑

iN
best
ai

)2
, σ2

d = σ2
dB + σ2

db

∑

i(N
best
ai )2

(
∑

iN
best
ai

)2
, (6.8)

where a = n, f are the index for near and far detectors, and i runs over number of bins. We

use 14 bins of 0.5MeV width in 1-8MeV window of visible energy, Evisi = Eν̄e −0.782MeV.

The coefficient of σ2
Db and σ2

db is about 1/9 in our analysis almost independently of a. Since

relative normalization errors are
√

2 times of uncorrelated errors, σd ' 0.5% is consistent

with 0.8% relative error which is used in Chapter 5. In Chapter 5, the most pessimistic

assumption σDB = σdB = 0 was taken for bin-by-bin distribution of errors. We adopted

in this chapter rather even assumption, namely σDB = σDb and σdB = σdb. The value of

σ2
sys ≡ σ2

D+σ2
d is also consistent with the total systematic error of the CHOOZ experiment.

In summary, it seems that the errors listed in Table 6.4 are not too optimistic ones and

are likely to be realized by the setting discussed in [98, 104, 105, 106].

Our definition of ∆χ2
react is

∆χ2
react ≡ min

α’s

∑

a=f,n

[

14
∑

i=1

{

(

Nai − (1 + αi + αa + α)Nbest
ai

)2

Nbest
ai + σ2

db(Nbest
ai )2

+
α2

i

σ2
Db

}

+
α2

a

σ2
dB

]

+
α2

σ2
DB

,

(6.9)

where Nai represents the theoretical number of events at a-detector within i-th bin. Again,

Nbest
ai is defined as the number of signal event calculated with the best-fit parameters of

the “experimental data”. The minimization in (6.9) is achieved analytically, and then we

obtain

∆χ2
react = (~xT , ~yT )V −1

(

~x

~y

)

, (6.10)

~xT ≡
(

Nf1 −Nbest
f1

Nbest
f1

, · · ·
)

, ~yT ≡
(

Nn1 −Nbest
n1

Nbest
n1

, · · ·
)

, (6.11)
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V ≡ diag

(

1

Nbest
f1

, · · · , 1

Nbest
n1

, · · ·
)

+ σ2
dbI28 + σ2

dB

(

H14 0

0 H14

)

+ σ2
Db

(

I14 I14

I14 I14

)

+ σ2
DBH28, (6.12)

where In represents the n × n identity matrix and Hn represents the n× n matrix whose

elements are all unity. Notice that an infinitely good sensitivity is obtained for infinite

number of events if σdb vanishes because det(V ) goes to zero for the case. See [108] for

more about the equivalence between the “pull” and the covariance matrix methods.

To indicate the expected sensitivity of the reactor experiment with the systematic

errors listed in Table 6.4, we present in Fig. 6.4 the excluded region in sin2 2θ13-|∆m2
31|

space in the absence of flux depletion (θbest
13 = 0) for 103, 4 × 103, and 104 GWth · ton ·

year exposure. The ν̄e detection efficiency of 70% is assumed. The number of events

expected during these exposure are about 105, 4 × 105, 106 ν̄e events, respectively, at the

far detector.1 Notice that what we mean by numbers in units of GWth is the thermal

power actually generated from reactors and it should not be confused with the maximal

thermal power of reactors. Assuming average 80% operation efficiency the above three

cases correspond approximately to 0.5, 2, and 5 years running, respectively, for 100 ton

detector at the Kashiwazaki-Kariwa nuclear power plant whose maximal thermal power

is 24.3GWth.

6.4 Estimation of Sensitivity of Reactor-LBL Combined De-

tection of CP Violation

To estimate the sensitivity of the reactor-LBL combined measurement to leptonic CP

violation, we define the combined ∆χ2 as

∆χ2
CP1(δ; δ

best, sin2 2θbest
13 ) ≡ min

sin2 2θ13

∆χ2
CP(δ, sin2 2θ13; δ

best, sin2 2θbest
13 )

≡ min
sin2 2θ13

{

∆χ2
J-PARCν(δ, sin

2 2θ13; δ
best, sin2 2θbest

13 )

+ ∆χ2
react(sin

2 2θ13; sin
2 2θbest

13 )
}

.

(6.13)

We take the following procedure in the analysis. We pick up a point in the two-dimensional

parameter space spanned by δbest and sin2 2θbest
13 and make the hypothesis test on whether

the point is consistent with CP conservation within 90% CL. For this purpose, we use

the projected ∆χ2 onto one-dimensional δ space, ∆χ2
CP1, as defined in (6.13) and then

1In the rate-only analysis without binning, the sensitivity is saturated at around 105ν̄e events.
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Figure 6.4: The excluded regions at 90% CL in the absence of ν̄e disappearance (θbest
13 = 0)

are drawn for 103, 4 × 103, and 104 GWth · ton · year exposure of a reactor experiment

by thin-solid, solid, and thick-solid lines, respectively. The far (near) detector is placed

1.7km (300m) away from the reactor. We assume that |∆m2
31| is precisely measured by

LBL experiments and adopt the analysis with one degree of freedom (∆χ2
react = 2.7). We

use the value |∆m2
31| = 2.5× 10−3eV2 as indicated by the dashed-doted line in the figure.

In this analysis, we use 14 bins of 0.5MeV width in 1-8MeV window of visible energy with

the systematic errors listed in Table 6.4.
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the statistical criterion for 90% CL is ∆χ2
CP1 ≤ 2.7. Then, a collection of points in the

parameter space which are consistent with CP conservation forms a region surrounded by

a contour in the δbest-sin2 2θbest
13 space, as will be shown in Figs. 6.5-6.7 below.

The neutrino mixing parameters are taken as follows: |∆m2
31| = 2.5×10−3eV2, ∆m2

21 =

7.3×10−5eV2, tan2 θ12 = 0.38, and sin2 2θ23 = 1. The Earth matter density is taken to be

ρ = 2.3 g · cm−3 [96] and the electron number density is computed with electron fraction

Ye = 0.5.

6.4.1 CP sensitivity in the case of known sign of ∆m2
31

In Fig. 6.5, the regions consistent with CP conservation at 90% CL are drawn for ∆m2
31 > 0

case in the region −π/2 ≤ δbest ≤ π/2. The thin-solid, the solid, and the thick-solid lines

are for 103, 4 × 103, and 104GWth · ton · years, respectively, and the regions consistent

with CP conservation are within the envelope of these contours.2 We remark that the

present constraint on θ13 becomes milder to sin2 2θ13 < 0.25 at 3σ CL [79] by the smaller

values of |∆m2
31| indicated by the reanalysis of atmospheric neutrino data [67]. Notice

that the other half region of δbest gives the identical contours apart from tiny difference

which arises because the peak energy of the off-axis 2◦ beam is slightly off the oscillation

maximum.

If an experimental best fit point falls into outside the envelope of those regions, it

gives an indication for leptonic CP violation because it is inconsistent with the hypothesis

δ = 0 at 90% CL. We observe from Fig. 6.5 that there is a chance for reactor-LBL

combined experiment of seeing an indication of CP violation for relatively large θbest
13 ,

sin2 2θbest
13 ≥ 0.03 at 90% CL. Then, this can be the first time that a possibility is raised for

detecting leptonic CP violation based on a quantitative treatment of experimental errors

by a method different from the conventional one of comparing neutrino and antineutrino

appearance measurement in LBL experiments.

The sign of ∆m2
31 is taken to be positive in Fig. 6.5 which corresponds to the normal

mass hierarchy. If we flip the sign of ∆m2
31 (the case of inverted mass hierarchy) we obtain

almost identical CP sensitivity contours. It is demonstrated in Figs. 6.7a and 6.7b which

serve also for the discussion in the next subsection. By comparing the contours depicted

by thick-solid and thick-dashed lines in Figs. 6.7a (∆m2
31 > 0) and 6.7b (∆m2

31 < 0),

2Since we rely on hypothesis test with 1 degree of freedom (1 d.o.f.) the information of sin2 2θ13 is

lost through the process of minimization in (6.13). The individual contours presented in Fig. 6.5 indicate

the region ∆χ2

CP ≤ 2.7 for eight assumed values of sin2 2θ13 which range from 0.02 to 0.16. In this way

the figure is designed so that the envelope of the contours gives the region of CP conservation at 90% CL

by 1 d.o.f. analysis, and at the same time carries some informations of how the sensitivity regions are

determined by the interplay between the reactor and the LBL measurement.
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Figure 6.5: The contours are plotted for eight assumed values of sin2 2θ13 which range

from 0.02 to 0.16 to indicate the regions consistent with the hypothesis δ = 0 at 90% CL

(∆χ2
CP = 2.7) by the reactor-LBL combined measurement. If an experimental best fit

point falls into outside the envelope of those regions, it gives an evidence for leptonic

CP violation at 90% CL. The thin-solid, solid, and thick-solid lines are for 103, 4 × 103,

and 104GWth · ton · year exposure of a reactor experiment, respectively, corresponding to

about 0.5, 2, and 5 years exposure of 100 ton detectors at the Kashiwazaki-Kariwa nuclear

power plant. For the JPARC-HK experiment, 2 years measurement with off-axis 2◦ νµ

beam is assumed. (See the text for more details.) The normal mass hierarchy, ∆m2
31 > 0,

is assumed.
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Figure 6.6: The same as in Fig. 6.5 but with measurement in 10 years running of

the JPARC-SK experiment with 0.75MW beam power and 22.5kt detector (Super-

Kamiokande). Although each contour becomes thicker because of a factor of ' 25 lower

statistics of the experiment, the sensitivity to CP violation still exists at 90% CL.

respectively, it is clear that the CP sensitivity is almost identical between positive and

negative ∆m2
31. The largest noticeable changes are shifts of the end points of the contours

toward smaller (larger) δ in the first (fourth) quadrants by about 10% (a few %) at

sin2 2θ13 = 0.1. Namely, the both end points slightly move toward better sensitivities for

the inverted mass hierarchy.

The sensitivity contour to CP violation is determined as an interplay between con-

straints from reactor and accelerator experiments. The former gives a rectangular box

in the δbest-sin2 2θbest
13 space, whereas the latter gives the equal-Pµe contour (See also

Fig. 4.4.) determined by (6.1) under the hypothesis δ = 0 with finite width due to errors,

as indicated in Figs. 6.5 and 6.7. In region of parameter space where both of these two

constraints are satisfied, the best fit parameter is consistent with CP conservation. Out-

side the region the CP symmetry is violated at 90% CL. The discovery potential for CP

violation diminishes at small sin2 2θbest
13 primarily because Pµe becomes less sensitive to δ

at smaller θ13, while the reactor constraint on sin2 2θ13 is roughly independent of θbest
13 .

(See Fig. 5.3.)

Let us examine a pessimistic scenario to run the JPARC-SK experiment with 0.75MW
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Figure 6.7: The contours which surround the region consistent with CP conservation are

plotted in Fig. 6.7a (6.7b) by assuming (∆m2
31)

best > 0 ((∆m2
31)

best < 0) as nature’s choice.

If the right (wrong) sign is used as the hypothesis with δ = 0, the contours indicated by

the thick (thin) lines result in both figures. The three symbols, a cross, open and solid

circles are placed on the figures as well as in Fig. 6.8 to indicate the relationship between

observed numbers of events and the results of CP sensitivity analysis.

proton beam power and the fiducial volume of 22.5kt, while waiting for the construction

of Hyper-Kamiokande. As is shown in Fig. 6.6, the sensitivity to CP violation becomes

worse but still remains for its 10 years running.

6.4.2 CP sensitivity in the case of unknown sign of ∆m2
31

So far we have assumed that we know the sign of ∆m2
31 prior to the search for CP violation

by the reactor and the JPARC-HK experiments. But, it may not be the case unless LBL

experiments with sufficiently long baseline start to operate in a timely fashion. In this

subsection we assume the pessimistic situation of unknown sign of ∆m2
31 and try to clarify

the influence of our ignorance of the sign on the detectability of CP violation by our

method.

If the sign of ∆m2
31 is not known, the procedure of obtaining the sensitivity region for

detecting CP violation has to be altered. It is because we have to allow such possibility

as that we fit the data by using wrong assumption for the sign. In Fig. 6.7a (6.7b) we

present the results of the similar sensitivity analysis for detecting CP violation as we

did in the previous section by assuming that the sign of (∆m2
31)

best, which is chosen by

nature, is positive (negative). It is obvious from Fig. 6.7a (6.7b) that the contours of CP

conservation moves to rightward (leftward) if the wrong sign is assumed in the hypothesis
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Figure 6.8: The contours which surround the region consistent with CP conservation are

plotted in the number-of-events space of reactor and the LBL experiments. The thin lines

correspond to δbest = ±π/2. The three symbols, a cross, open and solid circles are placed

on the figures as well as in Fig. 6.7 to indicate the relationship between observed numbers

of events and the results of CP sensitivity analysis.

test, essentially wiping out about half of the CP sensitive region of δbest.

The results can be confusing and some of the readers might have naively interpreted, by

combining Figs. 6.7a and 6.7b, that there is no sensitivity region in δbest- sin2 2θbest
23 plane.

To resolve the puzzling feature we present in Fig. 6.8 the regions which are consistent with

CP conservation by contours in the plane spanned by observable quantities, the number of

events in the reactor and the JPARC-HK νe appearance experiments.3 This plot indicates

that the sensitivity region for detecting CP violation does not disappear but becomes

about half. Which region of δ is CP sensitive depend upon the sign of ∆m2
31, or in other

word on the location in bi-number of event plane in Fig. 6.8. For complete clarity, we

have placed three different symbols in Fig. 6.8 and at the same time in Fig. 6.7 to indicate

which points in the space of observable correspond to which points in the CP sensitivity

plot. Note that the point indicated by a cross in Fig. 6.8 corresponds to two values of

δbest because of unknown sign of ∆m2
31.

3Notice, however, that we have used binned data, not merely the total number of events, in analyzing

reactor experiment to obtain the contours.
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Chapter 7

Conclusion

In this thesis, we discussed the methods for determination of flavor mixing parameters in

the lepton sector with use of reactor neutrinos.

In Chapter 5, we have explored in detail the possibility of measuring sin2 2θ13 by

searching for the deficit of νe from reactors. In order to realize the high sensitivity up

to sin2 2θ13 ∼ 0.01, the statistical and systematic errors have to be . 1%. For the small

statistical error, large number of events should be accumulated by the large detector

and/or the powerful reactor. Exploiting the more powerful reactor is advantageous than

the larger detector option because it enable us to gain larger number of signal events while

keeping background events unaltered. Therefore, the best site for the reactor experiment

is the Kashiwazaki-Kariwa nuclear power plant whose total thermal power (24.3GWth)

is the most powerful in the world. Under an effective single-reactor assumption, it was

seen that 5 ton-year measurement at the baseline of 1.7km can accumulate about 10,000

νe events which corresponds to 1% statistical error.

On the other hand, it was pointed out that placing near detector is crucial to reduce

the systematic errors. We assumed that a near detector is placed 300m away from the

reactor. By comparing the numbers of events observed at near and far detectors, we can

cancel the correlated errors between detectors such as the error in the neutrino flux. We

estimated that the systematic error can be reduced to 0.8%. It was shown in Fig. 5.2 that

the sensitivity sin2 2θ13 = 0.018 is obtained by 40 ton-year measurement with a 24.3GWth

reactor by assuming that the systematic error is reduced to 0.8%.

It was stressed that this measurement is clean measurement of θ13 without any ambigu-

ity from other parameters. The measurement of θ13 and δ by the long baseline experiment

with ν and ν beams suffer from the problem of parameter degeneracy; The long baseline

experiment gives eight solutions in the worst case due to the problem no matter how

accurate the measurement is. Therefore, it is understood that θ13 measurement by the

reactor experiment is complementary to that by the long baseline experiments. In par-
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ticular, we pursuit in this thesis the possibility of selecting out the true solution from

fake solutions in the long baseline experiment by using reactor experiment. We focused

on the J-PARC neutrino project as long baseline experiment; By tuning the beam en-

ergy to that of the oscillation maximum (EOM = |∆m2
31|L/2π ' 0.6GeV), the potential

eight solutions of θ13 in the experiment shrinks to two values which correspond to the

ambiguity of θ23 ↔ π/2 − θ23. We investigated the possibility to resolve the ambiguity of

θ23 ↔ π/2 − θ23 with clear determination of θ13 by the reactor experiment. We showed

that it is possible if sin2 2θ13 and the difference of θ23 from π/4 are relatively large. For

example, the degeneracy is resolved for sin2 2θ13 & 0.05 and s223 . 0.39 or 0.57 . s223 as we

see in Fig. 5.7. Once the θ23 ambiguity vanishes, the value of θ13 is determined precisely

by high sensitivity measurement of the LBL experiment.

We uncovered also a new method for detecting leptonic CP violation in Chapter 6. It is

achieved by combining reactor measurement of θ13 with νe appearance measurement in the

long baseline experiment. Each of those experiments must have high sensitivity because

CP violating effect is so small due to the smallness of the Jarlskog factor. Therefore, as

the long baseline experiment, we exploited 2yr measurement of νe appearance in the J-

PARC phase II experiment with upgraded 4MW beam and Hyper-Kamiokande of 540Mt

fiducial mass. On the other hand, precise spectral analysis and high statistics is required

for the reactor experiment; The measurement was assumed at least to be of 103GWth ·
ton · year which corresponds to 50 ton-year measurement with the Kashiwazaki-Kariwa

nuclear power plant. Then, it came to light that CP violation can be detected at 90% CL

in the region of sin2 2θ13 & 0.05 and |δ| & 0.3π(54◦). The sensitivity is less than that

to be obtained with combining νe appearance measurement with νe appearance in the

J-PARC phase II because the latter enable us to observe CP violation at 3σ CL for

sin2 2θ13 & 0.01 and |δ| & 0.11π(20◦). The reactor-LBL combined method is, however,

worth to do because it can exhibit the first information of the leptonic CP violation

before the long-term measurement of νe search in the J-PARC experiment. Even if the

information is rather rough, it helps the experiments to optimize the settings (such as

relative time sharing of ν and ν̄ modes in the LBL experiment with fixed total exposure

time).

As a pessimistic situation without upgraded beam nor HK, we assumed also the J-

PARC phase I with 0.75MW beam and existing Super-Kamiokande of 22.5kt fiducial mass.

Even in this case, we found that CP violation can be detected by 10yr measurement of

νe appearance, though slightly less sensitivities than that in the case with high-power

beam and HK. The reactor-LBL combined method is very useful in the case of very long

exposure with ν beam because the observation of CP violation requires the conventional

method with ν mode LBL experiment to run about three times longer than the exposure
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with ν beam.

We should note that the sensitivity to CP violation is affected by uncertainties of other

parameters because the CP violating effect is very small. Especially, the unknown sign

of ∆m2
31 has a serious consequence on the sensitivity as is shown in Figs. 6.7. Roughly

speaking, the sensitivity region becomes half due to the uncertainty in this method. Ac-

tually, such a trouble occurs also, more or less, in the measurement of CP violation with

antineutrino-mode LBL experiment. Hence, it became clear that knowing the sign of

∆m2
31 is very important for any measurement of the leptonic CP violation.

From above discussions, we have understood that some valuable information will be

extracted by the combined analyses of the reactor experiment with other experiments.

Those are the benefits of the characteristic property of the reactor experiment as the pure

measurement of of θ13. Such a clean measurement is not only valuable by itself but also

very useful as a tool for extracting new information of mixing parameters from results of

other experiments. Thus, we conclude that the reactor experiment can play vital role for

the determination of the values of neutrino mixing parameters.
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Appendix A

Statistical Analysis

A.1 χ2 Analysis

In this thesis, our analyses are based on those of Gaussian probability distribution function

(p.d.f.). The number of events, N ′, should obey Poissonian p.d.f. because the neutrino

event is extremely rare. Furthermore, sufficiently accumulated number of events, N =
∑

N ′, becomes to obey Gaussian p.d.f.1 with the Poissonian variance σstat = 1/
√
N0

which is the statistical error for observed number N0. Then, we obtain the p.d.f.

fstat(N ) =
1√

2πN0
exp

{

−(N −N0)
2

2N0

}

. (A.1)

A systematic error σsys, which will give the Gaussian noise (a random noise), can be

introduced with a cascade of two Gaussian p.d.f. as

f(N ) =
1

2πσsys

√
N0

∫

dα exp

[

− 1

2

{

(N − (1 + α)N0)
2

N0
+

α2

σ2
sys

}]

(A.2)

=
1

√

2π(N0 + σ2
sysN

2
0 )

exp

{

− 1

2

(N −N0)
2

N0 + σ2
sysN

2
0

}

. (A.3)

In order to keep f(N ) being Gaussian p.d.f. for its simplicity, the auxiliary (noise) variable

α should not be couple with the variable of f(N ). The overall normalization is not

important. Note that the power in (A.3) is

(N −N0)
2

N0 + σ2
sysN

2
0

= min
α

{

(N − (1 + α)N0)
2

N0
+

α2

σ2
sys

}

, (A.4)

where the right-hand side is often used as the definition of χ2.

The general form of (A.3) is the n-variable Gaussian p.d.f.

1
√

(2π)n detV
exp

(

− 1

2
xTV −1x

)

, xT ≡
(

N −N0

N0
, · · ·

)

, (A.5)

1Actually, this fact is independent of event-by-event p.d.f. by virtue of the central limit theorem.
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d.o.f. 1σ(68.3%) 1.6σ(90%) 2σ(95.4%) 3σ(99.7%)

1 1 2.7 4 9

2 2.3 4.6 6.2 11.8

3 3.5 6.5 8.0 14.2

Table A.1: The values of χ2 that corresponds to the confidence levels (CL) for some degrees

of freedom (d.o.f.).

where V denotes the variance matrix which has the information of errors and x is inde-

pendent of the errors. Here, χ2 is defined as

χ2 ≡ xTV −1x. (A.6)

Thus, χ2 expresses the “statistical distance” to a point determined by N ’s from a point

fixed by N0’s. Since we are interested in χ2 only, other variables (the “solid angle”) can be

integrated out. Remembering that the area of a n-dimensional unit sphere is 2πn/2/Γ(n/2),

we obtain the χ2 p.d.f. for n degrees of freedom

P (χ2, n) =
2−n/2

Γ(n/2)
(χ2)n/2−1e−χ2/2. (A.7)

The χ2
b which corresponds to the bound of b% CL can be defined such that

b

100
=

∫ χ2
b

0
dχ2 P (χ2, n). (A.8)

Some typical values of χ2
b are listed in Table A.1.

When we extract an allowed region in a parameter space, χ2 is replaced with ∆χ2 ≡
χ2 − χ2

min, where χ2
min is obtained by minimizing χ2 with respect to parameters of the

model considered. Then, the degrees of freedom n is given by the number of parameters

because ∆χ2 is regarded approximately as a Gaussian p.d.f. for the parameters around

the best fit point where χ2 is minimized:

(

N (x) −N0

)2
−
(

N (xbest) −N0

)2
' d2N (xbest)

d(xbest)2

(

N (xbest) −N0

)

(x− xbest)2. (A.9)

For example, the d.o.f. for 2ν oscillation is two (θ and ∆m2) if we want to extract informa-

tion of both parameters. If we need not, however, the information of some of parameters,

we can minimize ∆χ2 with respect to those parameters. Then, the d.o.f. is reduced by the

number of unnecessary (minimized) parameters:

min
y

(

(x− x0)
2

σ2
x

+
(x− x0)(y − y0)

ρxyσxσy
+

(y − y0)
2

σ2
y

)

=

(

1 − 1

4ρxy

)

(x− x0)
2

σ2
x

. (A.10)
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A.2 Cancellation of Errors by Near-Far Detector Compari-

son

This appendix is meant to be a pedagogical note in which we try to clarify the feature

of cancellation of systematic errors by near-far detector comparison and the relationship

between over-all and bin-by-bin errors.

The definition of ∆χ2 for two detector system is

∆χ2
nf ≡ min

α
∆χ2

nf (α)

≡ min
α







{

Nf − (1 + α)Nbest
f

}2

Nbest
f + σ2

d(Nbest
f )2

+

{

Nn − (1 + α)Nbest
n

}2

Nbest
n + σ2

d(Nbest
n )2

+
α2

σ2
D






, (A.11)

where Nf (Nn) is the theoretical total number of events expected to be measured at far

(near) detector. The quantities with superscript “best” are defined as the ones calculated

with the best-fit values of the “experimental data”, which are to be tested against the

CP conserving case. σD and σd are correlated and uncorrelated errors between detectors,

respectively.

We discuss statistical average of an observable O by the Gaussian probability distri-

bution function as

< O >≡ C

∫

dNfdNndαO exp

(

− 1

2
∆χ2

nf (α)

)

, (A.12)

where C is the normalization constant to make < 1 > unity. Note that the integration

with respect to α is equivalent to the minimization in (A.11). After the minimization, it

takes the following form which is generic to the Gaussian distribution,

∆χ2
nf = (x, y)

(

< x2 > < xy >

< yx > < y2 >

)−1(

x

y

)

, (A.13)

x ≡
Nf −Nbest

f

Nbest
f

, y ≡ Nn −Nbest
n

Nbest
n

. (A.14)

In order to examine the feature of near-far cancellation of errors, it is valuable to

transform2 x and y as

X ≡ x− y =
Nf

Nbest
f

− Nn

Nbest
n

, Y ≡ x+ y =
Nf

Nbest
f

+
Nn

Nbest
n

− 2. (A.15)

2Such a transformation is not necessary for the numerical calculation of ∆χ2 because it does not change

the value of ∆χ2.
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Then, ∆χ2
nf can be written as

∆χ2
nf = (X, Y )

(

< X2 > < XY >

< Y X > < Y 2 >

)−1(

X

Y

)

, (A.16)

where

< X2 > =
1

Nbest
f

+
1

Nbest
n

+ 2σ2
d, (A.17)

< Y 2 > =
1

Nbest
f

+
1

Nbest
n

+ 2σ2
d + 4σ2

D, (A.18)

< XY > = < YX > =
1

Nbest
f

− 1

Nbest
n

. (A.19)

It is evident in (A.17) that the correlated systematic errors cancel by the near-far com-

parison. The systematic error
√

2σd in < X2 > is referred to as the relative normalization

error in [80]. Note that (5.5) is X2/ < X2 > of the normalization free analysis, and it dom-

inates the sensitivity at the |∆m2
31| value we concern. The normalization is constrained

by Y , and < Y 2 > determines the sensitivity to sin2 2θ13 at very large |∆m2
31| where X

vanishes.

We briefly treat the case of two bins with infinite statistics to illustrate the importance

of uncorrelated errors. In this case X subspace of ∆χ2
nf can be written as

X(2σ2
d)

−1X −→ (X1, X2)

(

2σ2
dB + 2σ2

db 2σ2
dB

2σ2
dB 2σ2

dB + 2σ2
db

)−1(

X1

X2

)

. (A.20)

It is clear that σdb = 0 leads to the diverge of ∆χ2
nf except for the best fit point (Xi =

Yi = 0), which means that the infinite precision can be achieved for the case. Thus, σdb

must be treated with great care.

Next we derive the relationship between over-all and bin-by-bin errors that was used

in the text, (6.8). For simplicity, we consider the case of one detector with two bins. Then,

∆χ2 for the case is defined as

∆χ2
12 ≡ min

α
∆χ2

12(α)

≡ min
α

[

{

N1 − (1 + α)Nbest
1

}2

Nbest
1 + σ2

b(Nbest
1 )2

+

{

N2 − (1 + α)Nbest
2

}2

Nbest
2 + σ2

b(N
best
2 )2

+
α2

σ2
B

]

, (A.21)

where N1 and N2 are the expected numbers of events within first and second bins, respec-

tively, and σB (σb) denotes the correlated (uncorrelated) error between bins.

To obtain the error for the total number of events, we define

xtot ≡
∑

i

Ni −Nbest
i

Nbest
tot

, Nbest
tot ≡

∑

i

Nbest
i . (A.22)
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Then, we obtain

< x2
tot > = C′

∫

dN1dN2dα x
2
tot exp

(

− 1

2
∆χ2

12(α)

)

=
1

Nbest
tot

+ σ2
B + σ2

b

∑

i(N
best
i )2

(Nbest
tot )2

. (A.23)

One can show that the same treatment goes though for arbitrary number of bins. The

coefficient of σ2
b is almost 1/9 in our analysis (14 bins). We see that (5.6) is obtained by

σB = 0 which is the most pessimistic case because of no correlated error to be reduced.
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