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Abstract

We investigate a non(anti)commutative N = 1 superspace with a Hopf algebraic
method. We review briefly noncommutative theories in both spacetime and superspace
in usual procedures, by the Weyl mapping and Moyal product. Especially an unfamil-
iar noncommutativity between a spacetime coordinate and a fermionic superspace co-
ordinate is reviewed further. After these reviews, we describe the foundations of our
method, including a brief review of Hopf algebra and Drinfel’d twist, the construction of
Twisted Poincaré algebra as a example. We study the extension of the Hopf algebraic
procedure to supersymmetric theory. Twisted Super Poincaré algebra is constructed and
non(anti)commutative superspace appears as the representation of that. The noncommu-
tative deformation is performed to maintain twisted symmetries, namely twisted Lorentz
and twisted supersymmetric invariant, although the deformed theory is the same as what
is formulated with usual Moyal product. Under this procedure the algebraic structure of
the symmetry is not deformed, while the multiplication rule on the representation space is
modified. We also consider twisted superconformal algebra, and find that various exotic
noncommutative relations between coordinates appear in superspace. We show how to
give the Fuzzy-sphere-like noncommutativity with this procedure, too.
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1 Introduction

1.1 Noncommutative Theory

We will consider the formulation and symmetry of noncommutative theories in this thesis.

Noncommutative theory which we will discuss here is the theory on a spacetime with non-

commutative coordinates.1.

To begin with, we overview a historical summary and the current developments of non-

commutative theory.

The concept of noncommutative coordinate is an old idea in particle physics. The noncom-

mutative property of physical quantities, in particular the position and momentum of a particle,

is a central idea of quantum mechanics. Then it is no wonder that people at the dawn of quan-

tum mechanics looked for the possibility that spacetime coordinates may not commute with

each other, just like a coordinate does not commute with its canonical conjugate momentum.

Noncommutative theory has a long history which goes back at least nearly sixty years. It was

Snyder who first published on the noncommutative theory in concrete terms [1]2. He introduced

a parameter of length and modify the commutators between spacetime coordinates with the

parameter to connect with the generators of Lorentz group. That length gives the smallest cell

size of space-time in Lorentz invariant way, and he argued that the noncommutativity might

control a divergence of a quantum calculation, which had bothered physicists at that time.

However, it did not attract much interest because of the development of renormalization.

Nowadays noncommutative theory becomes common in theoretical physics broadly. It ap-

pears even in solid physics. The dynamics of a particle under a constant magnetic field, in strong

limit, can be formulated by the noncommutative canonical coordinate in quantum mechanics.

It is a key technology of a description of quantum Hall effect.

It has also been investigated in mathematical aspects. Noncommutative geometry is a major

1We assume the word noncommutative is used only in this meaning in the thesis to prevent confusion between
noncommutative and non-Abelian.

2Heisenberg is the first person to mention the possibility of noncommutative coordinate[1].
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subject in modern mathematics under intensive research, and it turned out to have much fruitful

relationship with physics. See, e.g. [2].

Recently noncommutative theory draws our interest in relation to superstring theory. In

principle, string theory has a smallest building block of spacetime. A string is an object which

is not point-like but is of finite size comparable to the Planck length in a target spacetime, thus

that may look to us as though the coordinates has a uncertainty. Several researches postulate

a spacetime uncertainty relation[3],

∆xµ∆xν & `2p, (1.1)

here `2p is the Planck length of the target space. That means essentially the quantization of

spacetime, and causes the noncommutative coordinates in a spirit of uncertainty relation.

It is true that string theory involves noncommutative spacetime in its own right. On the

other hand, in resent years D-brane scenario shed light on the noncommutative spacetime which

arises from string theory. Seiberg and Witten[7] pointed out that if there is non-zero NS(Neveu-

Schwarz)-NS antisymmetric tensor B-field background, then coordinates on D-brane become

noncommutative in the zero slope limit α→ 0,

[xµ, xν ] = iΘµν 6= 0, (1.2)

where Θµν is a constant with anti-symmetric indices. The noncommutativity parameter Θµν

corresponds to the vacuum expectation value (VEV) of background B-field. The VEVs depend

on the dynamics behind the theory, therefore the scale of non-commutativity is more arbitrary

than what naturally arises from string. Naively we assume that they are at the Planck scale

since they come from gravitational quantum corrections. A low energy effective theory which we

get in this case is noncommutative Yang-Mills theory on the spacetime with the noncommutative

relation(1.2).

String theory is the most promising candidate of a unified theory of physics, or the theory of

everything, including a quantum theory of gravity. In addition, almost every notable candidate
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of a fundamental theory in high energy physics, such as matrix model, loop gravity, etc.,

predicts, more or less, the appearance of noncommutative geometry. So these facts strongly

indicate the possibility that the true description of our world may be non-commutative field

theory in four-dimensional space-time in some energy region.

1.2 Symmetry Breaking in Noncommutative Spacetime

Although noncommutative theory is derived from string theory, it is difficult to investigate. In

practice we study a noncommutative theory in the framework of the well-established quantum

field theory (QFT), through the deformation of the noncommutative space. If we have reason-

able evidences for an appearance of noncommutative geometry based on a reliable high energy

theory, it is natural to ask what happens when spacetime noncommutativity is introduced into

the well-known theories, say the standard model.

However there is one problem. If we treat a noncommutative theory within QFT language,

then we have to introduce noncommutativity parameters, which are often dimensionful, into

the theory by hand. To make matters worse, in general it breaks the symmetries which the

theory originally has. For example, it is well known that a noncommutative relation (1.2)

breaks Lorentz symmetry.

This fact is in distinct contrast to the noncommutative theory which appears from some

theory in higher energy, like string theory. In such case, even if the symmetry looks like

to be broken, it is caused by having of nonzero (or asymmetric point) VEVs of certain fields

dynamically, not by hand. The higher theory is still regarded as fully symmetric, and formulated

in a covariant way. Dynamical symmetry breaking is well known scenario, e.g. the Higgs

mechanism, and the breaking is only fake one. Basically it is restored in a high energy region.

The difference between two cases is summarized in Table 1.
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String theory Noncommutative QFT
• Spontaneous symmetry break-
ing.

• Explicit symmetry breaking.

• Recoverable breaking from the
dynamics.

• Unavoidable breaking by
introducing (dimensionful) non-
commutativity parameters by
hand.

• Formulated in a fully symmetric
and covariant way.

• Symmetric theory + perturba-
tion induced by small symmetry
breaking.

Table 1: Comparison of the symmetry breaking in noncommutative theory

1.3 Observer and Particle Lorentz Transformation

The noncommutative relation Eq.(1.2) breaks Lorentz symmetry as previously mentioned.

Lorentz symmetry is one of the most important symmetry in physics. We have not had any ex-

perimental evidence of the violation of the symmetry, even though it has been tested intensively

in many ways. If there is no Lorentz symmetry, we immediately face difficulties.

What is the Lorentz symmetry breaking in the noncommutative theory? In this section we

confine our attention to Lorentz symmetry and its breaking, in the noncommutative spacetime

with the relation Eq.(1.2). Since constant noncommutativity parameters Θµν have the indices

of spacetime, which can be regarded as a constant background tensor-like field. In fact it

appears in string theory.

In this case, we can consider two kinds of Lorentz transformation (Fig. 1). First is the

Observer Lorentz Transformation. The observer Lorentz transformation is the transformation

of a movable observer, in which only the coordinate of the observer transforms while all other

objects stay. Viewed from the opposite side, it is equivalent to say that whole spacetime trans-

forms in the opposite direction except the observer. Thus the observer Lorentz transformation

is related to a global transformation. It means that constant parameters Θµν also transform like

tensors. If Θµν transform like tensors, the dynamics is not changed, because the terms which

contains Θµν contracted with other fields in the Lagrangian remain Lorentz invariant. No
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physics is changed in the process, therefore the observer inevitably observes the same behavior

of an event.

The second transformation is Particle Lorentz Transformation. That is the transformation

of not an observer but an object in physics. If a particle changes direction or is boosted, then

it changes its relative state in the background fields, namely relative direction or speed. This

transformation is related to a local Lorentz transformation, then Θµν do not transform in the

process, they behave precisely like constant. The Lagrangian is no longer invariant if it contains

the interaction of the particle with spacetime indices contracted with Θµν .

In ordinary commutative space, these two Lorentz symmetries are equivalent. Lagrangian

is constructed with local fields and Lorentz invariant constants. No constant depends on a

direction in the spacetime, so Lorentz symmetry is manifest, at least at the classical level.

However this equivalence no longer holds in the noncommutative spacetime. The noncom-

mutative relation Eq.(1.2) preserve Observer Lorentz symmetry, but breaks Particle Lorentz

symmetry.

1.4 Noncommutative Space as a Representation of Hopf Algebra

Certain theories predict the noncommutativity. However they are too complicated for the pur-

pose of an effective study of noncommutative theory in general. Above all things, we do not

even know which theory describe our physics correctly. So we want to treat the noncommutative

theory apart from the higher theory from a practical point of view. But treating a noncommu-

tative theory within standard QFT, we have to introduce noncommutativity parameters into

the theory, and we will face the problem of symmetry breaking.

Recently an idea to improve the situation is suggested [5, 6]. Their strategy is a realization

of a noncommutative space (1.2) as the representation of a deformed Poincaré algebra. In

ordinary theories, commutative space is a representation of some symmetry algebra. As we

deform the symmetry algebra, its representation is also deformed to correspond with it (Fig.2).
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Figure 1: Observer Lorentz and particle Lorentz. The upper figure shows the observer Lorentz
transformation. The observer watches the same phenomena everywhere he is. The lower figure
shows the particle Lorentz transformation. The relative direction in the background field is
changed, therefore the observer watches different phenomena.

Chaichian et. al claimed that the original symmetry of a theory is broken indeed by introducing

noncommutativity, but the deformed symmetry can remain.

Our work [31] is essentially an extension of their work to a supersymmetric case. We can

construct various non(anti)commutative superspace by the above procedure, to maintain the

deformed symmetries. This is a main topic in this thesis.

Symmetry algebra ks +3

Drinfel’d twist
²²

Commutative space

²²

Twisted Hopf algebra ks +3 Noncommutative space

Figure 2: Noncommutative space is the representation of a deformed symmetry.

The organization of this paper is as follows. In the next section we give a brief introduction
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of a formulation of noncommutative theory, which is the standard procedure with a Moyal-

product both in noncommutative space and superspace. In the section 3, we introduce our

study of a novel noncommutative superspace, that is the noncommutativity between spacetime

coordinate and fermionic coordinate in superspace. The section 3 deviate slightly from the

main subject in this thesis. But our work[25] is the first rigorous attempt to investigate such

type of noncommutative theory including its quantum properties, we have decided to make a

independent section. The section 4 is devoted the main idea and necessary tools for the formu-

lation in Hopf algebra. We construct a twisted Poincaré algebra, and show that the canonical

type noncommutative space (1.2) appears as the representation space of the twisted Poincaré

algebra. In the section 5, we describe how to extend the procedure to the supersymmetric

theory. This is a major contribution of our work. In addition, we show other twisted symme-

tries and the induced non(anti)commutative superspace. The various exotic noncommutativity

which is not yet known is realized. In the last section we summarize our works, and discuss

some prospective future investigations.
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2 Noncommutative Theory

In this section, we review a standard formulation of noncommutative theory, in both ordinary

spacetime and superspace, for comparison with our approach in the later sections.

2.1 Spacetime noncommutativity

We are already familiar with a procedure of introducing noncommutativity, that is the canon-

ical quantization in quantum mechanics. Noncommutativity between spacetime coordinates is

introduced along the similar lines. Generally speaking, as in the case for quantum mechanics,

we replace the spacetime coordinates xµ with the corresponding operators x̂µ on Hilbert space

and impose certain commutator relations on them.

Noncommutative theory could be viewed as the theory in unital algebra AΘ. AΘ is a linear

space and generated by 1(unit) and xµ, on which the relation [xµ, xν ] = iΘµν is realized. Θµν is

a deformation parameter on AΘ, and when Θµν goes to zero, we recover the usual commutative

description of spacetime. That means the existence of the commutative limit of the theory.

In the case of quantum mechanics, the quantum theory has been deformed with the Planck

“parameter” ~, and in the classical limit ~→ 0 the theory reduces to the corresponding classical

theory. The noncommutative theory has been deformed with the noncommutativity parameters

Θµν , and in the commutative limit Θµν → 0 the theory reduces to the corresponding theory on

commutative space. We can discuss the two procedures in parallel.

Let us start with a fairly general situation. The commutation relation between spacetime

coordinates can be written with the noncommutativity parameters which is a function on

spacetime. In an operator description, the commutator may be written with a function of the

operators.

[x̂µ, x̂ν ] = Θµν(x̂), (2.1)

where Θµν is a function which has the dimension of (length)2, with antisymmetric indices and
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can be expanded in a formal Taylor series,

Θµν(x̂) = Θµν
(0) + Θµν

(1)ρx̂
ρ + Θµν

(2)ρσx̂
ρx̂σ + · · · . (2.2)

Here Θµν
(k)ρ1···ρk

are constant coefficients of order k with a dimension (length)2−k. Note that

only a set of k = 2 coefficients Θµν
(2)ρσ is dimensionless. If the scale of the noncommutativity

parameter as a function on spacetime is sufficiently small, i.e., the noncommutativity is ruled

by informations in the immediate vicinity, we can ignore the terms of higher order of x and it

can be approximated by the first few terms in the sense of a Taylor expansion.

The first constant term in the expansion Eq.(2.2) leads to

[x̂µ, x̂ν ] = Θµν
(0). (2.3)

It is called canonical type noncommutativity. The type of this noncommutativity has already

appeared in Eq.(1.2) and is most intensively investigated.

For k = 1, we have the simplest non-constant noncommutative deformation, called noncom-

mutativity of the Lie algebra type.

[x̂µ, x̂ν ] = Θµν
(1)ρx̂

ρ (2.4)

It appears, for example, in κ-Minkowski spacetime[8].

In next order we rewrite the relation

x̂µx̂ν =
1

q
Rµν

ρσx̂
ρx̂σ, (2.5)

where Rµν
ρσ/q = Θµν

(2)ρσ + δµ
ρδ

ν
σ. This noncommutativity is the q-deformation type in the

quantum group sense.

We focus on canonical type deformation in the following. More general noncommutativity

has been considered, for example in [11].
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2.2 Weyl Mapping and Moyal Product

Weyl Quantization in quantum mechanics replaces a position q and momentum p, which are

arguments of a function in phase space, with corresponding operators q̂ and p̂ respectively.

F (p, q)→ 1

(2π)2

∫
dηdξF̃ (η, ξ) exp (ip̂η + iq̂ξ) (2.6)

F̃ (η, ξ) is a Fourier function of F (p, q).

F̃ (η, ξ) =

∫
dpdqF (p, q) exp (−ipη − iqξ)) (2.7)

Using Eq.(2.6), we associate the functions in the Schrödinger formalism with the corresponding

operators on a Hilbert space in the operator formalism.

In this section, Weyl quantization of noncommutative spacetime is reviewed based on the

review by Szabo[9]. We consider the canonical noncommutativity, so noncommutativity pa-

rameter Θµν is constant.

[x̂µ, x̂ν ] = iΘµν . (2.8)

Noncommutativity of time coordinate causes many physical problems. First of all, we could

hardly relate noncommutative “time” to our time which describes when the physical events

occurs. Moreover unitarity of the system becomes not clear. Even if only spacelike noncommu-

tativity is imposed at first, timelike noncommutativity appears when Lorentz transformation

is performed. For details of noncommutativity and unitarity, see for example, [12].

An easy way to avoid these difficulties is that we forget about the time coordinate tem-

porarily and work in D-dimensional Euclid space RD.

In a rigorous mathematical treatment, we have to confirm the convergence of the calcu-

lations. To guarantee the existence of the well-defined Fourier transformed function F̃ , the

function on spacetime F and the derivative of F at any order should fall off quickly enough at

infinity to converge the integral and to avoid effects from the boundary. It requires the fall off
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is stronger than any power-law, i.e.

sup
x

(
1 + |x|2)k+n1+n2+···+nD |∂ n1

1 ∂ n2
2 · · · ∂ nD

D F (x)|2 <∞ (2.9)

where k,ni are certain positive integers. This condition guarantees the well-defined algebraic

structure of the differential function of F at all orders. Functions on spacetime F span Banach

space with L∞-norm,

||F ||∞ = sup
x
|F (x)|. (2.10)

Through that, it enables us to change the physical description from functions on commutative

differential manifold into coordinate space representation on Hilbert space.

We define the following (operator) integral kernel,

∆̂(x) =

∫
dDk

(2π)
eikix̂

i

e−kix
i

. (2.11)

∆̂(x) is a Hermitian operator ∆̂(x) = ∆̂(x)†, and in the commutative limit, i.e. Θµν = 0, it is

reduced to the delta function δD(x̂− x). This integral kernel gives the Weyl map, which is the

functional map from function F to the corresponding operator.

Ŵ [F ] ≡
∫
dDx F (x)∆̂(x) (2.12)

This can be equivalently written as follows.

Ŵ [F ] =
1

(2π)D

∫
dDk F̃ (k) exp (ikµx̂

µ) , (2.13)

where F̃ denotes the Fourier function of F ,

F̃ (k) =

∫
dxDF (x) exp (−ikµx

µ) . (2.14)

We can regard Ŵ [F ] as the operator of F in the coordinate representation.

To define a meaningful theory, especially a local field theory in Lagrangian formalism,

well-defined procedures of differentiation and integration are needed. In usual (commutative)

physics, fields are considered as the (often infinitely) differentiable sections on a differentiable

11



manifold. We are free to perform mathematical infinitesimal operations on the functions or the

space. However that is not the case with noncommutative spacetime. Since noncommutativity

(2.8) works as the uncertainty relation between coordinates, the word point is meaningless in

noncommutative space.

The differential calculus in noncommutative space is achieved as to maintain their algebraic

structure of that in commutative space. In particular we define the “derivative” operator ∂̂,

which is a anti-Hermitian operator and works on operators such as,

[
∂̂µ, x̂

ν
]

= δ ν
µ , (2.15)

[
∂̂µ, ∂̂ν

]
= 0. (2.16)

With short calculation, we find that this ∂̂ act on ∆̂(x) such that

[
∂̂µ, ∆̂(x)

]
= −∂µ∆̂(x). (2.17)

It shows that ∂̂ works as the exact derivative operator for all function F .

[
∂̂µ, Ŵ [F ]

]
=

∫
dD∂µF (x)∆̂(x) = Ŵ [∂µF ] (2.18)

Here we use partial integration. The surface integral is dropped with the condition (2.9).

The trace of the operator space may be defined with the normalization Tr ∆̂(x) = 1. This

trace allows us the inverse maps,

∫
dDF (x) = TrŴ [F ], (2.19)

and

F (x) = Tr
(
Ŵ [F ]∆̂(x)

)
. (2.20)

The product of functions F and G in noncommutative space is given by the corresponding

operators product Ŵ [F ]Ŵ [G]. We can derive its inverse,

Tr
(
Ŵ [F ]Ŵ [G]∆̂(x)

)
=

1

πD | det Θ|
∫∫

dDydDzF (y)G(z)e−2i(Θ−1)µν(x−y)µ(x−z)ν

. (2.21)
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Here we used

∆̂(x)∆̂(y) =
1

πD | det Θ|
∫
dDz∆̂(z)e−2i(Θ−1)µν(x−z)µ(y−z)ν

(2.22)

and

Tr
(
∆̂(x)∆̂(y)

)
= δD(x− y). (2.23)

Note that here we assumed that Θµν is an invertible matrix. Otherwise we have to redefine xµ

to eliminate the commutative subset and down the size of the matrix, if needed, to keep Θµν

invertible.

From these relations, we see

Ŵ [F ]Ŵ [G] = Ŵ [F ? G], (2.24)

here the star product ? is the Moyal product which defined as

? ≡ exp

(
i

2

←−
∂µΘµν−→∂ν

)
. (2.25)

The Moyal product gives an associative but noncommutative product of functions as follows.

F ? G = F (x) exp

(
i

2

←−
∂µΘµν−→∂ν

)
G(x)

= F (x)G(x) +
∞∑

n=1

i

2

n 1

n!
Θµ1ν1 · · ·Θµnνn∂µ1 · · · ∂µnF (x) ∂ν1 · · · ∂νnG(x)

(2.26)

The higher order product is also derived such that

Tr
(
Ŵ [F1] · · · Ŵ [Fn]

)
=

∫
dDxF1(x) ? · · · ? Fn(x). (2.27)

Thus, we reach the following conclusion. The theory in the noncommutative spacetime is

constructed in operator formalism with the Weyl mapping, written by the operator function of

coordinate representation, with the help of well-defined trace Tr and a derivative operator ∂̂.

The integral and derivative in commutative spacetime are replaced with the trace and derivative

operator on the Hilbert space, respectively.
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Whereas that is equivalent to the theory written by the usual function on commutative space,

but only with the multiplication rule is modified, namely with the Moyal product. In general,

to construct a theory on the noncommutative spacetime comes down to the modification of

product, which we call a star product. To construct a noncommutative theory, in a commutative

field theory descriptions, is equivalent to finding the suitable star product. For the Weyl

quantization, the Moyal product is the right star product.

The commutator with the Moyal product provides desirable noncommutative coordinate

relation,

[xµ, xν ]? ≡ xµ ? xν − xν ? xµ

= iΘµν . (2.28)

If we require only the relation (2.28), the relevant term in the Moyal product (2.25) is at

the order O(Θ1). Other higher terms do not change the relation (2.28), therefore we have

the freedom of determining their coefficients. It means that there are many noncommutative

theories on the space with same noncommutativity. It is a little bit similar situation in the case

of the ordering problem in quantum mechanics. But if we impose associativity of the product at

all order of Θ, then the higher order terms are determined uniquely such as the Moyal product.

This is another reason that the Moyal product is a suitable star product.

From Eq.(2.27) and the cyclic property of trace, the integration of the product of functions

with the Moyal product is invariant under a cyclic rotation too.

∫
dDxF1(x) ? · · · ? Fn−1(x) ? Fn(x) =

∫
dDxFn(x) ? F1(x) ? · · · ? Fn−1(x) (2.29)

From this, or directly by using partial integration, we find the integral of a biproduct is not

deformed with the star product.

∫
dDxF (x) ? G(x) =

∫
dDxF (x)G(x). (2.30)
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Now we can formulate the field theory on noncommutative spacetime. For example, the

action of the real scalar φ4 theory on the noncommutative space is given as follows.

S[φ] =

∫
dDx

[
1

2
(∂µφ) ? (∂µφ) +

m2

2
φ ? φ+

g2

4!
φ ? φ ? φ ? φ

]

=

∫
dDx

[
1

2
(∂µφ)2 +

m2

2
φ2 +

g2

4!
φ ? φ ? φ ? φ

]
(2.31)

In such deformation of noncommutative theory, generally nontrivial contributions come from

the terms which have the product of third or more higher order.

Because the Moyal product is defined by the infinite series of derivative operators, deriva-

tives of fields at all order appear in the action, thus the theory becomes nonlocal. This is a

characteristic feature of the theory on noncommutative space.

Many interesting features of the field theories on noncommutative space, for example UV/IR

mixing, gauge theory and Seiberg-Witten map, etc. have been known, but these are beyond

the scope of this thesis3.

2.3 N = 1/2 Supersymmetric Theory in Nonanticommutative Su-
perspace

Supersymmetric theory is most naturally formulated in superspace. N = 1 superspace is

defined the set of coordinate (xµ, θα, θ̄
α̇), which consists of usual spacetime coordinate xµ and

additional fermionic (anticommuting numbers) coordinates with spinorial indices θα and θ̄α̇.

Recently the realization of noncommutativity in superspace as the effective description in

low energy region is found from superstring theory. Nonanticommutativity of fermionic coordi-

nate θα in N = 1 four-dimensional superspace arises in the existence of constant graviphoton

background [20, 19, 21].

Such nonanticommutativity is formulated in supersymmetric QFT on four-dimensional su-

perspace. We review it following Seiberg[19].

3For further details of noncommutative field theory itself, good reviews are available[10, 9].
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We consider that the chiral part of superspace coordinate θα becomes nonanticommutative,

which obeys a Clifford algebra rather than an anticommutative relation,

{θα, θβ} = Cαβ, (2.32)

while anticommutators for anti-chiral partner θ̄α̇ are not modified,

{θα, θ̄β̇} = 0 {θ̄α̇, θ̄β̇} = 0. (2.33)

Here Cαβ is a constant parameter with symmetric indices, and correspond naively to the VEV

of constant graviphoton background field.

From these relations θ̄α̇ can not be taken as the complex conjugate of θα,

(θα)† 6= θ̄α̇. (2.34)

Therefore the theory can be formulated only in Euclidean spacetime or Atiyah-Ward spacetime.

Nonanticommutative theory in superspace can also be formulated by the modification of

the multiplication rule. The star product is given as the exponential function of derivative with

respect to fermionic coordinates like Moyal product,

? = exp

(
−Cαβ

2

←−
∂

∂θα

−→
∂

∂θβ

)
, (2.35)

where a right and left derivative conventions are
−→
∂

∂θα
θβ = δ β

α , (2.36)

θβ

←−
∂

∂θα
= −δβ

α. (2.37)

This star product gives the nonanticommutative relation (2.32).

Because of nilpotency of θ derivatives, the expansion series of the exponential function in

the star product Eq. (2.35) terminates at finite order.

F (θ) ? G(θ) = F (θ) exp

(
−C

αβ

2

←−
∂

∂θα

−→
∂

∂θβ

)
G(θ)

= F (θ)

(
1− Cαβ

2

←−
∂

∂θα

−→
∂

∂θβ
− detC

←−
∂

∂θθ

−→
∂

∂θθ

)
G(θ), (2.38)
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where we defined

∂

∂θθ
≡ 1

4
εαβ ∂

∂θα

∂

∂θβ
. (2.39)

The number of the terms in the star product is finite and all derivatives are with respect to θα.

Obviously no spacetime derivative is included, therefore this noncommutativity holds locality

of the theory. That is a different point from spacetime noncommutativity.

The commutation relations of bosonic coordinate have not yet been fixed. We take chiral

coordinate yµ ≡ xµ − iθασµ
αα̇θ̄

α̇ as an independent variable instead of xµ, and imply

[yµ, yν ] = [yµ, θα] = [yµ, θ̄α̇] = 0, (2.40)

instead of [xµ, xν ] = 0, [xµ, θα] = 0 and so on. This situation correctly agrees with the nonan-

ticommutativity which is realized from string theory. Moreover, to use the chiral coordinate as

an independent variable helps us to define a chiral and antichiral superfield. The commutators

of x are modified in this case,

[
xµ, θβ

]
= −iCαβσµ

ββ̇
θ̄β̇,

[xµ, xν ] = Cαβσµ
αα̇θ̄

α̇σν
ββ̇
θ̄β̇. (2.41)

In chiral coordinate base, the representations of supercharges Q and super covariant deriva-

tives D are given as the differential operators on superspace as follows.

Qα = i
∂

∂θα

Q̄α̇ = −i ∂
∂θ̄α̇

+ 2θασµ
αα̇

∂

∂yµ

Dα = i
∂

∂θα
+ 2σµ

αα̇θ̄
α̇ ∂

∂yµ

D̄α̇ = −i ∂
∂θ̄α̇

(2.42)

Notice that all partial differential operations are done with respect to independent variables

(yµ, θα, θ̄
α̇), not (xµ, θα, θ̄

α̇).
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Under the conditions of Eq.(2.32), (2.33) and Eq.(2.40), commutation relations between Q

and D are calculated.

{Qα, Qβ} = 0

{Qα, Q̄α̇} = 2σµ
αα̇

∂

∂yµ

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0

{Dα, D̄α̇} = −2σµ
αα̇

∂

∂yµ

{Dα, Qβ} = {D̄α̇, Qβ} = {Dα, Q̄α̇} = {D̄α̇, Q̄α̇} = 0 (2.43)

Above relations are the same as the ones in commutative superspace. But only {Q̄α̇, Q̄α̇} is

modified,

{Q̄α̇, Q̄β̇} = 4Cαβσµ
αα̇σ

ν
ββ̇

∂

∂yµ

∂

∂yν
. (2.44)

This commutator breaks the supersymmetry algebra, thus Q̄α̇ is no longer the symmetry in

nonanticommutative superspace while Qα is still the symmetry. For this reason, nonanticommu-

tative theory of such deformation is calledN = 1/2 supersymmetric theory. In the commutative

limit Cαβ → 0, all commutation relations are reduced to the usual ones, i.e., supersymmetry

is recovered.

Note that we can rewrite the star product (2.35) such that

? = exp

(
Cαβ

2

←−
Qα
−→
Qα

)
. (2.45)

From this form, it is clear that the star product maps the product of chiral superfields to a

chiral superfield, and maps the product of antichiral superfields to an antichiral superfield.
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3 Fermionic-Bosonic Mixed Noncommutative Superspace

We can consider another noncommutative relation between superspace coordinates, namely

between a spacetime coordinate and fermionic coordinate, as follows.

[xµ, θα] = iλµα, (3.1)

where λµα is a constant fermionic number, i.e. Grassmann number constant, which has both a

spacetime index and spinor index.

The possibility of noncommutative relation (3.1) is suggested in several literatures. D. Klemm

et al. [22] argued that the noncommutativity (3.1) is allowed from the algebraic point of view.

de Boer et al.[23] studied string theory in nontrivial background fields of 10-dimensional N = 2

supergravity and found that the noncommutativity (3.1) corresponds to the VEV of gravitino

field. Ferrara et al.[24] formulated the theory on four dimensional noncommutative superspace

which realize the relation (3.1) with the Moyal product, and gave a deformed Lagrangian. But

almost no further serious investigations have been done.

The work[25] is the first attempt of a rigorous study of such noncommutativity in N = 1

four-dimensional noncommutative superspace. The theory in the noncommutativity (3.1) has

an intermediate nature between the spacetime noncommutativity and the fermionic coordinate

noncommutativity like N = 1/2 SUSY theory. In this section, we will introduce the non-

commutative theory on this Fermionic-Bosonic Mixed Noncommutative Superspace in some

detail.

3.1 Formulation with a Moyal Product

D. Klemm et al.[22] investigated the algebraic consistency of noncommutativity in four-dimensional

superspace. They started with the general setup in N = 1 four-dimensional superspace, where

all noncommutative relation between superspace coordinates are arbitrary, and their noncom-

mutativity parameters can depend on all superspace coordinates. Under the condition that
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noncommutativity parameters are invariant under the supertranslation,

θ′α = θα + εα,

θ̄α̇′ = θ̄α̇ + ε̄α̇,

x′µ = xµ + aµ + i(εασµ
αα̇θ̄

α̇ + ε̄α̇σµ
αα̇θ

α), (3.2)

where εα, ε̄α̇ and aµ are infinitesimal translation parameters, and the star product is associative,

they found that the noncommutative relation (3.1) is allowed in four-dimensional Minkowski

N = 1 superspace. They pointed out that it is also allowed in N = 2 Euclidean superspace.

That is in contrast to the case of the noncommutativity {θα, θβ} 6= 0, which is allowed only in

Euclidean spacetime.

Based on this fact, we try to formulate the noncommutative theory with an appropriate

Moyal product which has associative property, in both Mankowski and Euclidean spacetime.

We take chiral coordinate as an independent variable as in the case of the formulation for

nonanticommutative superspace by Seiberg[19]. However, in this case we have no implications

from string theory, therefore there is no unique way in writing the theory in the chiral coordinate

base. It depends on how will we define and construct the theory. Here we demand that it simply

maintain well-defined chiral superfields.

We found the appropriate star product,

? = exp

[
i

2
λµα

( ←−
∂

∂yµ

−→
∂

∂θα
−
←−
∂

∂θα

−→
∂

∂yµ

)]
. (3.3)

This star product gives the desired noncommutative relation.

[yµ, θα]? = [xµ, θα]? = iλµα (3.4)

We can keep the following relations without modification,

[yµ, yν ] = 0,

{θα, θβ} = {θα, θ̄β̇} = {θ̄β̇, θ̄β̇} = 0. (3.5)
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However there are two ways to demand other noncommutative relations. In Minkowski, we

have to keep hermiticity of the theory. Thus the Hermitian conjugate of Eq.(3.4) implies

[ȳµ, θ̄α̇]? = iλ̄µα̇, (3.6)

where ȳµ = (yµ)† = xµ + iθασµ
αα̇θ̄

α̇. This relation cannot be realized by the only one

star product (3.4). Consider Hermitian conjugate of the product of two chiral superfields,

(f(y, θ) ? g(y, θ))† = ḡ(ȳ, θ̄) ?† f̄(ȳ, θ̄). Such term appears inevitably in Lagrangian if we con-

struct the Hermitian theory, therefore the Hermitian conjugate of the star product is needed,

since ?† 6= ?. Formally it is written,

?̄ ≡ ?†

= exp

[
i

2
λ̄µα̇

( ←−
∂

∂ȳµ

−→
∂

∂θ̄α̇
−
←−
∂

∂θ̄α̇

−→
∂

∂ȳµ

)]
. (3.7)

We assume that ?̄ is used for products of anti-chiral superfield, instead of ?.

On the other hand, in Euclidean spacetime θ̄α̇ is not necessary to be the hermitian conjugate

of θα. Thus we can formulate the theory with one star product.

Thanks to nilpotency of the derivative with respect to fermionic coordinate ∂
∂θα , Taylor

expansion series in the star product (3.3) terminates at finite order,

? = exp

[
i

2
λµα

( ←−
∂

∂yµ

−→
∂

∂θα
−
←−
∂

∂θα

−→
∂

∂yµ

)]

= 1 +
i

2
λµα

( ←−
∂

∂yµ

−→
∂

∂θα
−
←−
∂

∂θα

−→
∂

∂yµ

)

+
1

8
λµαλνβ

( ←−
∂

∂yµν

−→
∂

∂θαβ
+ 2

←−
∂

∂yµ∂θβ

−→
∂

∂θα∂yν
+

←−
∂

∂θαβ

−→
∂

∂yνµ

)

+
i

16
λµαλνβλργ

( ←−
∂

∂yρ∂θαβ

−→
∂

∂θγ∂yνµ
−

←−
∂

∂yµρ∂θβ

−→
∂

∂θγα∂yν

)

+
1

64
λµαλνβλργλσδ

←−
∂

∂yµρ∂θβδ

−→
∂

∂θγα∂yσν
. (3.8)

Here we use the abbreviations
−→
∂ 2

∂yµ∂yν ≡
−→
∂

∂yµν and
−→
∂2

∂θα∂θβ ≡
−→
∂

∂θαβ .

21



3.2 Noncommutative Deformation of Wess-Zumino model

In the following we investigate the supersymmetric quantum field theory with a simple example,

the Wess-Zumino model.

A chiral super field Φ is defined with (anti)super covariant derivative D̄α̇, such that D̄α̇Φ = 0.

Φ can be written as

Φ(y, θ) = A(y) +
√

2θαψα(y) + θ2F (y). (3.9)

In this noncommutative deformation, a chiral superfield is well-defined. The star product (3.3)

can be rewritten such as

? = exp

[
i

2
λµα

( ←−
∂

∂yµ

−→
Qα −←−Qα

−→
∂

∂yµ

)]
. (3.10)

This star product clearly commutes with super-covariant derivatives Dα and D̄α̇, therefore a

product of chiral superfields Φ ? Φ′ is a chiral superfields again, and a product of antichiral

superfields is an antichiral superfield too.

The Lagrangian of the simplest Wess-Zumino model in commutative superspace is given by

L0 =

∫
d4θ ΦΦ +

∫
d2θ

(m
2

ΦΦ +
g

3
ΦΦΦ

)
+

∫
d2θ̄

(m̄
2

Φ Φ +
ḡ

3
Φ Φ Φ

)
. (3.11)

Here m and g are a mass parameter and a coupling constant, respectively. We derive the

noncommutative deformed Lagrangian by replacing all products with the star products in

Eq.(3.11).

3.2.1 Deformed Lagrangian in Euclidean space

As mentioned above, in Euclidean space we can use one star product for both chiral and

antichiral part.

L =

∫
d4θ Φ ? Φ +

∫
d2θ

(m
2

Φ ? Φ +
g

3
Φ ? Φ ? Φ

)

+

∫
d2θ̄

(m̄
2

Φ ? Φ +
ḡ

3
Φ ? Φ ? Φ

)
. (3.12)
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An explicit expansion of the star product shows the deformed action in the component

fields,

S =

∫
d4xL0 +

i√
2
λµαψα(∂µ2Ā) +

1√
2
λµαF (σν)αα̇(∂µ∂νψ̄

α̇)− 1

2
λµνF (∂µ∂ν2Ā)

+
g

2
λµαλνβF (∂µψβ)(∂νψα) + gλµνF (∂µF )(∂νA) +

g

3
λµνρσF (∂µ∂νF )(∂ρ∂σF )

+
ḡ

3
λµν

[−(∂µĀ)(∂νĀ)(2Ā) + (∂ρĀ)(∂ρĀ)(∂µ∂νĀ)
]
. (3.13)

Here we have integrated out Grassmann coordinates and dropped total derivative terms, and 2

denotes d’Alembertian operator ∂µ∂µ. The abbreviations for noncommutative parameter λµα

are given in the Appendix. L0 is the undeformed part of the Lagrangian which is the same as

the original Wess-Zumino model. In addition to the original Wess-Zumino Lagrangian, there

appear higher derivative terms which are of finite order, rather than infinite order as is the case

for spacetime noncommutativity.

This action is not Hermitian because the terms added are obviously not Hermitian. We will

not go further in Euclidean case, because non-Hermitian Lagrangian is difficult to compare with

a realistic theory. Since the formulation of the noncommutative deformed Wess-Zumino model

is allowed in Minkowski space, we focus on the theory in Minkowski space and investigate it

hereafter.

3.2.2 Deformed Lagrangian in Minkowski space

In Minkowski space, we have to deform the Lagrangian with ? for the chiral part, and with ?̄

for antichiral part,

L =

∫
d4θ Φ ? Φ +

∫
d2θ

(m
2

Φ ? Φ +
g

3
Φ ? Φ ? Φ

)

+

∫
d2θ̄

(m̄
2

Φ ?̄ Φ +
ḡ

3
Φ ?̄ Φ ?̄Φ

)
. (3.14)

The Kähler term is slightly complicated, because it is a mixed term of chiral and antichiral

superfields, thus it produces ambiguity of the choice of the star product. This ambiguity is not
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discussed here, and we only use the fact that a biproduct in the integration is not modified

with the star product, ∫
d4θ Φ ? Φ =

∫
d4θ Φ?̄Φ =

∫
d4θ ΦΦ. (3.15)

Thus Lagrangian is clearly Hermitian.

Explicit calculation gives

S =

∫
d4x L0 +

g

3

∫
d4x

[
λµαλνβ

(
ψα(∂µψβ)(∂νF ) +

1

2
F (∂µψβ)(∂νψα)

)

+λµν
(
Fψα(∂µ∂νψα)− AF (∂µ∂νF )− A(∂µF )(∂νF )− F 2(∂µ∂νA)

)

+λµνρσF (∂µ∂νF )(∂ρ∂σF )

]
+ [(h.c.)]. (3.16)

The undeformed part of the Wess-Zumino Lagrangian written in component fields is

L0 = Ā2A+ i∂µψ̄α̇(σ̄µ)α̇βψβ + F̄F

+

[
m(AF − 1

2
ψψ) + g(A2F − ψψA) + (h.c.)

]
. (3.17)

The deformed action (3.16) is no longer supersymmetric, but has a remaining symme-

try. The undeformed part and λ-dependent part (not depend on λ̄) is invariant under the

Q-supersymmetry transformation,

δξA =
√

2ξψ,

δξψ =
√

2ξF,

δξF = 0. (3.18)

The invariance of the λ-dependent part can be proved by an explicit calculation.

3

g
δLλ =

√
2λµαλνβ

(
ξαF∂µψβ∂νF + ψα∂µξβF∂νF +

1

2
F∂µξβF∂νψα +

1

2
F∂µψβ∂νξαF

)

−
√

2λµν (−FξαF∂µ∂νψα − Fψα∂µ∂νξαF + ξαψαF∂µ∂νF

+ξαψα∂µF∂νF + F 2∂µ∂νξ
αψα

)

=
√

2λµαλνβψαξβ∂µF∂νF −
√

2λµνξαψα∂µF∂νF

= 0, (3.19)
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where we have used λµα∂µFλ
νβ∂νF = −εαβλµν∂µF∂νF .

However the λ-dependent part is not invariant under the Q̄-supersymmetry transformation.

On the contrary, λ̄-dependent part is Q̄-supersymmetric but not Q-supersymmetric. Of course

the undeformed part is invariant under both theQ-supersymmetry and Q̄-supersymmetry trans-

formation. Since the whole action cannot be invariant under the Q-supersymmetry and Q̄-

supersymmetry transformation simultaneously, supersymmetry is completely broken, namely

N = 0.

But there is a remaining Boson-Fermion symmetry,

δξA =
√

2ξψ, δξ̄Ā =
√

2ξ̄ψ̄,

δξψ =
√

2ξF, δξ̄ψ̄ =
√

2ξ̄F̄ ,

δξF = 0, δξ̄F̄ = 0. (3.20)

Next we consider the auxiliary fields. The generalized equation of motion for an auxiliary

field F̄ is

F = −(m̄Ā+ ḡĀ2)

+ḡλ̄µνF̄ ∂µ∂νĀ− 1

2
ḡλ̄µα̇λ̄νβ̇(∂µψ̄β̇∂νψ̄α̇)

−1

3
ḡλ̄µνρσ

{
(∂µ∂νF̄ )(∂ρ∂σF̄ ) + 2∂µν(F̄ ∂ρσF̄ )

}
, (3.21)

and a similar equation for F , which is the Hermite conjugate of Eq.(3.21). In usual supersym-

metric theory, the auxiliary fields have no degrees of freedom, because we can eliminate them

by the equation of motions. However, in this case, it is not clear if that is the case. The non-

commutative deformed equation of motion (3.21) is more complicated, and contains derivative

terms of F̄ . But Eq.(3.21) can be solved easily due to nilpotency of Grassmann constant λ,

with the following trick. We eliminate F̄ in Eq.(3.21) using the equation of other Hermitian
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conjugate half of Eq.(3.21),

F̄ = −(mA+ gA2)

+gλµνF∂µ∂νA− 1

2
gλµαλνβ(∂µψβ∂νψα)

−1

3
gλµνρσ {(∂µ∂νF )(∂ρ∂σF ) + 2∂µν(F∂ρσF )} , (3.22)

and get the differential equation in terms of F only.

F = −(m̄Ā+ ḡĀ2)

− 1

2
ḡλ̄µα̇λ̄νβ̇(∂µψ̄β̇∂νψ̄α̇)

+ ḡλ̄µν(m̄Ā+ ḡĀ2)∂µ∂νĀ+ · · ·

+ gḡλµνλ̄ρσF (∂µ∂νA)(∂ρ∂σĀ) + · · · (3.23)

We can replace F in RHS with the whole expression of F itself,

gḡλµνλ̄ρσF (∂µ∂νA)(∂ρ∂σĀ) −→

gḡλµνλ̄ρσ

(
−(m̄Ā+ ḡĀ2)− 1

2
ḡλ̄µα̇λ̄νβ̇(∂µψ̄β̇∂νψ̄α̇)

+ ḡλ̄µν(m̄Ā+ ḡĀ2)∂µ∂νĀ+ · · ·
)

(∂µ∂νA)(∂ρ∂σĀ) (3.24)

This replacement procedure should be done iteratively. Usually this operation only results

in giving a higher order differential equation in terms of F . However in this case, higher

derivative terms of F involve Grassmann number parameters λ and/or λ̄. These terms will

vanish at most at the order O(λ8) or O(λ̄8), therefore the procedure will terminate in a finite

number of times. In the end, all F in LHS are eliminated, and F is represented in terms of

dynamical component fields only, i.e., F is solved. From this cause, we conclude that F always

remains an auxiliary field. In other word, introducing the noncommutativity (3.1) does not

bring new degrees of freedom on shell. This fact is a general property of this noncommutative

deformation. Although we will not give a rigorous proof here, it is not difficult to confirm it,

taking into consideration the fact that the noncommutative deformed part in the Lagrangian

always contains the parameters λ(λ̄) which are nilpotent.
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3.3 Quantum Properties of the noncommutative Wess-Zumino model

We investigate the noncommutative Wess-Zumino model as the quantum field theory on the

noncommutative superspace. Since supersymmetry is broken to N = 0 in the deformed Wess-

Zumino action as already mentioned, we will continue to use the component formalism rather

than the superfield formalism to calculate quantum quantities.

We divide the Lagrangian into three part,

L = L0 + Lλ + Lλ̄. (3.25)

Here L0 is the original Wess-Zumino Lagrangian as given in (3.17), and the λ-dependent part

of the Lagrangian Lλ is

Lλ ≡ g

2
λµαλνβF (∂µψβ)(∂νψα) + gλµνF (∂µF )(∂νA)

+
g

3
λµνρσF (∂µ∂νF )(∂ρ∂σF ), (3.26)

where we have used partial integration and dropped the total derivative terms. Lλ̄ is the

Hermitian conjugate of Lλ, Lλ̄ = (Lλ)
†. As seen in Eq.(3.17), we can treat the noncommutative

deformed Wess-Zumino model as the theory which is the original Wess-Zumino model and

additional vertices with the coupling λ or λ̄. Note that all couplings in the interaction terms

are bosonic, e.g., λµαλνβ, and the bare fermionic coupling never appear.

We use the standard path-integral formulation. The generating functional is written as

follows.

Z[J, η] = N exp

[
i

∫
d4x Lint (δ/iδJ(x), δ/δη(x))

] ∫
Dφ exp

[
i

∫
d4x (Lfree + Lsource)

]
. (3.27)

Where N is a normalization constant. Lfree is the free part of the Lagrangian,

Lfree = Ā2A+ i(∂µψ̄α̇)(σ̄µ)α̇βψβ + F̄F +m(AF − 1

2
ψψ) + m̄(ĀF̄ − 1

2
ψ̄ψ̄), (3.28)
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and Lint is the interaction part,

Lint =
[
g(A2F − ψψA)

+
g

2
λµαλνβF∂µψβ∂νψα + gλµνF∂µF∂νA+

g

3
λµνρσF∂µ∂νF∂ρ∂σF

]

+ [(h.c.)] . (3.29)

Lsource is the source terms,

Lsource = JAA+ J̄ĀĀ+ JFF + J̄F̄ F̄ + η̄αψα + ηα̇ψ̄
α̇. (3.30)

The generating functional is rewritten in the following form and we can read off perturbative

calculation rules from it.

Z[J, η] = N ′ exp

[
i

∫
d4xLint (δ/iδJ(x), δ/δη(x))

]
exp

[−iJ̄Ā ·∆FJA

+ im̄JF ·∆FJA + imJ̄Ā ·∆FJ̄F̄ − iJF ·2∆FJ̄F̄ −
i

2
mηα̇ ·∆Fη

α̇ − i

2
m̄η̄α ·∆Fη̄α

+η̄α · ∂µ∆F(σµ)αα̇η
α̇
]
. (3.31)

Here a dot denotes the integration of spacetime volume, and ∆F is a propagator,

∆F =
1

2− |m|2 . (3.32)

To illustrate the quantum property of this theory, we consider vacuum polarization diagrams.

It is well-known that divergences of quantum calculation from vacuum diagrams are canceled

out in a supersymmetric theory between Bosonic and Fermionic loop corrections, and vacuum

energy remains always zero.

In the noncommutative Wess-Zumino model, first nontrivial corrections of the noncommuta-

tive deformation to vacuum energy come from two-loop diagrams, at the order O(λ2, g2). Fig.3

shows the additional vacuum diagrams. Each diagram is badly ultraviolet divergent since the

derivative terms in the vertex added make the convergence of the integral worse. Surprisingly,

we have found by explicit calculations that all the contributions from vacuum diagrams at this
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Figure 3: Additional two-loop vacuum diagram at O(λ2, g2)

order cancel out, even though these diagrams are more divergent than the usual Wess-Zumino

model. This is a notable feature of this model. In spite of supersymmetry breaking by the

noncommutative deformation, we have no quantum correction to vacuum energy, at least at

the nontrivial lowest order of the perturbation.

It is known that the vacuum energy of the (N = 1/2 supersymmetric) Wess-Zumino model

in nonanticommutative superspace has no contribution of vacuum loop diagrams at all or-

der, despite the supersymmetry is half broken[26]. The cancellation of the two-loop vacuum

diagrams in this model may be related to that.

It should be noted that interaction terms added to Lint are finite thanks to nilpotency of λ.

We can split the interaction part of the Lagrangian into λ-dependent Lλ
int and λ-independent

part Lλ=0
int . The exponential function of Lλ

int in the generating functional (3.27) is expanded in
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Figure 4: F cubic contribution to Feynman diagram. Diagram (I) is of the order O(λ4), (II) is
O(λ6) and (III) is O(λ8).

finite series,

Z[J, η] = N ′ exp

[
i

∫
d4xLλ=0

int (δ/δJ, δ/δη)

]

×
[
1 +

∫
d4x Lλ

int (δ/δJ, δ/δη) + (terms up to O(λ8, λ̄8))

]

× exp

[
− iJ̄Ā ·∆FJA + im̄JF ·∆FJA + imJ̄Ā ·∆FJ̄F̄

−iJF ·2∆FJ̄F̄ −
i

2
mηα̇ ·∆Fη

α̇ − i

2
m̄η̄α ·∆Fη̄α + η̄α · ∂µ∆F(σµ)αα̇η

α̇

]
. (3.33)

The expansion series of the λ-dependent interaction part is in the second line. 1 in the second

line corresponds to the terms in the usual (non-deformed) Wess-Zumino model.

It means in diagrammatic language that only finite sort of diagrams are added under the

noncommutative deformation. For example, all the diagrams including at least one F 3 interac-

tion term are classified as in Fig.4, where we omit λ̄-dependent part for simplicity. The shaded

ovals are diagrams which come from Lλ=0
int , i.e. the undeformed Wess-Zumino model.
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4 Twisted Symmetry

In this section we explain how to construct a deformed Lie algebra. The noncommutative space

that we are interested in is realized as the representations of the deformed Lie algebra. The

deformation is systematically achieved in Hopf algebraic way.

Some formulation of noncommutative space with Hopf algebra has been known in the con-

text of Quantum Group. For example, k-deformed Poincaré algebra provides the space with

a type of noncommutative relation Eq.(2.4). We will see that noncommutative space Eq.(1.2)

can be derived too, by the deformation of Poincaré algebra, namely Drinfel’d twist deforma-

tion. The work of Aschieri et al.[33], which is an interesting attempt to construct the theory

of noncommutative gravity by Drinfel’d Hopf twisted algebra, is a good introduction to the

formalism of Hopf algebra method.

To grasp the issue, we consider Poincaré algebra as a specific example of a symmetry Lie

algebra. Poincaré algebra P consists of translation generators P µ and Lorentz generators Mµν ,

satisfying the commutation relations as follows.

[Pµ, Pν ] = 0,

[Mµν ,Mρσ] = iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMνρ,

[Mµν , Pρ] = −iηρµPν + iηρνPµ. (4.1)

4.1 Universal Envelope

Hopf algebra is most naturally constructed upon an algebra which posses an associative product

and a unit element, although Lie algebra has neither. A popular approach to give a Lie algebra

both properties is the universal envelope of an algebra. The universal enveloping Lie algebra

U(G) is a natural extension of a Lie algebra G. The product in U(G) is defined as a formal

tensor product. For example P µ ⊗ P ν is the product of P µ and P ν . P µ ⊗ P ν , P µ ⊗Mρσ and

Mµν⊗P ρ⊗P σ are products in U(P). The product is obviously associative but not commutative.
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A symbol of the tensor product ⊗ in U(G) can be omitted without confusion, such as P µP ν ,

P µMρσ and MµνP ρP σ. In the following, we will omit the symbol of the tensor product in

universal enveloping algebra and assume ⊗ as the symbol of tensor products in the sense of

Hopf algebra.

U(G) is a linear space over K spanned by the products of G. Here K is a base field4. When

we consider universal enveloping Poincaré algebra U(P), K is complex number C. An element

of U(G) is the polynomial of G with coefficient K.

The product in U(G) should be consistent with Lie bracket in G. For the compatibility, we

impose an exchangeability of a commutator [X, Y ] and XY − Y X for any X, Y ∈ G. Which is

to say, XY − Y X can be replaced with [X,Y ] no matter when or where,

[X, Y ] = XY − Y X. (4.2)

This formula is nontrivial than it looks. The Lie bracket in LHS results in some linear combina-

tion of elements in G, because of closure property of Lie algebra. On the other hand, each term

in RHS is not a linear combination of G but a tensor product of rank two in U(G). When we

take a matrix representation for the Lie algebra, Eq.(4.2) is the definition of Lie bracket. Now

it is imposed at the level of the algebra in this case, that is independent of a representation.

In mathematics, a universal enveloping algebra is formally defined as the quotient algebra,

U(G) = T (G)/I. (4.3)

Here T (G) is a linear space over K spanned by the bases of tensor products of elements in G,

T (G) =
∞⊕

l=0

T l(G), (4.4)

T 0 = K, T l(G) =

l︷ ︸︸ ︷
G · · · G,

and I is an ideal generated by the elements XY − Y X − [X, Y ] in U(G).
4Usually we think that the base K is a certain field, complex number C or real number R for instance. But

when we consider a supersymmetric case later, K has to be enlarged to a ring to include Grassmann number.
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It is obvious from the construction that the representations of a universal enveloping algebra

U(G) are same as those of the original algebra G.

4.2 Hopf algebra

In this section, we will give a brief introduction to Hopf algebra. For details of Hopf algebra

and quantum group, we refer to good text books and the references therein [13, 14, 15, 16].

Hopf algebra is an extended structure of an algebra, containing familiar concept of a multi-

plication and a unit element. algebra (A,+, ·) which we assume here has an addition which is

denoted by +, and a multiplication, denoted by ·. A is an Abelian group for +, and we denote

a unit element of the addition by 0, and an inverse of element a of A by −a. However, for a

multiplication, we demand A only to be a unital semigroup, which need not to be Abelian. So

A has a unit element of the multiplication denoted by 1, but an inverse element of the multi-

plication for a ∈ A is not necessary. An addition and a multiplication on A are compatible to

the following distributive properties,

a · (b+ c) = a · b+ a · c,

(a+ b) · c = a · c+ b · c,

for all a, b, c ∈ A. These conditions are almost similar to that of a ring. Thus integers Z and

real numbers R, complex numbers C satisfy the conditions. Universal enveloping Lie algebra is

also one of the such algebras.

Firstly, we give the general definition of Hopf algebra. Hopf algebra H is a linear space over
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K and has the linear maps on it, (H,m, i,∆, ε, γ;K). The five linear maps are

product m :H ⊗H → H,

unit i :K → H,

coproduct ∆ :H → H ⊗H,

counit ε :H → K,

antipode γ :H → H.

We use H for the linear space on which the maps of Hopf algebra act as well as Hopf algebra

itself.

The product m in Hopf algebra is the map version of an ordinary product and satisfies the

following relation,

m ◦ (id⊗m) = m ◦ (m⊗ id). (4.5)

Here id denotes an identity map and ◦ stands for composite mapping. Eq.(4.5) is simply the

associative condition of the product, (ab)c = a(bc). It works on a product as follows.

(a · b) · c = m(a⊗ b) · c

= m(m(a⊗ b)⊗ c)

= m ◦ (m⊗ id)(a⊗ b⊗ c)

= m ◦ (id⊗m)(a⊗ b⊗ c)

= m(a⊗m(b⊗ c))

= a · (b · c), (4.6)

here a · b ≡ m(a ⊗ b), and a, b, c ∈ H. This is depicted in Fig.5, which shows that we can get

the same result in any path which we choose.

The unit i is the map of giving a unit element of the multiplication in Hopf algebra and
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H ⊗H ⊗H
m⊗id

//

id⊗m
²²

H ⊗H
m

²²
H ⊗H m

// H

Figure 5: Property of the product.

K ⊗H oo ∼=
//

i⊗id
²²

H

id
²²

H ⊗K//∼=
oo

id⊗i
²²

H ⊗H m
// H H ⊗Hm

oo

Figure 6: Property of the unit.

satisfies

m ◦ (i⊗ id) = id = m ◦ (id⊗ i), (4.7)

which is depicted in Fig.6. K ⊗ H is naturally identified with H, because we are free to

distribute the coefficient constant among factors of the tensor product. That is the same for a

tensor product of higher order.

K ⊗H ⊗H ⊗ · · · ∼= H ⊗K ⊗H ⊗ · · · ∼= H ⊗H ⊗K ⊗ · · · ∼= · · · ∼= H ⊗H ⊗ · · · (4.8)

The product and the unit are called algebra. Their functions are the same as that of the

same name in the original algebra.

On the other hand, a coproduct and a counit are called Coalgebra. They are dual operations

of algebra in a sense.

The coproduct ∆, which is the dual of the product, is the map which splits an element in

Hopf algebra, and satisfies

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆. (4.9)

Eq.(4.9) is called coassociative condition , depicted Fig.7. Eq.(4.9) works on an element h ∈ H
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H ⊗H ⊗H H ⊗H∆⊗idoo

H ⊗H
id⊗∆

OO

H
∆oo

∆

OO

Figure 7: Property of the coproduct.

in such a way that

(id⊗∆) ◦∆(h) = (id⊗∆)h(1) ⊗ h(2)

= h(1) ⊗ h(2)(1) ⊗ h(2)(1), (4.10)

for LHS and

(∆⊗ id) ◦∆(h) = (id⊗∆)h(1) ⊗ h(2)

= h(1)(1) ⊗ h(1)(2) ⊗ h(2), (4.11)

for RHS. Here we used Sweedler’s notation,

∆(h) =
∑

i

h
(i)
1 ⊗ h(i)

2 = h(1) ⊗ h(2), (4.12)

where a summation for index i is omitted in the last equation. From these we have the following

relation for any h ∈ H,

h(1) ⊗ h(2)(1) ⊗ h(2)(1) = h(1)(1) ⊗ h(1)(2) ⊗ h(2) ≡ h(1) ⊗ h(2) ⊗ h(3) (4.13)

The counit ε, the dual of the unit, satisfies

(id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆. (4.14)

This condition is depicted in Fig.8. It leads to the equation,

ε(h(2))h(1) = ε(h(1))h(2) ∈ H ∼= K ⊗H. (4.15)

Fig.5 and Fig.7 make clear the meaning of that the product and coproduct are dual. Let us

reverse the directions of arrows, and exchange m for ∆ in Fig.5, then it gives the same diagram
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K ⊗H H//
∼=oo oo

∼= // H ⊗K

H ⊗H
ε⊗id

OO

H

id

OO

∆oo ∆ // H ⊗H
id⊗ε

OO

Figure 8: Property of the counit.

H ε
//

∆
²²

K

i

ÄÄ

H ⊗H
γ⊗id

²²

id⊗γ
// H ⊗H

m

²²
H ⊗H m

// H

Figure 9: Property of the antipode.

in Fig.7. Inversely reversing arrows and replace ∆ with m in Fig.7, we get Fig.7. We can see

that the unit and counit are dual operations in a similar way from Fig.6 and Fig.8.

The antipode γ should satisfy

m ◦ (γ ⊗ id) ◦∆ = i⊗ ε = m ◦ (id⊗ γ) ◦∆, (4.16)

and is depicted Fig.4.16. The antipode is, roughly speaking, the map which gives the inverse

element of the multiplication in the Hopf algebra. But it is not necessary for the antipode to

be the inverse operation. For instance we do not demand the condition of γ2 = id.

For compatibility of the algebra and the coalgebra, we require the homomorphisms,

∆(hg) = ∆(h)∆(g),

ε(hg) = ε(h)ε(g), (4.17)

for all h, g ∈ H, and the conditions for the unit elements

∆(1̂) = 1̂⊗ 1̂,

ε(1̂) = 1. (4.18)
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We write a unit element in the Hopf algebra as 1̂, to avoid mistaking it for a unit element 1 in

K.

On the other hand, the antipode is an antialgebra map,

γ(hg) = γ(g)γ(h),

γ(1̂) = 1̂, (4.19)

and an anticoalgebra map, at the same time.

(γ ⊗ γ) ◦∆(h) = τ ◦∆ ◦ γ(h),

εγ(h) = ε(h). (4.20)

Here we use the transposition map τ : H ⊗ H → H ⊗ H, which is the linear map with the

condition,

τ(a⊗ b) = b⊗ a, ∀a, b ∈ H. (4.21)

The product of the elements among Hopf algebra is defined as follows.

(h⊗ g)(h′ ⊗ g′) = hh′ ⊗ gg′ (4.22)

The product for the tensor product of rank three or above is defined in the same way.

Universal enveloping Lie algebra U(G) can become a Hopf algebra with the definition of the

operations on U(G) as follows.

product m(g ⊗ h) = gh, (4.23)

unit i(k) = k1̂, (4.24)

coproduct ∆(g) = g ⊗ 1̂ + 1̂⊗ g, (4.25)

counit ε(g) = 0, (4.26)

antipode γ(g) = −g. (4.27)

These definitions are all for g, h ∈ G and k ∈ K. The definition of the product is same for

g, h ∈ U(G). The definition Eq.(4.25)-(4.27) are extended to whole U(G) with the relations
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Eq.(4.17),(4.18) and (4.19). The definition of antipode looks natural because a Lie group can

be constructed by exponentiating generators of a Lie algebra, so e−h gives the inverse of eh.

The coproduct works as the algebra homomorphism surely for U(G) because from the prop-

erty of Eq.(4.17)

∆(g)∆(h)−∆(h)∆(g) = ∆(gh)−∆(hg)

= ∆(gh− hg)

= ∆([g, h]), (4.28)

that is consistent with the Lie algebra structure. It can be confirmed for other maps in a similar

way.

4.3 Drinfel’d Twist

There is a method developed by Drinfel’d[17] to transform a Hopf algebra into another Hopf

algebra systematically.

We consider some Hopf algebra (H,m, i,∆, ε, γ;K). Then we choose a biproduct element

F ∈ H ⊗H which is called a twist element. The twist element must be invertible, ∃F−1 ∈ H,

and satisfy two conditions.

First condition is the twist equation;

F12(∆0 ⊗ id)F = F23(id⊗∆0)F . (4.29)

F12 means that F acts on the first and second factors of the tensor product,

F12 = F ⊗ id = F[1] ⊗ F[2] ⊗ id. (4.30)

Here we use Sweedler’s notation again for F ,

F =
∑

i

F
(i)
1 ⊗ F (i)

2 = F[1] ⊗ F[2], (4.31)
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where summation of index i is assumed and the each element is labeled by the number with

the brackets [ ] to distinguish the elements from coproduct ones. A similar equation holds for

F23 = id⊗F . Eq. (4.29) guarantees the coassociativity of the twisted Hopf algebra.

Second is the counit condition,

(ε⊗ id)F = 1̂ = (id⊗ ε)F . (4.32)

The Hopf algebra H is deformed by the twist element. The twisted Hopf algebra is redefined

only by changing the coproduct and antipode. We define the new coproduct and the antipode

as follows.

∆t(h) = F∆(h)F−1, (4.33)

γt(h) = Uγ(h)U−1, (4.34)

where U = F[1]γ(F[2]), U
−1 = γ(F̃[1])F̃[2], and we defined F−1 ≡ F̃[1] ⊗ F̃[2].

Then H ′(H,m, i,∆h, ε, γt;K) is also a Hopf algebra. These definitions of new coproduct and

antipode clearly keep their original properties, for example,

∆t(hg) = F∆(hg)F−1

= F∆(h)∆(g)F−1

= F∆(h)F−1F∆(g)F−1

= ∆t(h)∆t(g), (4.35)

γt(hg) = Uγ(hg)U−1

= Uγ(g)U−1Uγ(h)U−1

= γt(g)γt(h), (4.36)

which are same as Eq.(4.17) and Eq.(4.19).

The inverse twist element should satisfy the equation,

FF−1 = F−1F = 1̂⊗ 1̂. (4.37)
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From this equation and the twist equation (4.29), we see a similar twist equation for the inverse

twist element,

(∆⊗ id)F−1F−1
12 = (id⊗∆)F−1F−1

23 . (4.38)

Consider a special type of a twist element of universal enveloping Lie Hopf algebra U(G),

F = exp

(∑
i

cij hi ⊗ hj

)
. (4.39)

Here hi is an element in Abelian subalgebra of U(G) and cij is a coefficient of K. Abelian

subalgebra elements all commute with each other, i.e.

[hi, hj] = 0, (4.40)

for all i, j. Eq.(4.39) is expanded formally in the infinite series,

F = 1̂⊗ 1̂ + cij hi ⊗ hj +
1

2!
(cij hi ⊗ hj)(clm hl ⊗ hm) + · · · . (4.41)

The twist element (4.41) obviously satisfies the counit condition Eq.(4.32), since the second

term and subsequent terms vanish when they are acted by the counit from Eq.(4.26).

The twist element (4.41) satisfies the twist equation (4.29). We verify it in a straightforward

way with the calculations of Hopf algebra.

Proof. From Eq.(4.41) and (4.22), we obtain

F = exp

(∑
i

cij hi ⊗ hj

)

=
∞∑

n=0

1

n!
ci1j1 · · · cinjn(hi1 ⊗ hj1) · · · (hin ⊗ hjn)

=
∞∑

n=0

1

n!
ci1j1 · · · cinjn(hi1 · · ·hin)⊗ (hj1 · · ·hjn) . (4.42)

The coproduct acts on the product of hi in the following way.

∆(hi1 · · ·hin) = ∆(hi1) · · ·∆(hin)

=
n∏

k=1

(hik ⊗ 1̂ + 1̂⊗ hik) (4.43)
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We can rearrange freely the order of h’s in a factor of the tensor product, because of their

commutativity. After an appropriate reassignment of indices, we find

F12(∆⊗ id)(F) = (F[1] ⊗ F[2] ⊗ 1̂)(∆⊗ id)(F[1] ⊗ F[2])

=

( ∞∑
n=0

1

n!
ci1j1 · · · cinjn hi1 · · ·hin ⊗ hj1 · · ·hjn ⊗ 1̂

)

×
( ∞∑

m=0

1

m!
ci1j1 · · · cimjm

m∑

l=0

(
m

l

)
hi1 · · ·hil−1

⊗ hil · · ·him ⊗ hj1 · · ·hjm

)

=
∞∑

n=0

∞∑
m=0

m∑

l=0

1

n!m!

(
m

l

)
ci1j1 · · · cinjnci′1j′1 · · · ci′mj′m

×
(
hi1 · · ·hinhi′1 · · ·hi′l−1

⊗ hj1 · · ·hjnhi′l · · ·hi′m ⊗ hj′1 · · ·hj′m

)
, (4.44)

and

F23(id⊗∆)(F) = (1̂⊗ F[1] ⊗ F[2])(id⊗∆)(F[1] ⊗ F[2])

=
∞∑

n′=0

∞∑

m′=0

m′∑

l′=0

1

n′!m′!

(
m′

l′

)
ci1j1 · · · cin′jn′ci′1j′1 · · · ci′m′j′m′

× (
hi′1 · · ·hi′m′ ⊗ hi1 · · ·hin′hj′1 · · ·hj′l′−1

⊗ hj1 · · ·hjn′hj′l′ · · ·hj′m′
)
.

(4.45)

Every coefficient c is contracted with two h, which are in the different factor of tensor product.

The structure of the contractions is similar to each other and appears again and again in the

series. So each term in the expansion in Eq.(4.44) and Eq.(4.45) is characterized by three

numbers, α, β and γ. α is the number of the contraction between h in the first and second

factors of the tensor product. β and γ is the number of the contraction in the first and third

factors, and in the second and third factors respectively.

We can read α, β and γ from Eq.(4.44) and Eq.(4.45).




α = n = l′

β = l = m′ − l′
γ = m− l = n′

. (4.46)

From these relations, both (n,m, l) and (n′,m′, l′) are determined with α, β and γ inversely. All

possible combinations of nonnegative integers appears in (α, β, γ). Then corresponding (n,m, l)
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and (n′,m′, l′) also run through all nonnegative integers. Moreover the coefficients of the terms

of (n,m, l) and of (n′,m′, l′), which are associated with the numbers (α, β, γ) are identical,

1

m!n!

(
m

l

)
=

1

m′!n′!

(
m′

l′

)
=

1

α!β!γ!
. (4.47)

So we have confirmed that the twist equation (4.29) is satisfied order by order, if the twist

element is constructed by Eq.(4.39) using the elements in Abelian subalgebra only.

4.4 Representation Space

An interesting situation is that a Hopf algebra acts on some other structure. Let us consider

the case that a Hopf algebra H acts on a vector space over K, (V,+;K). V has an addition

which is compatible a scalar multiplication of K,

k · (v + w) = k · v + k · w,

(k + l) · v = k · v + l · v,

for all v, w ∈ V and k, l ∈ K.

Hopf algebra H acts on V as an endomorphism of V .

H : V → V (4.48)

If h ∈ H acts on v ∈ V from the left side, we denote h : a → a′ as h . a = a′. In this case H

is a left action of V or V is a left module of H. Right action or right module is defined in the

same way. V is called also representation space of H. The action on V should be compatible

with the operation on H such that,

g . (h . v) = (gh) . v, (4.49)

for all h, g ∈ H and v ∈ V .

Next we consider the case that V has also a Hopf-algebra-like structure compatible with H.

This enable us to write an element v of V with a tensor product, and the multiplication map

43



m : V ⊗ V → V is defined,

m(v ⊗ w) = v · w. (4.50)

For compatibility with the maps on H, the following conditions are imposed.

h . (v · w) = h . m(v ⊗ w)

= m ◦∆(h) . (v ⊗ w)

= m(h(1) . v ⊗ h(2) . w). (4.51)

(Actually v and w can be in the different representations. We will not discuss about it any

further here.)

Let H be a Hopf algebra and let V be a presentation space of H, with the multiplication

explained above. Now we consider the twisted Hopf algebra H ′ of H with the twist element F .

The product in H is not modified in the twist operation. However the product in represen-

tation space should be modified. We can obtain the proper representation space of H ′, only to

change the definition of the multiplication rule[18].

v · w = m(v ⊗ w)→ v ? w ≡ m(F−1 . v ⊗ w) (4.52)

This is the definition of the star product in the representation of the twisted Hopf algebra.

Hereafter we will omit the symbol of action, ., when it is obvious.

The product (4.52) is associative.
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Proof.

(a ? b) ? c = m ◦ F−1(a⊗ b) ? c

= m ◦ F−1
(
m ◦ F−1(a⊗ b)⊗ c)

= m ◦ F−1 ◦ (m⊗ id) ◦ (F−1 ⊗ id)(a⊗ b⊗ c)

= m ◦ (m⊗ id) ◦ (∆⊗ id)(F−1) ◦ (F−1 ⊗ id)(a⊗ b⊗ c)

= m ◦ (id⊗m) ◦ (id⊗∆)(F−1) ◦ (id⊗F−1)(a⊗ b⊗ c)

= m ◦ F−1
(
id⊗m) ◦ (id⊗F−1)(a⊗ b⊗ c))

= m ◦ F−1(a⊗ b ? c)

= a ? (b ? c) (4.53)

Here in the forth line we used Eq.(4.51), and in the fifth line we used product associativity

Eq.(4.5) and the inverse twist equation Eq.(4.38).

This star product is compatible with the twisted symmetry.

h(a ? b) = h ◦m ◦ F−1(a⊗ b)

= m ◦∆(h) ◦ F−1(a⊗ b)

= m ◦ F−1 ◦ F ◦∆(h) ◦ F−1(a⊗ b)

= m(F−1∆t(h)a⊗ b)

= a′ ? b′, (4.54)

for all h ∈ H and a, b ∈ V . Here we defined
{
a′ = ht(1)a

b′ = ht(2)b
, ∆t(h) = ht(1) ⊗ ht(2), (4.55)

and used the definition of the twisted coproduct (4.33). The action on a single element a ∈ V
is not modified, but the action on a product in the representation space V is modified by the

twist.
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4.5 Twisted Poincaré Algebra

We are now ready to construct the twisted Poincaré algebra.

Poincaré algebra can become a Hopf algebra, through universal enveloping, with the def-

initions of the operations which are already mentioned in section 4.2. Universal enveloping

Poincaré Hopf algebra U(P) is considered as the original symmetry algebra.

We take the coordinate representation as the representation space. Generators of Poincaré

algebra are represented as the differential operators on it,

Pµ = i∂µ,

Mµν = i(xµ∂ν − xν∂µ). (4.56)

Spacetime coordinate representation allows the Hopf-algebra-like structure into it. Ordinary(non-

twisted) product on the spacetime representation is defined as follows.

xµ · xν ≡ m(xµ ⊗ xν). (4.57)

It is to be noted that the LHS in the above equation is a noncommutative product rather than a

commutative object xµxν ∈ R. It is not surprising since the tensor product in the RHS should

not commute. To retain usual commutative coordinate description, we have to impose an

equivalence relation such that xµ ·xν−xν ·xµ = 0. In mathematics, it means that commutative

space is recovered as the quotient space with the ideal which is generated by xµ · xν − xν · xµ.

In addition to that, to obtain a usual commutative product from the dotted product, we have

to assign them to commutative products in some ordering. For instance, in symmetric (Weyl)

ordering we impose the relation,

1

2
(xµ · xν + xν · xµ)←→ xµxν . (4.58)

If we keep in mind these facts, there is no difference between both descriptions. For example,
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let us see how the Lorentz generator transform the product on both space. Usually,

Mµν(xρxσ) = (i(xµ∂ν − xν∂µ)) (xρxσ)

= ixµ ((∂νxρ)xσ + xρ(∂νxσ))− ixν ((∂µxρ)xσ + xρ(∂µxσ))

= iηνρxµxσ − iηνσxµxρ − iηµρxνxσ + iηµσxνxρ. (4.59)

It is just like the behavior of rank two tensor under the Lorentz transformation.

On the other hand, in Hopf algebra,

Mµνx{ρ · xσ} = Mµν m
(
x{ρ ⊗ xσ}

)

= m
(
∆(Mµν)x{ρ ⊗ xσ}

)

= m
(
(Mµν ⊗ 1̂ + 1̂⊗Mµν)x{ρ ⊗ xσ}

)

= m
(
Mµνx{ρ ⊗ xσ} + x{ρ ⊗Mµνxσ}

)

= m
(
i(xµ∂ν − xν∂µ)x{ρ ⊗ xσ} + x{ρ ⊗ i(xµ∂ν − xν∂µ)xσ}

)

= m
(
iηνρx{µ ⊗ xσ} − iηνσx{ρ ⊗ xµ}

−iηµρx{ν ⊗ xσ} + iηµσx{ν ⊗ xρ}
)

= iηνρx{µ · xσ} − iηνσx{ρ · xµ} − iηµρx{ν · xσ} + iηµσx{ν · xρ}

(4.60)

Here braces {} denotes the symmetrization, x{µ⊗xν} = 1
2
(xµ⊗xν +xν ⊗xµ). In the column of

each tensor product, we can calculate in the same way as an ordinary product and a differential

operator. The product x{µ ⊗ xν} is exactly transformed like as the rank two tensor.

From Eq.(4.60), we can see that the coproduct is defined so as to work as the Leibnitz rule.

Since the Drinfel’d twist deforms the coproduct, that is just the deformation of the differential

structure of the algebra.

Then we choose a twist element as follows.

FPP = exp

(
i

2
ΘµνPµ ⊗ Pν

)
, . (4.61)
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where Θµν is a (real) constant with spacetime indices. This twist element satisfies the twist

equation(4.29) and the counit condition Eq.(4.32) automatically, because translation generators

P µ are in an Abelian subsector of Poincaré algebra.

In coordinate representation, the twist element FPP looks like the Moyal product itself.

FPP = exp

(
− i

2
Θµν∂µ ⊗ ∂ν

)
. (4.62)

Actually, the formulation in Hopf algebraic method with FPP produces the same results by the

formulation with the Moyal product (2.25).

Consequently the product on the representation space is modified as mentioned previously.

xµ · xν

= m(xµ ⊗ xν)
−−−→ xµ ? xν

= m((FPP )−1xµ ⊗ xν) ≡ mt(x
µ ⊗ xν)

(4.63)

We derive all the calculations on the representation space with this star product.

xµ ? xν = mt(x
µ ⊗ xν)

= m((FPP )−1xµ ⊗ xν)

= m

{
exp

(
− i

2
ΘρσPρ ⊗ Pσ

)
(xµ ⊗ xν)

}

= m

{
exp

(
i

2
Θρσ∂ρ ⊗ ∂σ

)
(xµ ⊗ xν)

}

= m

(
xµ ⊗ xν +

i

2
Θρσδµ

ρ ⊗ δν
σ

)

= xµ · xν +
i

2
Θµν (4.64)

A commutator is calculated with this star product. Then we have the desired noncommu-

tative relation,

[xµ, xν ]? ≡ xµ ? xν − xν ? xµ

= iΘµν 6= 0. (4.65)

It should be mentioned that no a priori reason to determine the value of Θµν at the level of

the twist operation on the Hopf algebra. Any constant Θµν , even if it is not real, will satisfy
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the twist equation. We fix them to keep the consistency of the algebraic structure in the

representation space. The indices should be antisymmetric in µ and ν in the above equation,

and Θµν should be real from the Hermiticity condition.

This construction of the noncommutative spacetime was done by Chaichian et. al and

Oeckl[5, 6]. It is obvious from their construction that the theory has a continuous commutative

limit. If we take the limit Θµν → 0, twisted Poincaré algebra reduces to Poincaré algebra, and

noncommutative space reduces to commutative space smoothly.

4.6 Twisted Lorentz symmetry

We verify the algebraic consistency of twisted Poincaré algebra. The structure of Poincaré

algebra and the coproduct of Pµ are not modified by the twist of FPP , but the coproduct of

Mµν is changed,

∆PP
t (Mµν) = Mµν ⊗ 1̂ + 1̂⊗Mµν

−1

2
Θρσ [(ηρµPν − ηρνPµ)⊗ Pσ + Pρ ⊗ (ησµPν − ησνPµ)] . (4.66)

If noncommutativity parameter Θµν behave as a constant in the twisted symmetry, the

Lorentz generator Mµν annihilate Θµν , Mµν(Θ
ρσ) = 0. For consistency, Mµν should annihilate

[xρ, xσ]? = xρ ? xσ − xσ ? xρ(= Θρσ). That is confirmed as follows.

Mµν [x
ρ, xσ]? = Mµν ◦mt(x

ρ ⊗ xσ − xσ ⊗ xρ)

= Mµν ◦m
(
(FPP)

−1
xρ ⊗ xσ − xσ ⊗ xρ

)

= m
(
(FPP)

−1
∆t(Mµν) x

ρ ⊗ xσ − xσ ⊗ xρ
)

= m
[
(FPP)

−1
{

(ixµ∂ν − ixν∂µ)⊗ 1̂ + 1̂⊗ (ixµ∂ν − ixν∂µ)

+
1

2
Θµ′ν′(ηµ′µ∂ν − ηµ′ν∂µ)⊗ ∂ν′ + ∂µ′ ⊗ (ην′µ∂ν − ην′ν∂µ)

}

xρ ⊗ xσ − xσ ⊗ xρ
]

= 0. (4.67)
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Therefore there is no inconsistency in the way of the transformation between LHS and RHS

in noncommutative relation (4.65), and Θµν behave as a constant under the twisted Lorentz

transformation.

That is a little bit curious because we are inclined to think that the noncommutative pa-

rameter may transform in a covariant way under the Lorentz transformation x′µ = Λµ
νx

ν , since

xµ ? xν − xν ? xµ looks like a rank two tensor.

Θµν = xµ ? xν − xν ? xµ −→

Θ′µν
= Λµ

µ′Λ
ν
ν′

(
xµ′ ? xν′ − xν′ ? xµ′

)

= Λµ
µ′Λ

ν
ν′Θ

µ′ν′ , (4.68)

where Λµ
ν is a representation matrix of the Lorentz transformation group. In the last equation

indicate Θµν is transformed as a tensor.

That is not the case with twisted symmetry transformation. Θµν is not a tensor, but a

constant, thus it is invariant under the twisted Lorentz transformation indeed. Hence the

twisted Lorentz transformation is associated with a local transformation or Particle Lorentz

transformation.

Next we see the transformation of x{µ ? xν}, which is a rank two tensor in noncommutative

space.

Mµνx{ρ ? xσ} = Mµν ◦mt(x{ρ ⊗ xσ})

= Mµν ◦m
(
(FPP)

−1
x{ρ ⊗ xσ}

)

= m
(
(FPP)

−1
∆t(Mµν) x{ρ ⊗ xσ}

)

= m
(
(FPP)

−1
iηνρx{µ ⊗ xσ} − iηνσx{ρ ⊗ xµ} − iηµρx{ν ⊗ xσ} + iηµσx{ν ⊗ xρ}

)

= iηνρx{µ ? xσ} − iηνσx{ρ ? xµ} − iηµρx{ν ? xσ} + iηµσx{ν ? xρ} (4.69)

Eq.(4.69) is quite a similar to Eq.(4.60), if we replace a dotted product with a star product.

x{µ ? xν} is transformed as a twisted Lorentz tensor exactly.
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The other way of the calculation is that the star product is expanded first, and we write the

equation in terms of noncommutativity parameter Θµν explicitly. After that, Lorentz generator

act on the equation as the ordinary derivative operator, we can derive the same results like as

in Eq.(4.67) and Eq.(4.69), after the explicit expansion of the star product. In a sense, we can

exchange Lorentz transformation and taking the star product in twisted Hopf algebra. If we

want only the results of the calculation, we need not use the twisted Hopf algebraic way instead

of a regular procedure. From this aspect, the twisted Hopf algebraic calculation is a changing

the point of view. The significant feature of the formulation in a twisted Hopf algebra is that

we do not always have to write the noncommutativity parameter Θµν explicitly, in Eq.(4.67)

or Eq.(4.69). They are hidden behind the star product and the coproduct. Thus the algebraic

structure is exactly same with the non-twisted case, i.e., the case in commutative spacetime,

as we can see from a comparison Eq.(4.69) with Eq.(4.60).

In twisted Hopf algebraic way, we can calculate equations so as to maintain all the algebraic

structure, even in noncommutative spacetime. That means, in short, the twisted algebra is the

symmetry of the noncommutative theory.
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5 Extension to Supersymmetric Theory

5.1 Z2 Graded Hopf Algebra

It is almost straightforward to extend the construction of twisted symmetry for a supersym-

metric case. However some preparations are needed because supersymmetric algebra which we

want to modify contains the generators of the fermionic nature. To treat these fermionic ingre-

dients, we have to slightly change the definition of a multiplication rule in the Hopf algebra.

And we also allow the base K to be not only a field but a ring in the case of a Grassmann

number noncommutativity parameters.

We define a Z2 graded Hopf algebra, in which the multiplication is modified as follows.

(a⊗ b)(c⊗ d) = (−1)|b||c|(ac⊗ bd), (5.1)

for a, c, b, d ∈ H. Here |a| denote the “number of fermion” of a,

|a| =
{

0 if a is fermionic
1 if a is bosonic

. (5.2)

The definition is extended to the rank of more than two, so as to change a sign at every jump

over a fermionic element each other. For instance, a product of three columns is given by

(a⊗ b⊗ c)(d⊗ e⊗ f) = (−1)|c|(|d|+|e|)+|b||d|(ad⊗ be⊗ cf). (5.3)

When the base K is Grassmann number ring, the fermionic numbers should also be con-

sistent with the definition of the Z2 graded Hopf algebra H. For consistency we impose the

anticommutative property of a fermionic number λ ∈ K with a fermionic element hi ∈ H, for

example,

λh1 ⊗ h2 ⊗ h3 = (−1)|λ||h1|h1λ⊗ h2 ⊗ h3

= (−1)|λ||h1|h1 ⊗ λh2 ⊗ h3

= (−1)|λ|(|h1|+|h2|)h1 ⊗ h2 ⊗ λh3. (5.4)
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5.2 Twisted Super Poincaré Algebra

Instead of Poincaré algebra, we start with super Poincaré algebra, to obtain the non(anti)commutative

superspace. Such noncommutative deformation can expect to be the twisted supersymmetric

and the twisted Lorentz symmetric deformation. Another approach to construct a theory which

maintains Lorentz symmetry and supersymmetry on noncommutative superspace by the spinor

formalism is [35].

In addition to Poincaré algebra, N = 1 Super Poincaré algebra SP consists of supercharge

Qα and antisupercharge Q̄α̇. The commutation relations are as follows.

[Pµ, Pν ] = 0,

[Mµν ,Mρσ] = iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMνρ,

[Mµν , Pρ] = −iηρµPν + iηρνPµ,

[Pµ, Q
α] = 0, [Pµ, Q̄α̇] = 0,

[Mµν , Qα] = i (σµν)
β

α Qβ, [Mµν , Q̄
α̇] = i (σ̄µν)

α̇
β̇ Q̄

β̇,

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ. (5.5)

In superspace coordinate representation, the generators in SP are represented as the differ-

ential operators on superspace,

Pµ = i∂µ,

Mµν = i(xµ∂ν − xν∂µ)− iθα (σµν)
β

α

∂

∂θβ
− iθ̄α̇ (σ̄µν)

α̇
β̇

∂

∂θ̄β̇

,

Qα = i
∂

∂θα
− σµ

αβ̇
θ̄β̇∂µ,

Q̄α̇ = −i ∂
∂θ̄α̇

+ θβσµ
βα̇∂µ. (5.6)

Universal enveloping super Poincaré algebra U(SP) becomes a Z2 graded Hopf algebra over
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K by the following definition in the same way as in U(G).

product : m(X ⊗ Y ) = XY, (5.7)

unit : i(k) = k1̂, (5.8)

coproduct : ∆(X) = X ⊗ 1̂ + 1̂⊗X,

∆(1̂) = 1̂⊗ 1̂, (5.9)

counit : ε(X) = 0,

ε(1̂) = 1, (5.10)

antipode : γ(X) = −X,

γ(1̂) = 1̂, (5.11)

for X, Y ∈ SP and k ∈ K. These definitions are extended to whole U(SP) recursively with

Eq.(4.17)-(4.19).

The twist element which satisfies the twist equation (4.29) and counit condition Eq.(4.32) is

easily constructed from the elements of the Abelian subalgebra, as it is proved in the previous

section for bosonic generators. Actually the Abelian subalgebra can include not only bosonic

but fermionic generators. That means we can loose the condition such that two generators

anticommute with each other if both of them are fermionic, otherwise commute with each

other.

We can prove that statement as follows.

Proof. Let us define the following twist element.

F = exp
(
cij Gi ⊗G′j

)
, (5.12)

where cij is a constant, and G and G′ are generators. The constant and generator can be either

bosonic or fermionic. The counit condition is clearly satisfied for F , so it is sufficient to check
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the twist equation. The LHS of the twist equation is,

F12(∆0 ⊗ id)F

= exp
(
cij Gi ⊗G′j ⊗ 1̂

)
exp

(
cij Gi ⊗ 1̂⊗G′j + 1̂⊗Gi ⊗G′j

)
(5.13)

An explicit calculation shows that arguments of the exponential function in the above equation

commute. In the calculations, we have to exercise caution with sign flips.

[
cij Gi ⊗G′j ⊗ 1̂, ckl(Gk ⊗ 1̂⊗G′l + 1̂⊗Gk ⊗G′l)

]

= cijckl
{

(−1)|c
kl|(|Gi|+|G′j |)+|G′j ||Gk|GiGk ⊗G′j ⊗G′l

+(−1)|c
kl|(|Gi|+|G′j |)Gi ⊗G′jGk ⊗G′l

}

− cklcij
{

(−1)|c
ij |(|G′l|+|Gk|)+(|Gi|+|G′j |)|G′l|GkGi ⊗G′j ⊗G′l

+(−1)(|cij |+|Gi|)(|Gk|+|G′l|)+|G′j ||G′l|Gi ⊗GkG
′
j ⊗G′l

}

= cijckl
{(

(−1)|c
kl|(|Gi|+|G′j |)+|G′j ||Gk|

−(−1)|c
ij |(|G′l|+|Gk|+|ckl|)+(|Gi|+|G′j |)|G′l|+|Gi||Gk|

)
×GiGk ⊗G′j ⊗G′l

+
(
(−1)|c

kl|(|Gi|+|G′j |) − (−1)(|cij |+|Gi|)(|Gk|+|G′l|)+|G′j |(|G′l|+|Gk|)+|cij ||ckl|
)

×Gi ⊗G′jGk ⊗G′l
}

= 0. (5.14)

Do not sum over the same upper and lower index here. In the last equation, we have used the

following fact.

(−1)a − (−1)b =

{
0 if a+ b is even.
−2 or 2 if a+ b is odd.

a, b ∈ Z (5.15)

For the sums of indices of the (−1) are

|ckl|(|Gi|+ |G′j|) + |G′j||Gk|

+|cij|(|G′l|+ |Gk|+ |ckl|) + (|Gi|+ |G′j|)|G′l|+ |Gi||Gk|

= (|cij|+ |Gi|+ |G′j|)(|ckl|+ |Gk|+ |G′l|), (5.16)
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and

|ckl|(|Gi|+ |G′j|)

+(|cij|+ |Gi|)(|Gk|+ |G′l|) + |G′j|(|G′l|+ |Gk|) + |cij||ckl|

= (|cij|+ |Gi|+ |G′j|)(|ckl|+ |Gk|+ |G′l|). (5.17)

The total of the fermionic character |cij| + |Gi| + |G′j| should be even, since the argument of

exponential function is bosonic. Therefore we can get together the arguments of the exponential

functions in Eq.(5.13),

F12(∆0 ⊗ id)F = exp
(
cij Gi ⊗G′j ⊗ 1̂

)
exp

(
cij(Gi ⊗ 1̂⊗G′j + 1̂⊗Gi ⊗G′j)

)

= exp
(
cij(Gi ⊗G′j ⊗ 1̂ +Gi ⊗ 1̂⊗G′j + 1̂⊗Gi ⊗G′j)

)
. (5.18)

The RHS of the twist equation is calculated in a similar way.

F23(id⊗∆0)F = exp
(
cij 1̂⊗Gi ⊗G′j

)
exp

(
cij(Gi ⊗G′j ⊗ 1̂ +Gi ⊗ 1̂⊗G′j)

)

= exp
(
cij(1̂⊗Gi ⊗G′j +Gi ⊗G′j ⊗ 1̂ +Gi ⊗ 1̂⊗G′j)

)
(5.19)

Now we have proved that the twist element (5.12) satisfies the conditions, for all the constants

cij and generators Gi in Abelian subalgebra, irrespective of whether each of them is bosonic or

fermionic.

In super Poincaré algebra, an Abelian subalgebra is made up of translation generators P µ

and supercharges Qα or alternatively, P µ and anti-supercharges Q̄α̇. We cannot choose both

Qα and Q̄α̇ because they do not anticommute with each other.

We will consider several twist separately.

5.2.1 P -P Twist

Since super Poincaré algebra is an extension of Poincaré algebra, in other words, super Poincaré

algebra contains Poincaré algebra as its subalgebra, the FPP twist element works well even in
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superspace as well as ordinary spacetime,

FPP = exp

(
i

2
ΘµνPµ ⊗ Pν

)
. (5.20)

This twist element gives the following noncommutativities,

[xµ, xν ]? = iΘµν ,

{θα, θβ}? = 0,

[xµ, θα]? = 0. (5.21)

We omitted {θ̄α̇, θ̄β̇}? = 0, {θα, θ̄β̇}? = 0 and [xµ, θ̄β̇]? = 0. Hereafter we assume that these

commutators, which include the antichiral part of fermionic coordinate θ̄α̇ in superspace, remain

always zero unless otherwise noted.

5.2.2 Q-Q Twist

Modifications of the commutator for fermionic coordinates in superspace is achieved by the

twist element of Qα. Consider the following twist element.

FQQ = exp

(
−1

2
CαβQα ⊗Qβ

)
, (5.22)

where Cαβ is a constant. The products of coordinates with this twist element are

θα ? θβ = mt(θ
α ⊗ θβ)

= m ◦ e 1
2
CγδQγ⊗Qδ(θα ⊗ θβ)

= m

(
exp

(
1

2
Cγδ(i

∂

∂θγ
− σµ

γγ̇ θ̄
γ̇∂µ)⊗ (i

∂

∂θδ
− σν

δδ̇
θ̄δ̇∂ν)

)
θα ⊗ θβ

)

= m

(
θα ⊗ θβ +

1

2
Cγδδα

γδ
β
δ

)

= θα · θβ +
1

2
Cαβ, (5.23)

xµ ? xν = m ◦ e 1
2
CγδQγ⊗Qδ(xµ ⊗ xν)

= m

(
xµ ⊗ xν +

1

2
Cγδ(−σρ

γγ̇)θ̄
γ̇δµ

ρ ⊗ (−σσ
δδ̇

)θ̄δ̇δν
σ

)

= xµ · xν + Cαβσµ
αγ̇σ

ν
βδ̇
θ̄γ̇ θ̄δ̇, (5.24)
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xµ ? θα = m ◦ e 1
2
CγδQγ⊗Qδ(xµ ⊗ θα)

= m

(
xµ ⊗ θα +

1

2
Cγδ(−σρ

γγ̇ θ̄
γ̇δµ

ρ)⊗ iδα
δ

)

= xµ · θα − i1
2
Cαβσµ

βγ̇ θ̄
γ̇. (5.25)

This leads nonanticommutative representation of superspace.

{θα, θβ}? = Cαβ (5.26)

We assume here that the indices of the constant is symmetric, Cαβ = Cβα.

In addition to this, the other noncommutative relations are

[xµ, xν ]? = Cαβσµ
αγ̇σ

ν
βδ̇
θ̄γ̇ θ̄δ̇,

[xµ, θα]? = −iCαβσµ

ββ̇
θ̄β̇.

This results are in agreement with the N = 1/2 SUSY case given by Seiberg[19].

We have to note that the product in the last line of Eq.(5.23)-(5.25) is not the object in or-

dinary superspace, as we mentioned in the previous section. To get ordinary (anti)commutative

superspace representation, the following equivalence relations should be imposed.





xµ · xν − xν · xµ = 0
θα · θβ + θβ · θα = 0

θ̄α̇ · θ̄β̇ + θ̄β̇ · θ̄α̇ = 0
xµ · θα − θα · xµ = 0
xµ · θ̄α̇ − θ̄α̇ · xµ = 0

θα · θ̄β̇ + θ̄β̇ · θα = 0

(5.27)

Again the dotted product is associated with the product in superspace in proper ordering.

5.2.3 P -Q Twist

We can make the mixed noncommutativity between bosonic and fermionic coordinate. Consider

the following twist element,

FPQ = exp

[
i

2
λµα(Pµ ⊗Qα −Qα ⊗ Pµ)

]
. (5.28)
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Where λµα should be a Grassmann number, to keep the parenthetic argument bosonic.

From this we have the noncommutative relations,

[xµ, xν ]? = λµασν
αβ̇
θ̄β̇ − λνασµ

αβ̇
θ̄β̇,

[xµ, θα]? = iλµα,

{
θα, θβ

}
?

= 0. (5.29)

In fact, either Pµ⊗Qα or Pµ⊗Qα satisfies the conditions for the twist element. We choose the

combination of them to make proper commutation relation.

5.2.4 Mixed Twist

Next we will consider more general twist element.

Fmix = exp

[
i

2
ΘµνPµ ⊗ Pν +

i

2
λµα(Pµ ⊗Qα −Qα ⊗ Pµ)− 1

2
CαβQα ⊗Qβ

]
(5.30)

This twist element is a compilation of the previous three twist elements. Each element in

the argument, ΘµνPµ ⊗ Pν , λ
µα(Pµ ⊗Qα −Qα ⊗ Pµ) and CαβQα ⊗Qβ, all commute with each

other, thus Fmix is factorizable,

Fmix = FPPFQQFPQ. (5.31)

And it gives the following commutator relations.

[xµ, xν ]? = iΘµν + Cαβσµ
αγ̇σ

ν
βδ̇
θ̄γ̇ θ̄δ̇ + λµασν

αβ̇
θ̄β̇ − λνασµ

αβ̇
θ̄β̇,

[xµ, θα]? = iλµα − iCαβσµ

ββ̇
θ̄β̇,

{
θα, θβ

}
?

= Cαβ. (5.32)

Actually these results are the linear combinations of the commutation relation of the previous

three twists.
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5.2.5 Algebra Consistency

We verify the consistency of the algebraic structure in our twisted super Poincaré algebra.

For that purpose we will calculate the transformation properties of the noncommutativity

parameters, as in the section 4.6.

• P -P Twist

For P -P twisted Poincaré algebra, we already showed the twisted Lorentz transformation of

the parameter Θµν in the section 4.6. That is all the same in twisted super Poincaré algebra.

Since the generator Pµ commute with both Qα and Q̄α̇, the coproducts of both generators are

not changed thus there is no differences.

MµνΘ
ρσ = Mµν(x

ρ?xσ − xσ?xρ) = 0

QαΘρσ = Qα(xρ?xσ − xσ?xρ) = 0

Q̄α̇Θρσ = Q̄α̇(xρ?xσ − xσ?xρ) = 0 (5.33)

• Q-Q Twist

In Q-Q twisted super Poincaré algebra, the coproduct of Mµν is changed,

∆QQ
t (Mµν) = Mµν ⊗ 1̂ + 1̂⊗Mµν

+
i

2
(σµν)

γ
α Cαβ (Qβ ⊗Qγ +Qγ ⊗Qβ) , (5.34)

and the coproduct of Q̄α̇ is changed at the same time,

∆QQ
t (Q̄α̇) = Q̄α̇ ⊗ 1̂ + 1̂⊗ Q̄α̇

+ Cγδεα̇β̇{(σρ)γβ̇Pρ ⊗Qδ −Qγ ⊗ (σρ)δβ̇Pρ}. (5.35)

After some exercise, we see

MµνC
αβ = Mµν(θ

α ? θβ + θβ ? θα)

= m ◦ (FQQ)−1
(
∆QQ

t (Mµν)(θ
α ⊗ θβ + θβ ⊗ θα)

)

= 0. (5.36)
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In a similar way,

QαC
αβ = Qα(θα ? θβ + θβ ? θα) = 0 (5.37)

Q̄α̇C
αβ = Q̄α̇(θα ? θβ + θβ ? θα) = 0 (5.38)

Therefore noncommutativity parameter Θαβ is not transformed under the twisted supersym-

metric transformation as well as the twisted Lorentz transformation.

• P -Q Twist

Like as the Q-Q twist case, in P -Q twisted super Poincaré algebra the coproduct of Mµν and

Q̄α̇ are changed.

∆PQ
t (Mµν) = Mµν ⊗ 1̂ + 1̂⊗Mµν

−1

2
λρα [(ηµρPν − ηνρPµ)⊗Qα −Qα ⊗ (ηµρPν − ηνρPµ)

− Pρ ⊗ (σµν)
γ

α Qγ + (σµν)
γ

α Qγ ⊗ Pρ] , (5.39)

∆PQ
t (Q̄α̇) = Q̄α̇ ⊗ 1̂ + 1̂⊗ Q̄α̇

+ λκγεα̇β̇(σρ)γβ̇ (Pκ ⊗ Pρ − Pρ ⊗ Pκ) . (5.40)

Using these coproducts to calculate explicitly, we find

Mµν(λ
ρα) = m ◦ (FPQ)−1

(
1

i
∆t(Mµν)(x

ρ ⊗ θα − θα ⊗ xρ)

)

= 0, (5.41)

and

Qα(λρα) = Qα(xρ ? θα − θα ? xρ) = 0, (5.42)

Q̄α̇(λρα) = Q̄α̇(xρ ? θα − θα ? xρ) = 0. (5.43)

• Mixed Twist

In fact, the deformed coproducts in mixed twisted super Poincaré algebra are the linear com-
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bination of the previous three twist.

∆Mix
t (Mµν) = Mµν ⊗ 1̂ + 1̂⊗Mµν

−1

2
Θρσ [(ηρµPν − ηρνPµ)⊗ Pσ + Pρ ⊗ (ησµPν − ησνPµ)]

+
i

2
(σµν)

γ
α Cαβ (Qβ ⊗Qγ +Qγ ⊗Qβ)

−1

2
λρα [(ηµρPν − ηνρPµ)⊗Qα −Qα ⊗ (ηµρPν − ηνρPµ)]

− [Pρ ⊗ (σµν)
γ

α Qγ + (σµν)
γ

α Qγ ⊗ Pρ] , (5.44)

∆mix
t (Q̄α̇) = Q̄α̇ ⊗ 1̂ + 1̂⊗ Q̄α̇

+ Cγδεα̇β̇{(σρ)γβ̇Pρ ⊗Qδ −Qγ ⊗ (σρ)δβ̇Pρ}

+ λκγεα̇β̇(σρ)γβ̇ (Pκ ⊗ Pρ − Pρ ⊗ Pκ) . (5.45)

The transformations of all (anti)commutation relations by nontrivial (deformed coproduct)

generators are as follows.

mmix
t

(
∆mix

t (Mµν)(x
ρ ⊗ xσ − xσ ⊗ xρ)

)
= i

[
λσα(σρ)αα̇(σ̄µν)

α̇
γ̇ − λρα(σσ)αα̇(σ̄µν)

α̇
γ̇

]
θ̄γ̇,

mmix
t

(
∆mix

t (Mµν)(x
ρ ⊗ θα − θα ⊗ xρ)

)
= Cγα(σρ)γκ̇(σ̄µν)

κ̇
γ̇ θ̄

γ̇,

mmix
t

(
∆mix

t (Mµν)(θ
α ⊗ θβ + θβ ⊗ θα)

)
= 0, (5.46)

mmix
t

(
∆mix

t (Q̄α̇)(xρ ⊗ xσ − xσ ⊗ xρ)
)

= −iCγδεα̇β̇
[
(σρ)γβ̇(σσ)δδ̇θ̄

δ̇ − (σρ)γγ̇ θ̄
γ̇(σσ)δβ̇

]

−iεα̇β̇
[
λργ(σσ)γβ̇ − λσγ(σρ)γβ̇

]
,

mmix
t ◦ (

∆mix
t (Q̄α̇)(xρ ⊗ θα − θα ⊗ xρ)

)
= −Cγαεα̇β̇(σρ)γβ̇,

mmix
t ◦ (

∆mix
t (Q̄α̇)(θα ⊗ θβ + θβ ⊗ θα)

)
= 0. (5.47)

These transformed commutation relations by Lorentz generator and antisupercharge are consist

with the mixed twisted commutation relations (5.32). In which, all noncommutativity parame-

ters are transformed in Lorentz and supersymmetric invariant way, i.e., like as constants, while

all the coordinates of superspace are transformed exactly as the coordinates.
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5.3 Central Charge Twist

Extended (N ≥ 2) supersymmetric Poincaré algebra modifies the commutators in N = 1

supersymmetric Poincaré algebra in the following way.

[Pµ, Q
I
α] = 0, [Pµ, Q̄

I
α̇] = 0,

[
Mµν , Q

I
α

]
= i (σµν)

β
α QI

β, [Mµν , Q̄
Iα̇] = i (σ̄µν)

α̇
β̇ Q̄

Iβ̇

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ ,

{QI
α, Q

J
β} = εαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = εα̇β̇Z

∗
IJ . (5.48)

Here index I and J run from 1 to N . The algebra contains N supercharges QI
α and anti-

supercharges Q̄I
α̇, and central charges ZIJ .

The extension of the twist procedure to an extended SUSY is not straightforward. In the

case of more than one supercharge, they do not form the Abelian algebra because of nonzero

central charges ZIJ 6= 0. There are few attempts for this problem[36, 37].

Instead of using QI
α for the twist, we try to do that in some peculiar way. Pay attention to

the fact that ZIJ commute all generators.

F = exp

(
i

2
ΞIJ Z

I ⊗ ZJ

)
, (5.49)

where ΞIJ is a constant. This Z-Z twist clearly satisfies the twist equation.

If the algebra has nonzero central charge, we need extra bosonic coordinate in superspace,

namely central charge coordinate zI [28, 29, 30]. Then the central charges are represented as the

derivative operators ZI = ∂
∂zI

, which act on the central charge coordinate space in a way such

that

ZIzJ = δI
J . (5.50)
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The twist element (5.49) gives

zI ? zJ = mt(zI ⊗ zJ)

= m ◦ e− i
2
ΞKL ZK⊗ZL

(zI ⊗ zJ)

= m ◦
[
zI ⊗ zJ +

i

2
ΞKL δ

K
I ⊗ δL

J

]

= zIzJ +
i

2
ΞIJ , (5.51)

and the noncommutative central charge coordinate,

[zI , zJ ]? = iΞIJ . (5.52)

5.4 Twisted Superconformal Algebra

We have so far seen that we can construct the canonical type noncommutative superspace from

the twisted Hopf algebra. It is natural to ask what kind of noncommutativity we can get from

the twisted Hopf algebraic procedure. In the following section, we show further studies to get

more general noncommutative relations.

To develop the extension of the twisted super Poincaré algebra, superconformal algebra is

adopted as the symmetry algebra[43]. The commutation relations of superconformal algebra,

and the representations of the generators in superspace are in the appendix B. The twisted

conformal algebra is considered in the work[38].

As repeatedly mentioned, an appropriate twist element is easy to construct with the gen-

erators in Abelian subalgebra. In superconformal algebra, we can use the P -P , Q-Q and P -Q

twist elements as well as super Poincaré algebra, since super Poincaré algebra is included in

superconformal algebra as the subalgebra. Moreover, superconformal algebra has more variety

of twist, i.e., many Abelian subalgebra. For instance, dilatation generator D itself forms an

Abelian subalgebra. In this subsection we will see these possibility separately.
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5.4.1 D-D Twist

The D-D twist is a trivial twist.

FDD = exp(c D ⊗D), (5.53)

where c is a constant. The twist element changes the multiplication of coordinate space,

xµ ? xν = m ◦ (
(FDD)−1xµ ⊗ xν

)

= m ◦ (
e−c D⊗Dxµ ⊗ xν

)

= ecxµ · xν . (5.54)

Similarly for fermionic coordinate,

θα ? θβ = ec/2θα · θβ, θ̄α̇ ? θ̄β̇ = ec/2θ̄α̇ · θ̄β̇, etc. (5.55)

But no commutator is modified.

5.4.2 S-S Twist

The structure of commutators between Kµ, Sα and S̄α̇ is similar to that between Pµ, Qα and

Q̄α̇. Thus we can make twist elements from these generators, such as P -Q, Q-Q and P -Q twist.

Most promising twist is the S-S twist,

FSS = exp

(
−1

2
CαβSα ⊗ Sβ

)
. (5.56)

Owing to the nilpotency of the fermionic generator Sα, the expansion series of the exponential

function in Eq.(5.56) terminates in finite number.

If we take the constant Cαβ = Cβα, the twist gives the exotic noncommutative relations
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between superspace coordinates,

[xµ, xν ]? = −Cαγxρxσθβ(σµ)ββ̇(σ̄ρ)
β̇
αθ

δ(σν)δδ̇(σ̄σ)δ̇
γ,

[xµ, θα]? = 0,

[
xµ, θ̄α̇

]
?

= Cαβ
[
−ixνxρθγ(σµ)γγ̇(σ̄ν)

γ̇
α(σρ)

α̇
β + 2xνθ2(σ̄µ)γ̇

α(σν)
{α̇
β θ̄γ̇}

]
,

{θα, θβ}? = 0,

{θ̄α̇, θ̄β̇} = −Cαβ
[
xµxν(σµ) {α̇

α (σν)
β̇}

β − 4ixµ(σµ){α̇α θβθ
β̇}

]
,

{θα, θ̄α̇}? = −2iCαβxµθ2(σµ) α̇
β . (5.57)

On the other hand, if we take the constant with antisymmetric indices Cαβ = −Cβα, all the

commutators vanish.

To be precise, we have to pay attention to the order of the product. The results of commuta-

tors should be written with dotted product although, we wrote them merely as the commutative

product in usual superspace here.

5.4.3 K-K Twist and K-S Twist

Next, let us take a look at the K-K Twist,

FKK = exp

(
− i

2
ΘµνKµ ⊗Kν

)
. (5.58)

Here Θµν is a constant.

This twist element works as well as P -P twist, however, it is difficult to obtain significant

noncommutativities from this twist. While Kµ acts on superspace as the derivative operator, it

gives higher order terms in x, θ and θ̄ at the same time. In fact, the commutator [xµ, xν ] results

in infinite series. This endless succession of terms is inevitable, since generator Kµ has the

dimension of (length), in contrast to Pµ which has (length)−1. Furthermore the representation

of Kµ in coordinate space is lengthy and complicated, thus we have not had the complete result.

It is difficult even to say whether it can be write in compact formula or not.
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The K-S twist is also considered,

FKS = exp

[
i

2
λµα(Kµ ⊗ Sα − Sα ⊗Kµ)

]
, (5.59)

where λµα is anticommutative number. This twist element gives a finite expansion series which

is slightly longer than S-S twist. Because of the nilpotency of Sα the expansion series terminate

at O(λ4).

5.5 Non-Abelian twist

Up to now, we have made all the twist elements from the generators in Abelian subalgebra.

But that is not necessary. The only points which are essential are that the twist equation and

the counit condition are satisfied.

As for the Poincaré algebra, Lukierski et al. showed firstly the twist element which uses

both Pµ and Mµν [39]. They chose a commutative pair of generators , for example, M12 and P3,

which commute with each other [M12, P3] = 0. These twists obviously work well.

We found one twist element which is constructed from noncommutative generators[43],

FMP = exp
(
c εijk(Mij ⊗ Pk + Pk ⊗Mij)

)
, (5.60)

where c is some constant, and εijk is Levi-Civita symbol,

εijk =





+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise

. (5.61)

The generators which appear in FMP are in subalgebra of Poincaré algebra in three dimensional

space.

[Mij,Mlm] = iδjlMim − iδilMjm − iδjmMil + iδimMjl,

[Mij, Pk] = −iδikPj + δjkPi. (5.62)

Here δij stands for the Kronecker’s delta. Since generators in FMP contain M12, M23, M31, P1

and so on, they do not commute indeed.
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It is clear that FMP satisfy the counit condition. We can see that it also satisfy the twist

equation as follows. The LHS of the twist equation (4.29) is calculated such as,

FMP
12 (∆⊗ id)FMP

= exp
(
c εijk(Mij ⊗ Pk + Pk ⊗Mij)⊗ 1̂

)×

exp
(
c εlmn(Mlm ⊗ 1̂⊗ Pn + 1̂⊗Mlm ⊗ Pn + Pn ⊗ 1̂⊗Mlm + 1̂⊗ Pn ⊗Mlm)

)
.

(5.63)

Then we check the commutativity of the argument of the exponential function.

[
εijk(Mij ⊗ Pk ⊗ 1̂ + Pk ⊗Mij ⊗ 1̂),

εlmn(Mlm ⊗ 1̂⊗ Pn + 1̂⊗Mlm ⊗ Pn + Pn ⊗ 1̂⊗Mlm + 1̂⊗ Pn ⊗Mlm)
]

= εijkεlmn ([Mij,Mlm]⊗ Pk ⊗ Pn +Mij ⊗ [Pk,Mlm]⊗ Pn

+[Mij, Pn]⊗ Pk ⊗Mlm +Mij ⊗ [Pk, Pn]⊗Mlm

+[Pk,Mlm]⊗Mij ⊗ Pn + Pk ⊗ [Mij,Mlm]⊗ Pn

+[Pk, Pn]⊗Mij ⊗Mlm + Pk ⊗ [Mij, Pn]⊗Mlm)

= εijkεlmn ((iδjlMim − iδilMjm − iδjmMil + iδimMjl)⊗ Pk ⊗ Pn

+Mij ⊗ (iδlkPm − iδmkPl)⊗ Pn + (−iδinPj + iδjnPi)⊗ Pk ⊗Mlm

+(iδlkPm − iδmkPl)⊗Mij ⊗ Pn + Pk ⊗ (iδjlMim − iδilMjm − iδjmMil + iδimMjl)

+Pk ⊗ (−iδinPj + iδjnPi)⊗Mlm

= 8iMmk ⊗ Pk ⊗ Pn + (2iMmn − 2iMnm)⊗ Pm ⊗ Pn + (2iM ln −Mnl)⊗ Pl ⊗ Pn

+Pj ⊗ Pk ⊗ (−2iM jk + 2iMkj) + Pi ⊗ Pk ⊗ (−2iM ik + 2iMki)

+Pm ⊗ (+2iMmn − 2iMnm)⊗ Pn + Pl ⊗ (+2iM ln − 2iMnl)⊗ Pn

+Pk ⊗ 8iMnk ⊗ Pn + Pk ⊗ Pj ⊗ (−2iM jk + 2iMkj) + Pk ⊗ Pi ⊗ (−2iM ik + 2iMki)

= 0. (5.64)

We used here εijkεlmnδil = 2δjmδkn−2δjnδkm andM ij = −M ji. In spite of the noncommutativity
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of the generators which construct the twist element FMP, certain combination of them can

commute. Since the commutator gives zero, we can turn the two exponential functions into

one freely,

FMP
12 (∆⊗ id)FMP

= exp
[
c εijk

(
Mij ⊗ Pk ⊗ 1̂ + Pk ⊗Mij ⊗ 1̂

+Mlm ⊗ 1̂⊗ Pn + 1̂⊗Mlm ⊗ Pn + Pn ⊗ 1̂⊗Mlm + 1̂⊗ Pn ⊗Mlm

)]

(5.65)

In a similar way we get

FMP
23 (id⊗∆)FMP

= exp
(
c εijk1̂⊗ (Mij ⊗ Pk + Pk ⊗Mij)

)×

exp
(
c εlmn(Mlm ⊗ Pn ⊗ 1̂ +Mlm ⊗ 1̂⊗ Pn + Pn ⊗Mlm ⊗ 1̂ + Pn ⊗ 1̂⊗Mlm)

)

= exp
[
c εijk

(
1̂⊗Mij ⊗ Pk + 1̂⊗ Pk ⊗Mij

+Mlm ⊗ Pn ⊗ 1̂ +Mlm ⊗ 1̂⊗ Pn + Pn ⊗Mlm ⊗ 1̂ + Pn ⊗ 1̂⊗Mlm

)]
. (5.66)

Therefore we conclude that FMP satisfies the twist equation too,

FMP
12 (∆⊗ id)FMP = FMP

23 (id⊗∆)FMP. (5.67)

FMP modifies the product of space coordinate,

xl ? xm = m ◦ ec εijk(Mij⊗Pk+Pk⊗Mij)(xl ⊗ xm)

= m
(
xl ⊗ xm − c εijk((xiδ

l
j − xjδ

l
i )⊗ δ m

k + δ l
k ⊗ (xiδ

m
j − xjδ

m
i ))

)

= m
(
xl ⊗ xm − c((εilmxi − εljmxj)⊗ 1̂ + 1̂⊗ ((εimlxi − εmjlxj)

)
.

= −4cεlmixi. (5.68)

For c = − i
8
, we get the fuzzy-sphere-like noncommutativity,

[xl, xm]? = iεlmixi. (5.69)
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6 Conclusion and Discussion

We have studied the theories in non(anti)commutative superspace and the formulation of non-

commutative theories in superspace with a twisted Hopf algebra. Our original works are in the

section 3 and 5.

Firstly we have reviewed the usual formulation of noncommutative theories by the Weyl

mapping and Moyal product. In particular, an interesting noncommutative superspace, namely

the noncommutativity between bosonic and fermionic coordinate in superspace, is investigated

in detail. We have found that such noncommutative theory has several unique properties.

Through the investigation of the Wess-zumino model, we show the nature of a quantum field

theory on such noncommutative superspace. Supersymmetry which the original Wess-zumino

model has is broken fully, and the theory turns into N = 0 supersymmetry. Sometimes nilpo-

tency of the noncommutativity parameters greatly simplifies the theory. For example, we can

solve the equation of motion of an auxiliary field easily by the method of something like a suc-

cessive approximation, in spite of the complicated equation of motion. We have also pointed

out that the quantum corrections for the vacuum energy are canceled out exactly, at least at

the first nontrivial order O(λ2, g2), although the theory is no longer supersymmetric.

We have constructed the twisted super Poincaré algebra with a method of the Drinfel’d

twist operation in Hopf algebra. Non(anti)commutative superspace of the canonical type is

constructed as the representation of the twisted super Poincaré algebra. We have shown that

the twist procedure can apply widely to non-canonical type noncommutativities. The twisted

superconformal algebra is investigated, which gives a various kind of non(anti)commutative

four dimensional superspace. Specifically we have calculated explicitly the noncommutative

relations between superspace coordinates, in the case of S-S twist element. For more advanced

type of a twist element, we have constructed the twist element from the generators which do

not commute with each other, namely Pµ and Mµν . That element gives the fuzzy-sphere-like

noncommutativity.
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In general, all the deformations of algebra are achieved in a twisted Lorentz invariant and

twisted supersymmetric way. As a significant advantage of this formulation, we can start with a

well-known and established symmetry algebra and its representation. The only critical step is

how to choose an appropriate twist element. The other procedures are almost automatic. The

deformation is performed at algebraic level, that is fundamentally independent of representa-

tions. Whatever the representation is, this procedure works, thus it gives a firm framework for

noncommutative field theories in superspace. We can get rid of ambiguities of the representa-

tion. The representation in a commutative theory can be also adopted even if the symmetry is

broken, with the deformation of multiplication rule on it.

In physics, symmetry is an important issue when we consider some physical system. It

gives a fundamental framework of the formulation, and sometimes greatly simplifies a practical

calculation in both perturbative and nonperturbative. However it is believed that introducing

the noncommutativity into the theory breaks certain symmetries. The twist construction of

noncommutative theory shed light on such a case.
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A Notations and Conventions

We summarize our notations used in the thesis, and the conventions of a spinor calculus.

Greek characters in the middle of the alphabet, i.e. µ, ν, ρ, σ · · · , denote the indices of

spacetime coordinates, run from zero to three. Greek characters from the beginning of the

alphabet, i.e. α, β, γ, δ · · · , denote spinorial indices, whose value is one or two.

The metric ηµν in Minkowski spacetime is

ηµν = ηµν = diag(+1,−1,−1,−1). (A.1)

A.1 Spinor and Superspace

We make a spinor index up or down with antisymmetric epsilon tensors εαβ and εα̇β̇ .

ε12 = ε21 = +1 ε21 = ε12 = −1 (A.2)

ψα = εαβψ
β ψα = εαβψβ (A.3)

ψ̄α̇ = εα̇β̇ψ̄
β̇ ψ̄α̇ = εα̇β̇ψ̄β̇ (A.4)

The abbreviated contraction rules of spinor index are as follows.

ψχ ≡ ψαχα (A.5)

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ (A.6)

especially

θ2 = θαθα θ̄2 = θ̄α̇θ̄
α̇ (A.7)

Sigma matrix σµ

αβ̇
is a 2× 2 matrix to connect spinors coordinate to spacetime coordinate.

σµ

αβ̇
σ̄νβ̇γ + σν

αβ̇
σ̄µβ̇γ = 2ηµνδ

γ
α (A.8)

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(A.9)
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σ̄µ α̇α = εα̇β̇εαβσµ

ββ̇
(A.10)

Lorentz generators of Weyl spinors are defined with the Sigma matrices.

(σµν)
β

α = −1

4
(σµσ̄ν − σν σ̄µ) β

α

(σ̄µν)
α̇
β̇

= −1

4
(σ̄µσν − σ̄νσµ)α̇

β̇
(A.11)

We define an abbreviation of derivative operator on spacetime.

∂µ =
∂

∂xµ
(A.12)

The conventions of the derivative operators with Grassmann numbers are here.

∂

∂θα
θβ = δ β

α

∂

∂θα

θβ = δα
β (A.13)

∂

∂θ̄α̇
θ̄β̇ = δ β̇

α̇

∂

∂θ̄α̇

θ̄β̇ = δα̇
β̇

(A.14)

The rules (A.13)-(A.14) imply the following.

∂

∂θα

= −εαβ ∂

∂θβ

∂

∂θα
= −εαβ

∂

∂θβ

(A.15)

∂

∂θ̄α̇

= −εα̇β̇ ∂

∂θ̄β̇

∂

∂θ̄α̇
= −εα̇β̇

∂

∂θ̄β̇

(A.16)

• Hermitian conjugation.

– Hermite conjugate of Weyl spinors.

(ψα)† = ψ̄α̇ (ψα)† = ψ̄α̇ (ψ̄α̇)† = ψα (ψ̄α̇)† = ψα (A.17)

These rules leads to

(ψχ)† = (χα)†(ψα)† = χ̄α̇ψ̄
α̇ = −ψ̄α̇χ̄α̇ = ψ̄α̇χ̄

α̇ = ψ̄χ̄. (A.18)

– Hermite conjugate of epsilon tensors.

(εαβ)† = εα̇β̇ (εαβ)† = εα̇β̇ (A.19)
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– Hermite conjugate of sigma matrices.

(σµ αβ̇)† = σµ βα̇ (σ̄µ
α̇β)† = σ̄µ

αβ̇
(A.20)

These lead to

{(σµν)
β

α }† = −(σ̄µν)
β̇
α̇

{(σ̄µν)
β̇
α̇}† = −(σµν)

β
α (A.21)

– Spacetime derivative ∂µ is an anti-Hermitian operator (∂µ)† = −∂µ, since the com-

bination i∂µ should be Hermite.

Hermitian conjugation of a derivative with fermionic coordinate in superspace.

(
∂

∂θα
)† =

∂

∂θ̄α̇
(
∂

∂θα

)† =
∂

∂θ̄α̇

(A.22)

Note a sign flip when a coefficient is fermionic, e.g.

(θβ ∂

∂θα
)† = −θ̄β̇ ∂

∂θ̄α̇
. (A.23)

We summarize some useful equations.

θαθβ = −1

2
εαβθ2 θαθβ =

1

2
εαβθ

2

θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄2 θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄

2 (A.24)

∂

∂θα
θβ = −εαβ

∂

∂θα

θβ = −εαβ

∂

∂θ̄α̇
θ̄β̇ = −εα̇β̇

∂

∂θ̄α̇

θ̄β̇ = −εα̇β̇ (A.25)

∂

∂θα
θ2 = 2θα

∂

∂θα

θ2 = −2θα

∂

∂θ̄α̇
θ̄2 = −2θ̄α̇

∂

∂θ̄α̇

θ̄2 = 2θ̄α̇ (A.26)
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(σµν)
α

α = 0 (A.27)

εβγ(σµν)
γ

α = (σµν)αβ = (σµν)βα (σ̄µν)α̇β̇ = −(σ̄µν)β̇α̇ (A.28)

{
εµνρσ(σρσ) = 2i(σµν)
εµνρσ(σ̄ρσ) = −2i(σ̄µν)

{
εµνρσ(σρσ) = 2i(σµν)
εµνρσ(σ̄ρσ) = −2i(σ̄µν)

(A.29)

Where εµνρσ and εµνρσ are anti-symmetric constant tensors, ε0123 = +1 and ε0123 = −1.

σ µ
αα̇σ

ν
ββ̇
− σ ν

αα̇σ
µ

ββ̇
= −2

[
(σµνε)αβ εα̇β̇ + (εσ̄µν)α̇β̇ εαβ

]
(A.30)

σ µ
αα̇σ

ν
ββ̇

+ σ ν
αα̇σ

µ

ββ̇
= ηµνεαβεα̇β̇ + 4(σρµε)αβ(εσ̄ρν)α̇β̇ (A.31)

Tr (σµνσρσ) =
1

2
(ηµρηνσ − ηµσηνρ) +

i

2
εµνρσ (A.32)

Tr (σµνσρσ) =
1

2
(ηµρηνσ − ηµσηνρ)− i

2
εµνρσ (A.33)

σµσ̄νσρ + σρσ̄νσµ = 2(ηµνσρ + ηνρσµ − ηµρσν) (A.34)

σ̄µσν σ̄ρ + σ̄ρσν σ̄µ = 2(ηµν σ̄ρ + ηνρσ̄µ − ηµρσ̄ν) (A.35)

σµσ̄νσρ − σρσ̄νσµ = 2iεµνρσσσ (A.36)

σ̄µσν σ̄ρ − σ̄ρσν σ̄µ = −2iεµνρσσ̄σ (A.37)

θα(σµ)αα̇θ̄
α̇θβ(σν)ββ̇ θ̄

β̇ = ηµνθ2θ̄2 (A.38)
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(σµ)αα̇(σ̄µ)β̇β = 2δ β
α δ

β̇
α̇ (A.39)

Tr (σµσ̄νσρσ̄σ) = 2ηµνηρσ + 2ηνρηµσ − 2ηµρηνσ + 2iεµνρσ (A.40)

A.2 Noncommutative Parameter

We use the following notations for noncommutativity parameter λµα.

λµν ≡ 1

2
λµαλν

α =
1

2
εαβλ

µαλνβ,

λ̄µν ≡ (λµν)† = −1

2
λ̄µα̇λ̄νβ̇εα̇β̇,

λµνρσ ≡ 1

4
λµνλρσ =

1

16
λµαλν

αλ
ρβλσ

β,

λ̄µνρσ ≡ (λµνρσ)† =
1

4
λ̄µνλ̄ρσ. (A.41)

Where upper bar denotes “complex conjugate” of Grassmann number, (λµα) = λ̄µα̇. Do not

confuse spacetime indices and spinor indices.

B Superconformal Algebra and Its Representation

N = 1 superconformal algebra consists of translation generators Pµ, Lorentz generators Mµν ,

supercharge Qα and antisupercharge Q̄α̇, special conformal generators Kµ, conformal super-

charge Sα and anti-supercharge S̄α̇, dilatation generator D. The commutation relations are as
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follows.

[Pµ, Pµ] = 0

[Mµν ,Mρσ] = iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMµρ

[Mµν , Pρ] = −iηµρPν + iηνρPµ

[Pµ, Qα] = 0 [Pµ, Q̄α̇] = 0

[Mµν , Qα] = i(σµν)
β

α Qβ [Mµν , Q̄
α̇] = i(σ̄µν)

α̇
β̇
Q̄β̇

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ

{Qα, Qβ} = 0 {Q̄α̇, Q̄β̇} = 0

[Kµ, Qα] = i(σµ)αβ̇S̄
β̇ [Kµ, Q̄

α̇] = i(σ̄µ)α̇βSβ

[Mµν , Sρ] = −iηµρSν + iηνρSµ

[Kµ, Kν ] = 0

[Pµ, Kν ] = 2i(ηµνD −Mµν)

{Sα, S̄β̇} = 2(σµ)αβ̇Kµ

{Sα, Sβ} = 0 {S̄α̇, S̄β̇} = 0

[Kµ, Sα] = 0 [Kµ, S̄β̇] = 0

[Mµν , Sα] = i(σµν)
β

α Sβ [Mµν , S̄
α̇] = i(σ̄µν)

α̇
β̇
S̄β̇

[Pµ, Sα] = i(σµ)αβ̇Q̄
β̇ [Pµ, Q̄

α̇] = i(σ̄µ)α̇βQβ

[D,D] = 0

[D,Pµ] = −iPµ [D,Kµ] = iKµ

[D,Qα] = −i1
2
Qα [D,Sα] = i

1

2
Sα

[D,Mµν ] = 0 (B.1)
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These generators are represented in the form of the differential operators on superspace.

Pµ = i∂µ,

Mµν = i(xµ∂ν − xν∂µ)− iθα (σµν)
β

α

∂

∂θβ
− iθ̄α̇ (σ̄µν)

α̇
β̇

∂

∂θ̄β̇

,

Qα = i
∂

∂θα
− σµ

αβ̇
θ̄β̇∂µ,

Q̄α̇ = −i ∂
∂θ̄α̇

+ θβσµ
βα̇∂µ

D = ixµ∂µ +
i

2
θα ∂

∂θα
+
i

2
θ̄α̇

∂

∂θ̄α̇

,

Kµ = 2ixµx
ν∂ν − ixνxν∂µ − θ2θ̄2∂µ

+2ixνθα(σνµ) β
α

∂

∂θβ
+ ixµθ

α ∂

∂θα
+ θ2θ̄α̇σ̄

α̇α
µ

∂

∂θα

−2ixν(σ̄νµ)α̇
β̇
θ̄β̇ ∂

∂θ̄α̇
+ ixµθ̄α̇

∂

∂θ̄α̇

− θ̄2θασ
αα̇
µ

∂

∂θ̄α̇

Sα = −ixµθβ(σν)ββ̇(σ̄µ)β̇
α∂ν − θ2(σν)αβ̇ θ̄

β̇∂ν

+2iθ2 ∂

∂θα
+ xµ(σµ) β̇

α

∂

∂θ̄β̇
+ 2iθαθ̄

β̇ ∂

∂θ̄β̇

S̄α̇ = −ixµ(σ̄µ) β
α̇ (σν)ββ̇ θ̄

β̇∂ν + θ̄2θβ(σν)βα̇∂ν

−2iθ2 ∂

∂θ̄α̇
+ xµ(σ̄µ) β

α̇

∂

∂θβ
+ 2iθ̄α̇θ

β ∂

∂θβ
(B.2)
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