Phenomenology of neutrino oscillation

Osamu Yasuda Tokyo Metropolitan University

Oct. 8, 2020 @ International Physics Webinar, Pabna University of Science and Technology

Contents

Part I. The Standard Model **Elementary particles, Interaction of** elementary particles Part II. Physics beyond the Standard Model v oscillation, Atmospheric v + Accelerator v, Solar v + Long baseline reactor v, Short baseline reactor v, 3 flavor v oscillation, Future plans, Beyond the standard scenario **Summary**

Part I. The Standard Model

(1) Elementary particles (the Standard Model)

Elementary particles: what cannot be divided further

At present, electrons and quarks are regarded as elementary particles.

Neutrino (v)

Elementary particles predicted in 1933

neutron \rightarrow proton + electron This process does not satisfy energy + momentum conservation Neutral particle called neutrino was introduced: neutron \rightarrow proton + electron + (anti-)neutrino

v was first discovered in 1955

nobelprize.org

Reines Cowan

Discovery of neutrinos in 1955 (neutrinos from a reactor)

nobelprize.org

Pauli

Summary (1): elementary particles Matter consists of quarks & leptons

Quarks constitute composite particles (e.g., protons, neutrons) by attractive force between quarks

Leptons have properties different from quarks, and do not constitute composite particles

quarks up down leptons electron v electron

Cosmic rays

It is known that so-called cosmic rays are falling down on Earth.

 Primary cosmic rays collide with nuclei in the air to produce particles which are called secondary cosmic rays.

• The major components of 2ndary cosmic rays are muons which have almost the same properties as electrons except their mass $(m_{\mu}=200m_{e})$

muons : elementary particle of 2nd generation

Summary (2): elementary particles

There are 3 generations of elementary particles.
Neutrinos are massless in the Standard Model of Elementary particles.

Higher mass for higher generation

 $E = mc^2$ tells us we need much energy to produce heavy particles We need special device to produce particle of 2nd or 3rd generation

8/57

Anti-particle: Particle with the same mass and opposite electric charge

1930: Dirac equation (Relativity+Quantum mechanics)

nobelprize.org	Positron(-anti-narticle of		Mass	Electric charge
	electron) was theoretically predicted.	electron	0.5MeV	-е
Dirac		positron	0.5MeV	+e

1932: Discovery of positron

nobelprize.org

Anderson

In general, particles (3 generation of quarks & leptons) have their own anti-particles.

Actually 3 generation of quarks were theoretically predicted!

1972 Kobayashi-Maskawa

From motivation for socalled CP violation, 3 generation of quarks were theoretically predicted.

T=3 deg (=-270^oC) Present Universe is dominated by matter (w/o anti-matter)

Universe expanded &T decreased

There must have been asymmetry between particles & antiparticles at some stage

PHOTO:

10² sec.

LEPTON EPOCH

10⁻¹⁰ sec.

Temperature T=10³²deg At the beginning of universe, #(particle) = #(anti-particles) → There must be equal amount of matter & antimatter

Universe was born by Big Bang

11/57

CP symmetry (Invariance under CP transformation)

$CP = C \times P$

- C: Charge conjugation
- **P: Parity transformation**

If CP symmetry is broken, then there can be difference between the speeds of the following reactions:

Heavy particle \rightarrow Light particle + • • • Heavy anti-particle \rightarrow Light anti-particle + • • •

If CP symmetry is broken, then we may be able to explain matter-antimatter asymmetry of the Universe by cosmology + particle theory!

Summary (3): elementary particles

There are 3 generation of particles & anti-particles
In our Universe, we have only matter (made of particles) but have no anti-matter (made of anti-particles)

Matter-anti-matter asymmetry is a mystery at present

(2) Interactions of elementary particles (the Standard Model)

Interactions of Elementary particles

Interactions (force)		Strong force	Electromag netic force	Weak force	Gravity
Force mediating particles		Gluon	Photon	W,Z boson	Graviton
Strength of force		1	10 -2	10 ⁻⁵	10 -40
St	trong force	Electromag	netic We	ak force	Gravity
qua (blu qua (rec	quark quark (blue) (red) gluon quark (blue quark (red) quark (red) quark (blue) gluon		udu and udd	ti-electron v electron	graviton
			neutron		

So-called Standard Model describes 3 interactions (Strong, Electromagnetic, Weak forces)

Gravity among particle is so weak that it is ignored

(NB) Neutrinos feel only weak force \rightarrow It is extremely difficult to observe them.

particles		Strong force	Electro magnetic force	Weak force	Gravity
quark	u	\checkmark			
	d	\checkmark			
leptons	e	×			
	v_{e}	×	×	\checkmark	

 $\nu_e + n \rightarrow e^- + p$

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$

 $\nu_{\tau} + n \rightarrow \tau^- + p$

Flavor of neutrino is inferred by observing the charged lepton.

Part II. Physics beyond the Standard Model

(3) Neutrino oscillation (Physics beyond the Standard Model)

v oscillation: quantum mechanical interference

 Neutrinos are massless in the Standard Model, while they are massive in the theory beyond the Standard Model.

Theory	Neutrino mass	Flavor vs Mass eigenstate	
Standard Model	0	the same	
Beyond Standard Model	≠0	different	Mass eigenstate
Flavor eigenstate		$\begin{bmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{\tau} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\tau 2} \\ \mathbf{v}_{\tau 3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\tau 2} \\ \mathbf{v}_{\tau 3} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\tau 3} \\ \mathbf{v}_{\tau 3} \end{bmatrix} \begin{bmatrix} $	1 2 3

18/57

v oscillation in vacuum

If ν of two different flavor eigenstates ν_{μ}, ν_{τ} are related to two v mass eigenstates v_1 , v_2 (mass m_1 , m_2) by a 2x2 matrix

$$\begin{pmatrix} \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{pmatrix} \qquad \theta: \text{mixing angle}$$

then probability of transforming from ν_{μ} to ν_{τ} while propagating for distance L is given by

$$P(v_{\mu} \rightarrow v_{\tau}) = \sin^{2}2\theta \sin^{2}\left(1.27 \frac{(\Delta m^{2}c^{4}/eV^{2}) (L/km)}{(E/GeV)}\right) \qquad \Delta m^{2} \equiv m_{2}^{2} - m_{1}^{2}$$

:mass squared difference

:mass squared difference

Probability in natural units (fi=c=1)

1962 Maki-Nakagawa-Sakata

www2.yukawa.kyotou.ac.jp/~sg/

Maki

Publ. Committee Sci. Work of Prof. Nakagawa

Nakagawa

Publ. Committee Sci. Work of Prof. Sakata

Sakata

Probability has an oscillatory behavior with respect to L

$$\sin^2 2\theta \sin^2 \left(1.27 \frac{(\Delta m^2/eV^2) (L/km)}{E/GeV} \right) \xrightarrow{P=maximum}{\rightarrow Argument=\pi/2}$$

 $\Delta m^2 = 3 \times 10^{-3} eV^2 \rightarrow E = 0.6 GeV$, L=300km (accelerator)

 $\Delta m^2 = 3 \times 10^{-3} eV^2 \rightarrow E = 4 MeV$, L=2km (short L reactor)

 $\Delta m^2 = 8 \times 10^{-5} eV^2 \rightarrow E = 4 MeV$, L=60km (long L reactor)

 $\boldsymbol{\cdot}$ In the presence of ν mass & mixing, flavor transition occurs.

Macroscopic distance is required to see flavor transitions.

(4) Atmospheric v + Accelerator v

Atmospheric ν

• So-called primary cosmic rays are falling onto ground, and they collide w/ nucleons in the atmosphere, and produce 2ndary cosmic rays.

Almost all the particles become π^{\pm} mesons, which decay into μ^{\pm} and then μ^{\pm} decay into electrons and positrons.

If we ignore the difference between v and \overline{v} , then

$$(\mathbf{v}_{\mu} + \overline{\mathbf{v}_{\mu}}): (\mathbf{v}_{e} + \overline{\mathbf{v}_{e}}) = 2:1$$

Is predicted.

However, the observation was

$$(\mathbf{v}_{\mu} + \overline{\mathbf{v}_{\mu}}): (\mathbf{v}_{e} + \overline{\mathbf{v}_{e}}) = 1.3:1$$

which disagrees w/ prediction.

Cause of Atmospheric v anomaly: Because of $V_{\mu} \Leftrightarrow V_{\tau}$ oscillation, V_{μ} decreases (SK cannot observe V_{τ})

Experimental value of

$$(\mathbf{v}_{\mu} + \overline{\mathbf{v}_{\mu}}): (\mathbf{v}_{e} + \overline{\mathbf{v}_{e}})$$

depends on L & E and Superkamiokande proved that it is consistent with the formula

P (
$$v_{\mu} \rightarrow v_{\tau}$$
) = sin² 20 sin² $\left(\frac{\Delta m^{2}L}{4E}\right)$

zenith angle

www2.kek.jp nobelprize.org

Kajita

Accelerator V

P (
$$v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(rac{\Delta m^2 l}{\Delta F}
ight)$$

 $(\overline{\nu}_{\mu}) \rightarrow (\overline{\nu}_{\mu}) + \nu_{\mu} \rightarrow \nu_{e}$

 $v_{\mu} \rightarrow v_{\tau}$

Experiments in the past

- K2K (JP, KEKgSK, 1999-2004) L=250km, E~1.3GeV $\nu_{\mu} \rightarrow \nu_{\mu}$
- MINOS (US, FNALgSoudan, MN, 2005-2012) L=735km, E~4GeV
- OPERA (CH, CERNgGransasso, IT, 2010-2018)
 L=730km, E~17GeV

Experiments in operation

$$(\overrightarrow{\nu}_{u}) \xrightarrow{(\overrightarrow{\nu}_{u})} + \overrightarrow{\nu}_{u} \xrightarrow{(\overrightarrow{\nu}_{u})} \xrightarrow{(\overrightarrow{\nu}_{e})}$$

- T2K(JP, JPARC → SK, 2009-) L=295km, E~0.6GeV
- MINOS+(US, FNAL → Soudan, MN, 2013-)L=735km, E~4GeV
- Nova(US, FNAL → Ash River, MN, 2014-), L=810km, E~2GeV

All the results are consistent with the atmospheric v experiments

(5) Solar v + Long baseline reactor v

produces electron neutrinos: They are called solar v

 Solar v were detected since 1960's by Davis at Homesteak, SD. Observed flux was less than ½ of theoretical prediction: Solar v problem

It turned out that flux of v is reduced due to conversions $v_e \rightarrow v_{\mu}, v_e \rightarrow v_{\tau}$

SNO (Sudbury Neutrino Observatory, 1999-2006)

Detector w/ heavy water(1kt)

D₂O, d=(pn), deutron

- Underground laboratory (~2km) (To reduce BackGround)
- Direct proof for solar v deficit
 SNO can detect the both reactions:

$$\mathbf{V}_{\mathbf{e}} + \mathbf{d} \rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^{-} = \mathbf{only forv}_{\mathbf{e}}$$

$$\mathbf{v}_{\mathbf{x}} + \mathbf{d} \rightarrow \mathbf{p} + \mathbf{n} + \mathbf{v}_{\mathbf{x}} \stackrel{\frown}{=} \mathbf{for all v}_{\mathbf{x}}$$

x=e,µ,т

McDonald 7

From the data of these 2 reactions, it was concluded that $v_e + v_\mu + v_\tau$ agrees w/ theory, but v_e is less than theory

KamLAND (JP, 2002-, long baseline reactor v)

 $v_e \rightarrow v_e$

L~200km, E~4MeV

- Detector w/ liquid scintillator
- Detected V, from various nuclear power plants (average distance 200km)
- Observed deficit of reactor neutrinos for the 1st time

$$P(\overline{v_{e}} \rightarrow \overline{v_{e}}) = 1 - \sin^{2}2\theta \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

www.kek.jp

(6) Short baseline reactor v

Reactor v (short baseline)

$$\overline{v_e} \rightarrow \overline{v_e}$$
 L~2km, E~4MeV

Double CHOOZ (Fr) (2016/3)

Daya Bay (Cn) (2015/5)

Reno (Kr) (2015/12)

 $\sin^2 2\theta = 0.111 \pm 0.018$ $\sin^2 2\theta = 0.084 \pm 0.005$

 $\sin^2 2\theta = 0.082 \pm 0.011$

 θ =0 is excluded at 168 σ

 $P(\overline{v_{e}} \rightarrow \overline{v_{e}}) = 1 - \sin^{2}2\theta \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$

(7) 3 flavor neutrino oscillation

3 flavor mixing framework (in the real world)

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mathbf{C}_{23} & \mathbf{S}_{23} \\ 0 & -\mathbf{S}_{23} & \mathbf{C}_{23} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{13} & 0 & \mathbf{S}_{13} \mathbf{e}^{-\mathbf{i} \, \mathbf{\delta}} \\ 0 & 1 & 0 \\ -\mathbf{S}_{13} \mathbf{e}^{\mathbf{i} \, \mathbf{\delta}} & 0 & \mathbf{C}_{13} \end{pmatrix} \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & 0 \\ -\mathbf{S}_{12} & \mathbf{C}_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

There are 2 independent mass squared differences

- $\theta_{12}, \theta_{23}, \theta_{13}$: mixing angle
- δ : CP violating phase

Features of 3 flavor mixing framework

(1) Mass hierarchy

 $\Delta m_{21}^2 << \left|\Delta m_{32}^2\right| \cong \left|\Delta m_{32}^2\right|$

 \rightarrow Oscillation probabilities are simplified

(2) Small θ_{13}

 $sin^{2}2\theta_{13}=0.08$

 \rightarrow In the 0-th approximation, we can work with $\theta_{13}\text{=}0$

 \rightarrow We have further simplification.

Determination of 3 v oscillation parameters

(i) Solar v deficit + Long baseline reactor v deficit (KamLAND)

 $\Delta m_{21}^2 \sim 8 \times 10^{-5} eV^2 \quad \sin^2 2\theta_{12} \sim 0.8$

(ii) Atmospheric v anomaly + Accelerator v oscillation (K2K, MINOS, OPERA,T2K, Nova)

 $|\Delta m_{32}^2| \sim 3 \times 10^{-3} eV^2 \sin^2 2\theta_{23} \sim 1$

(iii) Short baseline reactor v deficit (Double CHOOZ, Daya Bay, RENO) + Accelerator v appearance (T2K, MINOS, Nova)

 $\sin^2 2\theta_{13} = 0.08$

T2K Run 1-10 Preliminary

Recent T2K results

Dunne@Neutrino2020

Normal hierarchy & $\delta_{CP} \sim -\pi/2$ seems to be favored, but we need more data to conclude

Recent status: Tension between T2K and Nova?

Kelly et al, arXiv:2007.08526v1 [hep-ph]

Joint fit may indicate preference for Inverted Hierarchy

Blue: NOvA alone Red: T2K alone

Black lines: a joint fit of

T2K/NOvA/SK18

Present status of 3 flavor mixing framework

$$N_v = 3 : v_{atm} + v_{solar} + v_{reactor} + v_{accelerator}$$

Both hierarchy patterns are allowed

 $\Delta m_{22}^2 > 0$ $\Delta m_{22}^2 < 0$

Mixing angles & mass squared differences

 $\mathbf{U} = \begin{pmatrix} \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \mathbf{e1} & \mathbf{e2} & \mathbf{e3} \\ \mathbf{U} & \mathbf{U} & \mathbf{U} \\ \mathbf{\mu1} & \mathbf{\mu2} & \mathbf{\mu3} \\ \mathbf{U}_{-1} & \mathbf{U}_{-2} & \mathbf{U}_{-3} \end{pmatrix} \cong \begin{pmatrix} \mathbf{C}_{12} & \mathbf{S}_{12} & \mathbf{E} \\ -\mathbf{S}_{12}/\sqrt{2} & \mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \\ \mathbf{S}_{12}/\sqrt{2} & -\mathbf{C}_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

$$\theta_{12} \cong \pi/6, \quad \theta_{23} \cong \pi/4$$

 $\theta_{13} \cong \pi/20$
 $\Delta m_{21}^2 \cong 8 \times 10^{-5} \, eV^2$
 $|\Delta m_{22}^2| \cong 2.5 \times 10^{-3} \, eV^2$

32

Mixing matrix

•Less known parameters : δ_{CP} , sign(Δm_{31}^2)

(8) Future plans

1.1.1

Future plans

Next task is to measure sign(Δm_{31}^2) and δ_{CP} precisely

Proposed experiments

$$(\overrightarrow{\nu}_{\mu}) \xrightarrow{(\overrightarrow{\nu}_{\mu})} + (\overleftarrow{\nu}_{\mu}) \xrightarrow{(\overleftarrow{\nu}_{e})} (\overrightarrow{\nu}_{e})$$

- T2HK(JP, JPARC-->HK) L=295km, E~0.6GeV
- DUNE (US, FNAL-->Homestake, SD), E~2GeV, L=1300km

These experiments are expected to measure sign(Δm_{31}^2) and δ_{CP}

Future plan: T2HK

Phase 2 1.66MW v beam (300 times K2K)

⇒ Hyperkamiokande (20 times SK)

t2k-experiment.org

www-he.scphys.kyoto-

u.ac.jp

Kobayashi

Nakaya

/57

- **Extension of T2K**
- Measurement of CP phase δ_{CP}

J-PARC Main Ring (KEK-JAEA, Tokai)

Future plan: DUNE

2.3MW v beam@Fermilab ⇒ 40-kt Liquid Argon detector @ Sanford Underground RF

 $E \sim 2GeV, L \sim 1300$ km

North Dakota Minnesota Wisconsin SANFORD LAB South Dakota (Proposed) **Iowa** FERMILAB Nebraska. Illinois RESENT N

Deep Underground Neutrino Experiment

naturalsciences.ch/ww.hep.phy.cam.ac.uk

A.Rubbia

Thomson

42/57

(9) Beyond the standard scenario

Nonstandard scenarios

High precision measurements of v oscillation in future experiments can be used also to probe physics beyond SM by looking at deviation from SM+massive v

T2HK, DUNE, v_{atm} @Hyperkamiokande

New Physics discussed in this talk

Scenario beyond SM+m _v	Experimental indication ?	Phenomenological constraints on the magnitude of the effects
(1) Light sterile v	Maybe	O(10%)
(2) Non Standard Interaction	Maybe	e-τ: O(100%) Others: O(1%)

Neither sterile v nor Non Standard Interaction is required from theory. \rightarrow They are introduced phenomenologically.

(1) Light sterile neutrinos (v_s)

Motivation for v_s

A) 4th neutrino mass eigenstate has been phenomenologically motivated by the following affirmative results:
LSND anomaly (E~50MeV, L~30m)
Reactor anomaly (E~4MeV, L<10m)
Galium anomaly (E<1MeV, L<5m) B) From LEP result, #(v coupled to Z)=3

A) $\Rightarrow \Delta m^2 \sim O(1) eV^2 >> \Delta m^2(atm) >> \Delta m^2(solar)$

B) 4th v flavor eigenstate has to be sterile (i.e., it has no weak interaction)

Mass pattern for sterile neutrinos (v_s)

 $\Delta m_{21}^2 = \Delta m_{sol}^2$, $\Delta m_{32}^2 = \Delta m_{atm}^2$

(a): (2+2)-scheme is completely excluded by v_{solar} & v_{atm}

(b): (3+1)-scheme has tension between $\nu_{\mu} \rightarrow \nu_{\mu} + \nu_{e} \rightarrow \nu_{e}$ & $\nu_{\mu} \rightarrow \nu_{e}$

47/57

by SNO v_{sol} data

Maltoni et al., hep-ph/0405172

PC: parameter consistency test PG: parameter goodness-of-fit test

For any value of $|U_{s1}|^2 + |U_{s2}|^2$, fit to sol+atm data is bad.

(3+1)-scheme
Bugey (reactor): negative

$$P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) = 1 - 4|U_{e4}|^{2}(1 - |U_{e4}|^{2})\sin^{2}(\Delta m_{41}^{2}L/4E)$$

$$\sin^{2}2\theta_{Bugey} > 4|U_{e4}|^{2}(1 - |U_{e4}|^{2}) \cong 4|U_{e4}|^{2}$$
CDHSW (accelerator): negative

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - 4|U_{\mu4}|^{2}(1 - |U_{\mu4}|^{2})\sin^{2}(\Delta m_{41}^{2}L/4E)$$

$$\sin^{2}2\theta_{CDHSW} > 4|U_{\mu4}|^{2}(1 - |U_{\mu4}|^{2}) \cong 4|U_{\mu4}|^{2}$$

$$(accelerator):$$

$$\sin^{2}2\theta_{LSND} = 4|U_{e4}|^{2}|U_{\mu4}|^{2} \sin^{2}(\Delta m_{41}^{2}L/4E)$$

$$\sin^{2}2\theta_{LSND} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}$$

$$\sin^{2}2\theta_{LSND}(\Delta m^{2}) < \frac{1}{4}\sin^{2}2\theta_{Bugey}(\Delta m^{2})\sin^{2}2\theta_{CDHSW}(\Delta m^{2})$$
must be satisfied but there is no overlap between the left side of Bugey+CDHSW and the inside of LSND (Okada-OV Int.J.Mod.Phys.A12:369,1997)

TV/VI

arXiv:2002.00301 (accepted by PRL)

Neutrino 2020

T. Carroll, UW-Madison

(2) Nonstandard Interactions

 $\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \bar{f} \gamma_{\mu} f' - \mathbf{V}_{\alpha}$ f = u,d,e

Matter potential is modified by Physics Beyond the Standard Model v experiments can give
 constraints or hints on
 Physics BSM

 $\begin{array}{cccc}
\mathsf{SM} \\
\mathcal{A}_0 \equiv A \begin{pmatrix} 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \end{pmatrix} \rightarrow \mathcal{A} \equiv A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\
\epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\
\epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$

 $A \equiv \sqrt{2}G_F N_e$ $N_e \equiv$ electron density

Motivation for Non Standard Interactions

Tension between solar v & KamLAND data comes from little observation of upturn by SK & SNO

The tension between solar v & KamLAND data may be resolved by Non Standard Interaction.

Gonzalez-Garcia, Maltoni, JHEP 1309 (2013) 152

Sensitivity of future experiment HK v_{atm} to NSI

Implication of discovery of v mass

•v mass is evidence of physics Beyond the Standard Model \rightarrow It gives us a clue for BSM

●v mass is much smaller than that of other quarks & leptons→ New mystery for hierarchy

• δ_{CP} stands for difference between v & \overline{v} \rightarrow It is expected to give us a clue on matter-antimatter asymmetry of our Universe

Physics beyond the Standard Model & ν

Relation between quark & lepton mixings-->Symmetry at high energy?

Summary

From various v oscillation experiments, 3 mixing angles and 2 mass squared difference have been determined. Undetermined parameters are δ & sign(Δm_{31}^2).

Future experiments are planned to determine $\delta \& sign(\Delta m_{31}^2)$.

New physics can be investigated at v oscillation experiments by looking for deviation from the standard scenario.

Backup slides

2 Bar

11

1.1.1

In natural units $\hbar = c = 1$ (1)

In the units (1), every quntity can be expressed in terms of power of mass or power of length. In the units (1), we have

$$\begin{split} 1 &= \hbar c = 0.197 \ \text{GeV} \cdot \text{fm} \\ &= 0.197 \times 10^{9-15} \ \text{eV} \cdot \text{m} = 0.197 \times 10^{-6} \ \text{eV} \cdot \text{m} \\ &= 0.197 \times 10^{9-18} \ \text{eV} \cdot \text{km} = 0.197 \times 10^{-9} \ \text{eV} \cdot \text{km} \end{split}$$

Thus the argument of sine factor can be calculated as

$$\begin{aligned} \frac{\Delta m^2 L}{4E} &= \frac{\Delta m^2 L}{4E\hbar c} \\ &= \frac{(\Delta m^2/\text{eV}^2) \,\text{eV}^2(L/\text{km}) \,\text{km}}{4 \times (E/\text{GeV}) \,\text{GeV} \times 0.197 \times 10^{-9} \,\text{eV} \cdot \text{km}} \\ &= \frac{(\Delta m^2/\text{eV}^2) \,(L/\text{km})}{4 \times 0.197 \,(E/\text{GeV})} \\ &= 1.269 \frac{(\Delta m^2/\text{eV}^2) \,(L/\text{km})}{(E/\text{GeV})} \end{aligned}$$

v oscillation

2 flavor case in vacuum

1 component of **Dirac eq. for** mass eigenstate $(w/ \text{ common } \vec{p})$

 $\begin{cases} \mathbf{i} \frac{\mathbf{d}}{\mathbf{dx}} \mathbf{v}_1(\mathbf{x}) = \mathbf{E}_1 \mathbf{v}_1(\mathbf{x}) \\ \mathbf{i} \frac{\mathbf{d}}{\mathbf{dx}} \mathbf{v}_2(\mathbf{x}) = \mathbf{E}_2 \mathbf{v}_2(\mathbf{x}) \end{cases} \qquad E_j = \sqrt{\vec{p}^2 + m_j^2}$

Mixing angle Flavor eigenstates $\begin{pmatrix} \mathbf{V}_{\mu} \\ \mathbf{V}_{\tau} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{pmatrix} \qquad U \equiv \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

 $P(v_{\mu} \rightarrow v_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \qquad \Delta E = E_2 - E_1 \cong \frac{m_2^2 - m_1^2}{2E} = \frac{\Delta m^2}{2E}$

• In the presence of v mass & mixing, flavor transition occurs.

 The probability of flavor transition has an oscillatory behavior with respect to L

Probability for solar v can be obtained by an adiabatic approximation and the limit L $\rightarrow \infty$. It is expressed in terms of the initial and final mixing angles, and depends on E_v through the initial mixing angle.

 $P(\nu_{e} \rightarrow \nu_{e}; \theta_{\odot}; A)_{N_{\nu}=2} \simeq c_{\odot}^{2} \tilde{c}^{2}(t_{1}) + s_{\odot}^{2} \tilde{s}^{2}(t_{1})$ $= \frac{1}{2} \left[1 + \cos 2\theta_{\odot} \cos 2\tilde{\theta}(t_{1}) \right]$ Final mixing
angle (in vacuum) $= \frac{1}{2} \left(1 + \cos 2\theta_{\odot} \frac{\Delta E \cos 2\theta_{\odot} - A}{\Delta \tilde{E}(t_{1})} \right)$

$$\Delta E \equiv E_2 - E_1 \simeq \Delta m^2 / 2E$$

$$\tan 2\tilde{\theta}(t_1) \equiv \frac{\Delta E \sin 2\theta_{\odot}}{\Delta E \cos 2\theta_{\odot} - A(t_1)}$$

$$\Delta \tilde{E}(t_1) \equiv \left\{ [\Delta E \cos 2\theta_{\odot} - A(t_1)]^2 + (\Delta E \sin 2\theta_{\odot})^2 \right\}^{1/2}$$

Initial mixing angle (in matter)

 $A \equiv \sqrt{2}G_Fn_e(x)$

Expression in the case of adiabatically varying N_e

61/230

From various solar vexperiments with different threshold energies, info on Δm^2 and sin²2 θ can be obtained

Recent status: Tension between T2K and Nova?

Kelly et al, arXiv:2007.08526v1 [hep-ph]

Black lines: a joint fit of T2K/NOvA/SK18 Blue: NOvA alone Red: T2K alone

Joint fit may indicate preference for Inverted Hierarchy

63/57