Update on neutrino emissions from tidal disruption events

Kimi Hayasaki (Chungbuk National University)

AOs2021@YITP on 25/Aug/2021

Scientific motivation to study tidal disruption events (TDEs)

- Probe of quiescent supermassive black holes (SMBHs) and intermediate-mass black holes (IMBHs)
- Among the brightest transients over a wide range wavebands from optical to UV to soft X-ray
- 3. Natural laboratory for testing general relativistic (GR) effects
- 4. Candidates for multi-messenger astronomy: cosmic-ray/ neutrino sources (gravitational waves)

EHT collaboration 2019 https://eventhorizontelescope.org/

Condition for TDEs (non-spinning BH case)

 $r_{\rm t} \gtrsim r_{\rm S}$

cf. Hill's mass (slightly lower mass) SMBH

Likely to happen at quiescent SMBHs in inactive galaxies (unlikely for M87* because of $M_{\rm bh} \sim 6.5 \times 10^9 M_{\odot}$)

Summary for TDE theory

 $M_6 = M_{\rm bh} / 10^6 \, M_{\odot}$

- Peak (bolometric) luminosity
 - $L_{\rm Edd} \lesssim 10^{44} M_6 \, {\rm erg/s}$
- Duration time of TD flare
 - $t_{\rm flare} \sim 2 M_6^{-2/5} \,{\rm yr}$
- Effective temperature (Ulmer 1999)

$$T_{\rm eff} = \left(\frac{L_{\rm Edd}}{4\pi\sigma_{\rm SB}r_{\rm t}^2}\right)^{1/4} \sim 3 \times 10^5 M_6^{1/12} \,\rm K$$

• Event rate

$$10^{-4} \sim 10^{-5} \, \mathrm{yr}^{-1} \, \mathrm{galaxy}^{-1}$$

Frank & Rees (1976); Magorrian & Tremaine (1999); Wang & Merritt (2004); Kesen (2012); Stone & Mezer (2016)

SPH simulations (Evans & Kochaneck 1989)

Some arguments against $t^{5/3}$ curve by Lodato et al.(2009) and Park & KH (2020)

Summary for TDE observations

- TDE candidates/suspects/imposters ~ 100
- Classification of observed TDEs
- Thermal, non-jetted TDEs

 # soft-X-rays to optical/UV
 # optical/UV only
 # thermal emissions+ weak radio (2)
 - # thermal (?) + non-thermal X-ray (6)
- 2. Non-thermal, Jetted TDEs# hard X-ray and radio (dominant)
- Event rate
 - 1. Non-jetted TDEs
 - $\sim 10^{-7}/\text{yr/Mpc}^3$
 - 2. Jetted TDEs
 - $\sim 3 \times 10^{-11}$ /yr/Mpc³

Donley et al. (2002); van Velzen et al. (20 14); Leaven et al. (2015); Hung et al. (2018)

All-Sky Automated Survey for SuperNovae (ASAS-SN; Shappee et al. 2014)

→ **ASASSN-14Ii** (Brown et al. 2017)

Radio observations of TDEs

IceCube neutrino - TDE association

ZTF	IceCube
AT2019dsg/ZTF19aapreis	IC191001A
AT2019fdr/ZTF19aatubsj	IC200530A

Stein et al. (2021); Albert et al.(2021)

AT2019dsg: thermal TDE + weak radio

Stein et al. (2021) and van Velzen, S. et al. (2019,2020)

- 1. Zwicky Transient Facility (ZTF) observation
- 2. z=0.05
- 3. Black hole mass: $M_{\rm bh} \sim 5 \times 10^6 M_{\odot}$ (Cannizzaro et al. 2020)
- 4. Shinning brightly from Optical to UV to soft-X-ray wavebands with relatively weak radio emission (VLA):

$$L_{\text{opt/UV,pk}} \sim 10^{44.5} \text{ erg/s}, L_{\text{X}}/L_{\text{opt/UV}} \sim 0.1$$
, and
 $L_{\text{radio,pk}} \sim 10^{39} \text{ erg/s}$

5. There is no clear signature (hard X-ray and γ -rays) of a relativistic Jet

Multi-wavelength observations of AT2019dsg: optical to soft-X-ray wavebands

IceCube neutrino - TDE association

Stein et al. (2020); Albert et al. (2021); Cannizzaro et al. (2020)

	Neutrino energy (PeV)	Delayed time (Days)	Peak optical luminosity (erg/s)	Black hole mass (M_{\odot})	Redshift	Core
AT2019dsg	~0.2	~150	10 ⁴⁴⁻⁴⁵	10 ^{6.7}	~0.05	non-AGN
AT2019fdr	~0.08	~300	10 ⁴⁴⁻⁴⁵	10 ^{7.1}	~0.27	AGN

59% astrophysical origin. The temporal and spatial association with the TDE increase the probability that the two are associated

Spatial-association

Albert et al.(2021)

ANTARES

Each neutrino is detected within 5 degree from the corresponding TDE

Current Issues

- 1. No relativistic jet signature
- 2. Optical/UV + weak radio (+ soft-X-ray) TDEs
- 3. $L_{\text{peak}}^{\text{Opt/UV}} \sim L_{\text{Edd}}$
- 4. $\dot{M}_{\rm bh} \sim 10^7 M_{\odot}$
- 5. Neutrino arrival delay: $\sim 1 \text{ yr}$
- 6. sub-PeV neutrino

Possible sites to produce High-energy neutrinos in TDEs

PeV energy proton accelerator

Luminous Disk, Corona, and etc

Four main phases in a TDE disk

 Shock by streamstream collision
 Candidate phase for both the 1st order Fermi acceleration and the 2nd one

 $2 \sim 4$ accretion disk

Candidate for the 2nd order Fermi acceleration

MAD B-field

- Narayan+2003 M : Black hole mass $v_r = \epsilon v_{\rm ff} \ (\epsilon = 0.001 - 0.1)$ B : Magnetic field McKinney+2012 v_r : Radial drift velocity Σ : Surface density $B \sim 2.2 \times 10^6 \left(\frac{\epsilon}{0.01}\right)^{-1/2} \left(\frac{M_{\rm bh}}{10^7 M_{\odot}}\right)^{-5/12} {\rm G}$
- \dot{M} : Mass accretion rate

Acceleration time for the 2nd order Fermi

cf. Kimura et al. (2015) KH & Yamazaki (2019)

Accerelation time : $t_{accl} \equiv p^2/D_p$ Proton's momentum : pMometum diffusion coefficient : D_p

$$t_{\rm accl} \propto M_{\rm bh}^{-2/9} B^{-7/3} \gamma^{1/3} \propto 1/B^{7/3}$$

 γ : Lorenz factor B: magnetic field strength

As B-field is stronger, the acceleration time is shorter

Maximum proton's energy $t = t(\epsilon)$ Protons can accelerate up to the energy at $t_{\text{acc}} = \text{MIN}[t_{\text{inf}}, t_{\text{relax}}, t_{\text{Coul}}, t_{\text{Cd}}, t_{\text{diff}}, t_{\text{pp}}, t_{\text{sync}}, t_{\text{py}}]$ Timescales of processes to prevent protons accelerating

Timescale of each process to prevent protons accelerating 1

cf. Kimura et al. (2015)

KH & Yamazaki (2019)

(Common parameters : $r = r_t$, $\alpha = 0.1$, $\zeta = 0.1$, $H/r \sim 1$) Accretion time of the disk

Infall time :
$$t_{inf} = \frac{r}{v_r} \lesssim 1.0 \times 10^5 \text{ s} \left(\frac{M_{bh}}{10^7 M_{\odot}}\right)^{-1/2}$$

Timescale for the system to thermlize (keeping non-thermal distribution of the protons)

pp relaxation time :
$$t_{\rm relax} \sim 1.6 \times 10^5 \, {\rm s} \left(\frac{\dot{M}/\dot{M}_{\rm Edd}}{1.0}\right)^{-1} \left(\frac{M_{\rm bh}}{10^7 \, M_{\odot}}\right)$$

Energy loss timescale of accelerated protons by Coulomb collision with lower energy protons

Coulomb loss time : $t_{\text{Coul}} \sim 1.2 \times 10^8 \,\text{s} \left(\frac{\gamma}{10^5}\right) \left(\frac{\dot{M}/\dot{M}_{\text{Edd}}}{1.0}\right)^{-1} \left(\frac{M_{\text{bh}}}{10^7 \, M_{\odot}}\right)^{-1/2}$ $\frac{t_{\text{inf}} \ll t_{\text{relax}}, t_{\text{Coul}}}{t_{\text{relax}}}$

Timescale of each process to prevent protons accelerating 2

Protons can spatially diffuse

Diffusion time : $t_{\rm diff} \propto M_{\rm bh}^{4/9} B^{1/3} \gamma^{-1/3}$

cf. Kimura et al. (2015) KH & Yamazaki (2019)

Cooling by proton synchrotron emissions

Sybchrotron cooling time : $t_{sync} \propto B^{-2} \gamma^{-1}$

Cooling by inelastic p-p collision

pp collision time : $t_{\rm pp} \propto M_{\rm bh}^{1/2} \dot{M}^{-1} \beta^{-5/2}$

Wave dumping by the Compton drag Compton drag time : $t_{cd} \propto M_{bh}^{4/3} B^2 \tau^{-1} \eta_p^{-1} \dot{M}^{-1}$

 τ : Thomson's optical depth η_p : conversion efficincy

Super-Eddington MAD case

KH & Yamazaki (2019)

Super-Eddington non-MAD case

KH & Yamazaki (2019)

High-energy particles are unlikely to be produced

An explanation for neutrino arrival delay

	Neutrino energy (PeV)	Delayed time from the optical peak (Days)	
AT2019dsg	~0.2	~150	
AT2019fdr	~0.08	~300	

Primitive explanation (Stein et al. 2020)

The probability to detect a single neutrino should be constant if the neutrino flux is constant $(\dot{M}_{acc} = constant)$

Fallback to a SMBH and subsequent circularization

Early times (after tidal disruption)

Late times

Efficient circularization case

Bonnerot et al. (2016); KH et al. (2013, 2016)

Circularization timescale

Bonnerot et al. (2017)

$$t_{\rm circ} = \sum_{N=0}^{N_{\rm ev}} P_N \approx 8.3 \,\beta^{-3} \left(\frac{M_{\rm bh}}{10^6 M_{\odot}}\right)^{-5/3} t_{\rm mtb}$$

 P_N :the debris orbital period of Nth orbit $t_{\rm mtb}$: period of the most tightly bound orbit

KH & Jonker (2021)
[Introduction of the circularization efficiency and
mass-radius relation to above Bonnerot's formula]

$$t_{\rm circ} \approx 0.57 \,\beta^{-3} \left(\frac{\eta}{0.1}\right)^{-1} \left(\frac{M_{\rm bh}}{10^7 M_{\odot}}\right)^{-7/6} \left(\frac{m_*}{1 M_{\odot}}\right)^{8/25} \,\text{yr}$$

Summary

Two neutrino-TDE associations have been found.

1. No relativistic jet signature 2. Optical/UV + weak radio (+ soft-X-ray) TDEs 3. $L_{\text{peak}}^{\text{Opt/UV}} \sim L_{\text{Edd}}$ 4. $M_{\text{bh}} \sim 10^7 M_{\odot}$ 5. Neutrino arrival delay: ~ 1 yr 6. sub-PeV neutrino

If these associations could be true...(cf. many high-energy physicists have yet a reservation, though)

While a relativistic jet model itself is hard to explain these associations, a super-Eddington MAD model looks plausible for explaining them. The other models are also welcome.

Condition for an ionized gas to be collisionless

 $\langle E_{\rm kin} \rangle = (3/2)kT$ $\langle E_{\rm Coulomb} \rangle = q^2/r \sim q^2 n^{1/3}$

r : average distance between particles*q* : elementary charge in esu *n* : number density