

Collaborators : Keiichi Maeda (Kyoto Univ.)

(NASA)

For details, see Matsuoka & Maeda, 2020, ApJ, 898, 158

Radio emission from ultra-stripped supernovae as diagnostics for the binary separation of the remnant double neutron star

Tomoki Matsuoka (D2 @ Dept. of Astronomy, Kyoto Univ.)

Double neutron star (DNS) binary

Q. How are DNS binaries formed? A. Core collapse supernova twice.

Matsuoka & Maeda, 2020, ApJ, 898, 158

Stability of the binary system

Matsuoka & Maeda, 2020, ApJ, 898, 158

For the binary system to be stable : $E_2 < 0 = M_{ei} < M_2 \sim 3M_{\odot}$

Supernovae with small ejecta mass ($M_{\rm ej} \lesssim 1 M_{\odot}$) are favorable for the formation of DNS binaries

Ultra-stripped supernova scenario

Figure 1. Illustration of the formation of a DNS system that merges within a Hubble time and produces a single BH, following a powerful burst of GWs and a short GRB. Acronyms used in this figure—ZAMS: zero-age main sequence; RLO: Roche-lobe overflow (mass transfer); He-star: helium star; SN: NS: neutron star: HMXP: high mass X rest bingers (CE: common

Matsuoka & Maeda, 2020, ApJ, 898, 158

Ultra-stripped supernova (USSN), interacting with • H-rich gas (CE)

• He-rich gas (RLO)

 $M_{\rm ei} \sim 0.1 M_{\odot}$

The USSN can realize the small ejecta mass not to disrupt the binary system

Progenitor models

Tauris+ (2015) systematically presented a series of the progenitor models for the USSN

Wind	<i>M</i> _{He, i} (M _☉)	P _{orb, i} (d)	RLO Case	$M_{\text{core, f}}$ (M _{\odot})	$M_{\rm He,f}^{\rm env}$ (M _{\odot})	M _{*f} (M _☉)	P _{orb, f} (d)	$\Delta M_{\rm NS}$ (M _O)	$\Delta t_{\mathbf{x}}$ (yr)	$ \dot{M}_{\text{He}}^{\text{max}} $ (M $_{\bigodot}$ yr ⁻¹)	$ \dot{M}_{\rm f} $ (M _O yr ⁻¹)	Final fate	τ _{grw} (Myr)	Comment
Yes	2.5	_	_	1.29	1.099	2.41	_	_	_	_	_	ONeMg	_	Single star
Yes	2.6	_	_	1.37	0.961	2.37	_	-	-	-	-	EC-SN	-	Single star
Yes	2.7	_	_	1.41	1.010	2.46	_	-	-	-	-	EC-SN	-	Single star
Yes	2.8	_	_	1.46	0.984	2.49	_	_	-	_	-	FeCCSN	_	Single star
Yes	2.9	_	_	1.50	0.982	2.54	_	-	-	_	-	FeCCSN	_	Single star
Yes	3.0	_	_	1.58	0.970	2.60	_	-	-	-	-	FeCCSN	-	Single star
Yes	3.2	_	_	1.70	0.973	2.72	_	-	-	_	-	FeCCSN	-	Single star
Yes	3.5	_	_	1.83	1.003	2.91	_	-	-	-	-	FeCCSN	_	Single star
Yes	3.0	120	_	1.58	0.968	2.59	145.5	_	-	_	-	FeCCSN	1.e11	No RLO at all
Yes	3.0	100	BC	1.57	0.750	2.38	109.7	4.8e-5	1.2e3	2.7c-4	2.7e-4	FeCCSN	5.e10	-
Yes	3.0	80	BC	1.57	0.736	2.37	87.1	5.2e-5	1.3e3	2.6c-4	1.4c-4	FeCCSN	3.e10	-
Yes	3.0	50	BC	1.58	0.689	2.32	53.2	6.3e-5	1.5e3	2.7c-4	1.1e-3	FeCCSN	6.6e9	-
Yes	2.5	20	BC	1.29	0.137	1.45	20.3	6.1c-4	1.4c4	2.2c-4	6.7e-5	ONeMg	1.1c8	-
Yes	2.6	20	BC	1.37	0.189	1.56	19.3	6.3e-4	1.5e4	8.8e-5	8.1e-5	EC-SN	1.9e8	_
Yes	2.7	20	BC	1.42	0.150	1.59	19.7	4.5e-4	1.1c4	2.2c-4	7.7e-5	EC-SN	1.9e8	-
Yes	2.8	20	BC	1.47	0.217	1.72	19.4	3.2e-4	7.8e3	3.0e-4	detached	FeCCSN	2.1c8	-
Yes	2.9	20	BC	1.52	0.342	1.91	19.3	2.2c-4	5.4e3	3.2c-4	3.9e-8	FeCCSN	2.6e8	-
Yes	3.0	20	BC	1.58	0.548	2.17	20.0	1.4c-4	3.5e3	3.0e-4	8.1e-5	FeCCSN	3.8e8	_
Yes	3.2	20	BC	1.70	0.919	2.67	23.8	2.8e-5	7.0e2	1.6c-4	1.6c-4	FeCCSN	1.0e9	_
Yes	3.5	20	_	1.83	1.007	2.91	25.7	-	-	_	-	FeCCSN	1.4c9	No RLO at all
Yes	3.0	10	BC	1.57	0.375	2.00	9.51	2.3c-4	5.6e3	2.9c-4	4.e-10	FeCCSN	4.1e7	-
Yes	3.0	5.0	BC	1.57	0.246	1.86	4.61	4.1c-4	1.0e4	2.0e-4	detached	FeCCSN	4.7e6	-
No	2.5	2.0	BC	1.29	0.093	1.40	1.94	6.8c-4	2.2e4	2.5e-4	1.5e-5	ONeMg	2.2e5	_
No	2.6	2.0	BC	1.37	0.079	1.46	1.78	8.3e-4	2.2c4	2.9c-4	3.8e-5	EC-SN	2.8e5	-
No	2.7	2.0	BC	1.42	0.092	1.53	1.62	6.9e-4	1.8c4	2.5e-4	3.7e-6	EC-SN	2.2e5	_
No	2.8	2.0	BC	1.47	0.121	1.62	1.47	6.2e-4	1.6e4	2.0e-4	4.2e-5	FeCCSN	1.8e5	-

Matsuoka & Maeda, 2020, ApJ, 898, 158

Table 1. Stellar and binary parameters of 68 helium star-NS systems, and 8 single helium stars, evolved to the pre-SN (or WD) stage - see Section 3.

envelope; BH: black hole.

Candidates have been discovered

Observational clue (Moriya+ 2017)

- Short timescale ($t \leq 10$ days)
- Spectra reminiscent of Type Ic SNe

Matsuoka & Maeda, 2020, ApJ, 898, 158

- lines of C, O => Type Ic-like
- Other cases: SN 2010X (Kasliwal+ 2010), SN 2019ehk (Nakaoka+ 2021)

Questions

- merge within the cosmic age? => This talk (Matsuoka et al. 2020, published in ApJ)
- our galaxy? (Matsuoka et al. 2021, in prep.) => Mildly short visible timescale, faint surface brightness => Talk in the ASJ meeting (N14a)

• Is it possible to extract the information on the progenitor binary? Will the remnant DNS binary born in SN 2005ek or iPTF 14gqr

• Why do we miss the supernova remnant hosting a DNS binary in

Mass-transfer rate v.s. binary separation

- High $\dot{M}_{RLO} =>$ small separation
- $a \leq 3R_{\odot}$: the remnant DNS binary merging within the cosmic age
- High $\dot{M}_{RLO} =>$ formation of the dense circumstellar material (CSM) - traced as a radio SN

Matsuoka & Maeda, 2020, ApJ, 898, 158

Radio emission from the SN => Mass-transfer rate => possibility of the coalescence

Radio emission from SNe

- Particle acceleration (Drury 1983)
- Magnetic field amplification

Radio emission from SNe can trace the nature of CSM

Matsuoka & Maeda, 2020, ApJ, 898, 158

1983) *=> Non-thermal emission*

Analytical model of radio SNe

• Hydrodynamics : self-similar evolution (Chevalier+ 1982)

 $V_{\rm sh} = 1.1 \times 10^4 \ E_{50}^{0.45} M_{\rm ej, 0.1M_{\odot}}^{-0.35} \dot{M}_{\rm CSM}^{-0.10} u_{w, 1000 \rm km/s}^{0.10} t_{10 \rm days}^{-0.10} \rm km/s$

• Particle acceleration & Magnetic field amplification

$$u_e = \epsilon_e \rho_{\rm sh} V_{\rm sh}^2 \Rightarrow N(E) = C E^{-p}, \ u_B = \epsilon_B \rho_{\rm sh} V_{\rm sh}^2$$

- Quantities relevant to synchrotron emission $j_{syn}(N(E), B), \ \alpha_{syn}(N(E), B)$
- Radio emission : Analytical solution $L_{\nu} = 4\pi^2 R_{\rm sh}^2 S_{\nu} (1 - e^{-\tau_{\nu,\rm syn}}) e^{-\tau_{\rm ff}}$

Matsuoka & Maeda, 2020, ApJ, 898, 158

Matsuoka & Maeda, 2020, ApJ, 898, 158

Feasible time/frequency window

[day]

Time

~Optimized window~

• cm :
$$t_{obs} \gtrsim 100 days$$

• mm : $t_{obs} \sim 10-100$ days

~Previous observations~

- upper limit
- in the centimeter range
- within 10 days

Matsuoka & Maeda, 2020, ApJ, 898, 158

Summary

- Observational candidates for the ultra-stripped SNe have been reported, but their binary properties are not well constrained
- We showed that **binary separation is linked** with mass-transfer rate, which can be traced by radio emission from ultra-stripped SNe
- Our analytical modeling suggests the optimized time/frequency window to detect the radio signal from ultra-stripped SNe

Matsuoka & Maeda, 2020, ApJ, 898, 158

