Emission from Black Hole Jets

當真 賢二（TOMA Kenji）

東北大学 学際科学フロンティア研究所／天文学専攻
（木坂将大，A．Levinson，木村成生，久世陸，荻原大樹，小川拓未，木村匡志，成子篤，原田知広，EHT Consortium，柔田明日香，富田沙羅，霜田治朗）

Extreme Outflows in Astrophysical Transients＠Kyoto U，Aug 23－27， 2021

Outflows in high energy astrophysics

Pulsar Wind Nebulae

Micro-quasars

Gamma-Ray Bursts
Supernovae

Fast Radio Bursts

Theoretical issues on black hole jets

- Energy injection L_{j}
- BH or disk? cf. King \& Pringle 2021
- Mass injection \dot{M}_{j}
- Outflow + inflow structure in funnel
- Acceleration
- $\Gamma_{\max } \sim L_{j} / \dot{M}_{j} c^{2}$
- B field flux
- Collimation
- Global/local stability
- Dissipation
- Emission

Debates on energy injection mechanism

Contour of $\vec{E} \cdot \vec{B}$

Vacuum solution of E/B field in Kerr spacetime

$$
F_{E} \approx \frac{c}{64 \pi} a^{2} B_{\mathrm{H}}^{2} \sin ^{2} \theta
$$

Force-free solution of $E / B / \rho / J$ in (fixed) Kerr spacetime:
$\vec{E} \cdot \vec{B}=0$ by plasma, outward Poynting flux (BZ process)

BZ process keeps Kerr spacetime

$$
g_{\mu \nu}^{\mathrm{Kerr}}+g_{\mu \nu}^{\mathrm{BZ}}=g_{\mu \nu}^{\mathrm{Kerr}+(\delta \bar{M}, \delta \bar{J})}+g_{\mu \nu}^{\text {other }}+[\ell=2 \text { terms }]+\mathcal{O}\left(\alpha^{3}\right)+\mathcal{O}\left(\beta^{2}\right),
$$

Ideal MHD steady axisymmetric solutions

Outflow + inflow structure

Loading zone ($\mathrm{v}=0$) between the outflow and inflow

Transverse structure

$\hat{E}(\Psi), \hat{L}(\Psi), \Omega_{F}(\Psi), \eta(\Psi)$ are determined by Znajek condition, given u_{p} at separation surface, outer fast point, and transverse force balance for given $\Psi(r, \theta)$

Radio jet emission is produced in funnel region(?)

Funnel wall

Magnetic-Arrested-Disk in 2D GR-resistive MHD simulation with AMR

2D PIC simulation of shear flow (with thickness $\Delta \gg c / \omega_{p}$)

Can these blobs accelerate to $\Gamma \sim$ several?

Hadronic emission

- One-zone steady MAD model ($\mathrm{n} \sim 10^{5} \mathrm{~cm}^{-3}$, $\mathrm{T}_{\mathrm{p}} \sim 20 \mathrm{MeV}, \mathrm{B} \sim 20 \mathrm{G}$ for M87)

α	β	\mathcal{R}	$\epsilon_{\text {dis }}$	η	ϵ_{NT}	$s_{\text {inj }}$
0.3	0.1	10	0.15	5	0.33	1.3

- Assume non-thermal p/e by relativistic magnetic reconnection and/or turbulence
cf. Levinson \& Rieger 2011; Moscibrodzka et al. 2011
- Bright GeV emission from disk lead to high rate of $\gamma \gamma$ annihilation in jet: $n_{j} \sim 100 n_{G J}$

$$
n_{\mathrm{GJ}}=\frac{\Omega_{F} B_{h}}{2 \pi e c} \approx \frac{B_{h}}{8 \pi e R_{G}} \simeq 5.6 \times 10^{-4} B_{h, 3} M_{9}^{-1} \mathrm{~cm}^{-3}
$$

M87: density and B field

Two temperature GR-R-MHD: MAD model

Blazars: jets viewed on-axis

- BL Lacs: high σ, low Γ
- e-p plasma model

Energy per particle $\quad \mu=\Gamma(1+\sigma)$,
Emission region

$$
R_{\mathrm{BLR}} \simeq 10^{17} L_{\mathrm{d}, 45}^{1 / 2} \mathrm{~cm}
$$

Magnetospheric gaps

- For $n \sim n_{G J}$ a pair-creation gap will open, where $\vec{E} \cdot \vec{B} \neq 0$
- Explain VHE γ-ray flares in M87, IC310?

Maxwell equations on fixed Kerr spacetime

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\alpha^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\beta^{i} \mathrm{~d} t+\mathrm{d} x^{i}\right)\left(\beta^{j} \mathrm{~d} t+\mathrm{d} x^{j}\right)
$$

$$
\begin{aligned}
& \nabla_{\nu}{ }^{*} F^{\mu \nu}=0 \\
& \nabla_{v} F^{\mu \nu}=4 \pi I^{\mu}
\end{aligned}
$$

Boyer-Lindquist 座標

$\alpha=\sqrt{\frac{\varrho^{2} \Delta}{\Sigma}}, \quad \beta^{\varphi}=-\frac{2 a r}{\Sigma}, \equiv-\Omega$
$\gamma_{\varphi \varphi}=\frac{\Sigma}{\varrho^{2}} \sin ^{2} \theta, \quad \gamma_{r r}=\frac{\varrho^{2}}{\Delta}, \quad \gamma_{\theta \theta}=\varrho^{2}$,

$$
\begin{aligned}
& \varrho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta=r^{2}+a^{2}-2 r, \\
& \Sigma=\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta,
\end{aligned}
$$

$$
r \rightarrow \infty: a \rightarrow 1, \Omega \rightarrow 0
$$

$$
r \rightarrow r_{\mathrm{H}}: a \rightarrow 0(\Delta \rightarrow 0)
$$

$$
E^{\mu}=\gamma^{\mu \nu} F_{\nu \alpha} \xi^{\alpha}, \quad H^{\mu}=-\gamma^{\mu \nu *} F_{\nu \alpha} \xi^{\alpha}
$$

$$
D^{\mu}=F^{\mu \nu} n_{\nu}, \quad B^{\mu}=-{ }^{*} F^{\mu \nu} n_{\nu}
$$

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{B}=0, \quad \partial_{t} \boldsymbol{B}+\nabla \times \boldsymbol{E}=0 \\
& \nabla \cdot \boldsymbol{D}=4 \pi \rho, \quad-\partial_{t} \boldsymbol{D}+\nabla \times \boldsymbol{H}=4 \pi \boldsymbol{J}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{E}=\alpha \boldsymbol{D}+\boldsymbol{\beta} \times \boldsymbol{B}, \\
& \boldsymbol{H}=\alpha \boldsymbol{B}-\boldsymbol{\beta} \times \boldsymbol{D},
\end{aligned}
$$

BH magnetospheres

$\left.\begin{array}{l}\nabla \times \mathbf{E}=0, \Rightarrow \mathbf{E}=-\nabla \phi \\ \mathbf{E} \cdot \mathbf{B}=0 \begin{array}{l}\text { (force-free/ } \\ \text { MHD条件) }\end{array}\end{array}\right]$

$$
\rho_{G J}=\nabla \cdot \vec{D} / 4 \pi
$$

$$
\mathbf{E}=-\Omega_{\mathrm{F}} \mathbf{e}_{\varphi} \times \mathbf{B}
$$

$$
\Rightarrow
$$

$$
\begin{gathered}
\mathbf{D}=-\frac{1}{\alpha}\left(\Omega_{\mathrm{F}}-\Omega\right) \mathbf{e}_{\varphi} \times \mathbf{B} \\
\Omega_{F} \sim \Omega_{H} / 2
\end{gathered}
$$

1D GR Particle-In-Cell simulations

- Local simulations in Kerr spacetime with $\mathrm{a}=0.9$
- e+, e-, IC photons' creation \& propagation
- Curvature radiation loss

E field evolution: Ampere law

$$
-\partial_{t} \boldsymbol{D}+\nabla \times \boldsymbol{H}=4 \pi \boldsymbol{J}
$$

$$
\partial_{t}\left(\sqrt{\Sigma} D_{r}\right)=-4 \pi\left(\varrho^{2} J^{r}-I_{0}\right)
$$

$$
\begin{aligned}
& I_{0}: \text { assumed MHD value } \\
& \left(=\nabla \times H \sim r^{2} \rho_{G J} c\right)
\end{aligned}
$$

Constraint: Gauss law

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{D}=4 \pi \rho \\
& \partial_{\xi}\left(\sqrt{\Sigma} D_{r}\right)=4 \pi \Delta \varrho^{2}\left(\rho-\rho_{\mathrm{GJ}}\right)
\end{aligned}
$$

Pair creation, current recovery

Spectra of outgoing particles
Model B

$$
J_{0}=-1, \tau_{0}=100, \epsilon_{\min }=10^{-s}
$$

Condition for the gap oscillation

$$
\begin{array}{r}
\tau_{\text {ic }} \tau_{\gamma \gamma} \gtrsim 1 . ~ \\
\tau_{0} \gtrsim \sqrt{\frac{\tau_{0}}{\tau_{\text {ic }}} \frac{\tau_{0}}{\tau_{\gamma \gamma}}} \sim \begin{cases}10^{1 / 2}\left(\gamma \epsilon_{\min }\right)^{-p} & \left(\gamma \epsilon_{\min } \lesssim 1\right) \\
10^{1 / 2}\left(\gamma \epsilon_{\min }\right) & \left(\gamma \epsilon_{\min } \gtrsim 1\right)\end{cases} \\
\gamma_{\max } \epsilon_{\min } \sim 10\left(E_{\|} / B\right)_{-2}^{1 / 4} B_{3}^{1 / 4} M_{9}^{1 / 2} \epsilon_{\min ,-9}
\end{array}
$$

Bright curvature radiation

Summary

- High-resolution radio observations have stimulated simulation studies of black hole + accretion disk system
- Energy injection of jets is probably the BZ process, but no observational evidence yet \rightarrow Emission mechanism of jets?
- Density of funnel ($\lesssim 100 n_{G J}$) seems too low to shine in radio for RIAF
- Funnel wall dissipation is interesting
- Magnetic reconnection, hadronic process
- KH instability
- Superluminal motion?
- Funnel can shine in gamma-ray at magnetospheric gaps
- 1D GR-PIC simulations show periodic opening of a gap at null charge surface
- Bright curvature radiation
- Reverberation mapping?
- Effects of light surfaces, e+e- injection, etc. to be explored
$J_{0}=-1, \tau_{0}=30, \epsilon_{\min }=10^{-9}$

