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Introduction: Fallback accretion onto NS
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The fallback mass is sensitive to the progenitor structure, the SN explosion mechanism, and so on.

Dynamical range is large
be ~ 10~ 24 M@
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e.g., Ugliano etal. 12; Ertl et al. 16
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It will proceed down to the NS surface and even bury the magnetosphere when Meit bury ~ 107> Mgs™ ( TE G)
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Relativistic outflow from NS

The electromagnetic waves associated with the angular momentum loss of the central NS is efficient for
accelerating the charged particles being ejected to the magnetosphere to relativistic energy scale (I'oo =
100)(e.g., Gunn & Ostriker 69), dominant component of wind after neutrino outflow ceases and fallback sets in.
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A competition between fallback matter and relativistic outflow = The neutron star diversity?
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Physical picture & Methods
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Governing equations:

* 1-D Relativistic
Hydrodynamics equations +
point source central gravity

Numerical scheme:

« HLLC Riemann solver

* Spatial reconstruction : 27
order PLM

e Time integration : 2" order
RK method

« CFL # of 0.1.
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« How do the accretion shock evolve,
especially the contact surface?
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Analytical model for shocked fallback matter

Thin shell model with central gravity}

~

Lhe schematic picture | o o A simplified ver. of non-relativistic hydro
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Analytical model for shocked fallback matter

Inner-most position ry, .., }

Inner-most position achieves if:

Integrating the governing equations till v, =0
(t=t.in), meanwhile the condition that the thin shell
marginally become gravitationally unbound

dvg, /dt = 0

shall also be realized.

l:> Where:
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time-integrated outflow
: luminosity injected to the
shocked fallback shell
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gravitational force
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Analytical model for shocked fallback matter

Invading condition: rg, .., = R*}

* The critical energy flux ratio C . for the fallback matter to reach the near NS

. min
surface region ) I'th, min = R¥, and since R* << Tope:
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k Condition for the shocked fallback matter to reach down to the NS;

determined by the competition between gravity and outflow
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» This is what Numerical
results tell us

1071

As long as the outflow luminosity remains the same,
the outflow velocity (or baryon loading details)

doesn’t affect the results.
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Implications on the NS diversity
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Field configuration

Fallback matter is
repelled by the
dipole magnetic field

Pulsar with
Clean
magnetosphere
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Implications on the NS diversity

Ly ~(B2O RS /)

Pulsar?
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be, cri, dip = be < be, cri, mon

Advanced channeled fallback
inflow proceeds to the NS
surface and opens the closed
field lines (the magnetosphere
is locally pressed to Alfven
radius r, by R-T finger), the
outflow luminosity is
enhanced.

Alfvén radius Ta

~ 3.1 x 10¥ ergs™! B*,136/7Pi,—2_2be,-—44/7tfb,1_4/7
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Implications on the NS diversity

5
be,crit ~ 5 X (GM*)_2/3|L(B*, Pz)
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be > be, cri, mon

Fallback accretion
outweighs the outflow
luminosity enhanced by
the opened field lines

Magnetar with
Disturbed
agnetosphere?

Alfvén radius rao > R,

Loy ~(B2*RE /c3) x|(r1e/71a)?|~ 3.1 x 10¥ ergs™ B, 13" P _y 72 My, _4* g, 1 =47
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Implications on the NS diversity

be,crit ~ g X (GM*>_2/3|L(B*7 P’L)
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be > be, cri, mon

Fallback accretion outweighs

CCOs with the outflow lumlnosﬂ:y
Buried enhanced by the maximumly

opened field lines. It’s strong

magnetosphere
enough bury the magnetosphere

Alfvén radius 7a < R,

Ly~ (B2UR] /) x (ne/R.)? ~ 2.7 x 10 ergs™ B, 13° B 5™

Maximum luminosity of split monopole-like field configuration
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We can summarize these four cases as...
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» Trifurcation point:
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Broadly consistent with typical galactic rotation-
powered Pulsar (B«~1013G, P;~O(10) ms) assuming
typical accretion (Mg, ~ 10724 My, tg, ~ 1-100s );
implies a roughly comparable formation rate of
pulsars, magnetars and CCOs.



te, = 10 More information?

107~ (under construction)

—y The P-P-at-born of know
pulsars/magnetars can be traced
back with their current value (the

10-111 simplest way is following the
—_ moving direction given by pulsar
|CD model) and compared with our
iy 10713 = 1072 Mo phase diagram
. My, = 107° Mg &dA birth-line of NSs may be
X 10-15] ] My = 107" M, obtained; for each of the samples:
—— My, = 107" Mg « There exists a maximum Mg, for
\— Mn = 107° M) our model to work: does this
10~17- m — Magnetar a somehow correlate to its SN
O Pulsar explosion energy, progenitor
m CCo mass etc. ?
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Summary

What do we want to know?

e The origin of the diversity of young neutron
stars

What did we do?

* To Investigate the impact of the relativistic
wind from the magnetosphere of a newborn
neutron star and supernova fallback

What have we done?

* 1-D Hydrodynamics and analytical
calculations

What have we learned?
 There exists a critical luminosity

ratio of the out- and inflow {,;, that
determines the criterion that fallback
matter can invade down to the near
NS surface region = the criterion for
a NS to form into CCOs, magnetars
or rotation-powered Pulsars

The trifurcation point given by our
study is broadly consistent with
known galactic pulsar formation
(roughly comparable formation rate

of each kinds of NSs?)

Remaining questions: magnetar formation? Other observational
imprints? (e.g., progenitor mass, SNRs and etc.)
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