

*Universidad de Puebla, Mexico

[†]SHEP, University of

Southampton, UK

Decay of charged Higgs bosons into *c* **and** *b* **quarks in multi-Higgs doublet models** (arXiv:1203.2927, Phy. Rev. D85,115002 (2012))

A.G.Akeroyd[†], S. Moretti[†], J. Hernandez-Sanchez^{*}

1. Introduction	6. BR($H^{\pm} \rightarrow cb$) and BR($H^{\pm} \rightarrow cs$) in 3HDM		
 A neutral scalar (spin=0) has been found at the LHC. Searches for additional neutral scalars of high priority now. There might exist charged scalars, H[±]. Classify elementary particles by their electric charge and spin: ∑pin 0 Spin 1/2 Spin 1 Neutral h⁰ ν_e, ν_µ, ν_τ γ, Z, g Charged (H[±])? e[±], μ[±], τ[±], u, d, s, c, b, t W[±] → Why not a charged, spin 0 particle, H[±] ? 	$\begin{array}{c c} 0.5 \\ Y \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.60\% \\ 0.2 \\ 0.1 \\ 0.60\% \\ 0.2 \\ 0.1 \\ 0.5 \\ Y \\ 0.4 \\ 0.5 \\ Y \\ 0.4 \\$		
2. The Two Higgs Doublet Model (2HDM)	$80\% XY^* < 0.7$		

Introduce a second I = 1/2, Y = 1 doublet to the SM Lagrangian:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ (v_1 + \phi_1^{0,r} + i\phi_1^{0,i})/\sqrt{2} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ (v_2 + \phi_2^{0,r} + i\phi_2^{0,i})/\sqrt{2} \end{pmatrix}.$$

 $\tan \beta = v_2/v_1$, where $v_1^2 + v_2^2 = v^2 = 2m_W^2/g$.

Four types of 2HDM (without tree-level flavour changing scalar currents)

	X	Y	Ζ
Type I	$-\cot\beta$	$\cot\beta$	$-\cot\beta$
Type II	aneta	$\cot\beta$	aneta
Lepton-specific	$-\cot\beta$	$\cot\beta$	aneta
Flipped	aneta	$\cot\beta$	$-\coteta$

$$_{H^{\pm}} = -\left\{\frac{\sqrt{2}V_{ud}}{v}\overline{u}\left(m_{d}XP_{R} + m_{u}YP_{L}\right)dH^{+} + \frac{\sqrt{2}m_{e}}{v}Z\overline{\nu_{L}}\ell_{R}H^{+} + H.c.\right\}$$

3. The Three Higgs Doublet Model (3HDM)

- A multi-Higgs doublet model (MHDM) has *n* scalar doublets.
- A MHDM has n 1 physical charged scalars H^{\pm} .
- Phenomenology of H^{\pm} in a 3HDM has received much less attention than H^{\pm} in 2HDMs.
- We consider "democratic" 3HDM; u, d, ℓ obtain mass from v_u, v_d, v_ℓ respectively.
- The mass matrix of the charged scalars is diagonalised by the $n \times n$ matrix U:

$$\begin{pmatrix} G^+ \\ H_2^+ \\ H_3^+ \end{pmatrix} = U \begin{pmatrix} \phi_d^+ \\ \phi_u^+ \\ \phi_\ell^+ \end{pmatrix}.$$

Figure: BR($H^{\pm} \rightarrow cb$) (left panel) and BR($H^{\pm} \rightarrow cs$) (right panel), with $b \rightarrow s\gamma$ constraint.

[7. ATLAS searches for $t \rightarrow H^{\pm}b$ followed by $H^{\pm} \rightarrow cs$

- Top quarks are produced in pairs e.g. $gg \to t\overline{t}$; then $t/\overline{t} \to Wb$ (with $W \to e\nu$ or $\mu\nu$) and $\overline{t}/t \to H^{\pm}b$.
- *H*[±] → *cs* gives two (non-*b* quark) jets. Candidate signal events are e.g. *bbeν* plus two non-*b* jets.
 Signal is a peak at *m_H*[±] in invariant mass distribution of non-*b* jets. Main background from *t*/*t* → *Wb* and *W* → *ud*/*cs* would give a peak at *m_W*.

I will assume H₂[±] to be the lightest and relabel it as H[±].
In a 3HDM X, Y and Z are not simply given by tan β or cot β.
They are defined in terms of the 3X3 matrix U:

$$X = \frac{U_{d2}}{U_{d1}}, \quad Y = -\frac{U_{u2}}{U_{u1}}, \quad Z = \frac{U_{e2}}{U_{\ell 1}}$$

In a 2HDM, U is a 2X2 matrix with one parameter (tan β).
In a 3HDM X,Y,Z are not strongly correlated.

• U can be parametrised by four parameters

i) $\tan \beta = v_u / v_d$ ii) $\tan \gamma = \sqrt{v_d^2 + v_u^2} / v_\ell$ iii) An angle θ iv) a phase δ .

4. Flavour constraints on |X|, |Y| and |Z|

• $Z \rightarrow b\overline{b}$: $|Y| < 0.72 + 0.24 \left(\frac{m_{H^{\pm}}}{100 \text{GeV}}\right)$.

b → sγ: -1.1 < ReXY* < 0.7 for m_{H[±]} = 100 GeV.
 In 2HDM in which u and d quarks receive mass from different doublets (e.g. Type II) one has XY* = 1 → m_{H[±]} > 300 GeV and so t → H[±]b is not possible.

• In 3HDM H^{\pm} can be light since XY^* is arbitrary.

5. Possibility of large BR($H^{\pm} \rightarrow cb$)

Figure: Left panel: Comparison of simulation and data; Right panel: Excluded region in the plane $[m_{H^{\pm}}, BR(t \rightarrow H^{\pm}b)]$, assuming $BR(H^{\pm} \rightarrow cs) = 100\%$.

ATLAS search also applies to case of dominant H[±] → cb. Background from W → cb has very small rate. If tag b quark from H[±] → cb, the backgrounds W → ud/cs are reduced. Estimate gain in sensitivity as:

$$\frac{[S/\sqrt{B}]_{\text{btag}}}{[S/\sqrt{B}]_{\text{btag}}} \sim \frac{\epsilon_b \sqrt{2}}{\sqrt{(\epsilon_j + \epsilon_c)}} \sim 2.13$$

• *b*-tagging efficiency $\epsilon_b = 0.5$; *c*-quark mistagged as a *b*-quark $\epsilon_c = 0.1$; light quark (u, d, s) mistagged as a *b*-quark $\epsilon_j = 0.01$.

8. $BR(t \rightarrow H^{\pm}b)$ multiplied by $BR(H^{\pm} \rightarrow cb)$

Partial decay widths of H^{\pm} :

$$\Gamma(H^{\pm} \to \ell^{\pm} \nu) = \frac{G_F m_{H^{\pm}} m_{\ell}^2 |Z|^2}{4\pi\sqrt{2}}; \quad \Gamma(H^{\pm} \to ud) = \frac{3G_F m_{H^{\pm}} V_{ud} (m_d^2 |X|^2 + m_u^2 |Y|^2)}{4\pi\sqrt{2}}$$

For m_{H[±]} > m_t the channel H[±] → tb dominates in all 2HDMs and in 3HDM.
For m_{H[±]} < m_t, a distinctive signal of H[±] from a 3HDM would be: Large BR(H[±] → cb) Grossman 94, AGA/Stirling 94
The necessary condition is: |X| >> |Y|, |Z| (not allowed in most 2HDMs).

m_{H[±]} < *m_t* respects limits from *b* → *s*γ (*XY*^{*} ≠ 1 in 3HDM in general).
|*X*| >> |*Y*|, |*Z*| is possible in flipped 2HDM, but *b* → *s*γ ensures *m_{H[±]}* > 300 GeV.
For |*X*| >> |*Y*|, |*Z*| the ratio of the two dominant decays, BR(*H[±]* → *cb*) and BR(*H[±]* → *cs*), approaches a constant value:

$$rac{\mathrm{BR}(H^{\pm}
ightarrow cb)}{\mathrm{BR}(H^{\pm}
ightarrow cs)} = R_{bs} \sim rac{|V_{cb}|^2 m_b^2}{|V_{cs}|^2 m_s^2}$$

• Main uncertainty in R_{bs} is from strange quark mass, m_s (unique feature in H^{\pm} phenomenology).

Figure: Left panel: Contours of BR($t \to H^{\pm}b$) multiplied by [BR($H^{\pm} \to cb$) + BR($H^{\pm} \to cs$)]; Right panel: BR($t \to H^{\pm}b$) multiplied by BR($H^{\pm} \to cb$).

Constraints from t → H[±]b on plane [|X|, |Y|] are competitive with those from b → sγ.
Current limit BR(t → H[±]b) < 2% rules out two regions which cannot be excluded from b → sγ:

i) 15 < |X| < 40 and 0 < |Y| < 0.04, and ii) 0 < |X| < 4 and 0.3 > |Y| > 0.8

Tagging the b quark from H[±] → cb would possibly allow sensitivity to BR(t → H[±]b) < 0.5%.
t → H[±]b and H[±] → cb could provide stronger constraints on the [|X|, |Y|] plane than b → sγ (or perhaps discover H[±] → cb...).

• Dedicated search for $t \to H^{\pm}b$ and $H^{\pm} \to cb$ has yet to be performed.

Andrew Akeroyd, University of Southampton

Email a.g.akeroyd@soton.ac.uk