Higgs-like to Higgs and Prospects

大阪大学 花垣和則 For the ATLAS collaboration

ヒッグス探索の歴史

✤ 1980年代

- ▶ 1984年: Crystal Ball at Doris
 - $\ \,) \) \) \ \,) \ \ \,)$ \ \,) \ \) \ \ \,) \ \,) \ \,) \ \) \ \,) \ \,) \ \) \ \
- CUSB at CESR
 - $\ \,) \ \, \gamma \rightarrow H \gamma$
- SINDRUM
 - $\pi \rightarrow e \nu H(\rightarrow ee)$
- CELO at CESR
 - $B \rightarrow KH(\rightarrow \mu \mu, \pi \pi, KK)$
- ▶ m_H > 8 or 9 GeV

ヒッグス探索の歴史

- ✤ LEP 1 (1989-1995)
- ✤ LEP 2 (1995-2000)
 - hint of 114 GeV Higgs
- Tevatron (1987-2011)
 - actual search in run 2 (2001-2011)

ヒッグス探索の歴史

ヒッグス探索の歴史

ヒッグス探索の歴史

Higgs-like boson 発見

ヒッグスセクター

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m_{H}^{2} \phi^{2})$ ←スカラーボソン $-\sum_{f} Y_{f} \phi \bar{f} f$ ←湯川結合 $- \lambda v \phi^3 - \lambda \frac{\phi^4}{4}$ ←自己結合 $+\frac{g^2}{2}\phi^2 W^+_{\mu}W^{-\mu} + \frac{(g^2 + g'^2)}{4}\phi^2 Z_{\mu}Z^{\mu}$

気になるところ

実験からの知見

ILCが走るまではLHCが ヒッグスを直接研究できる唯一の施設

LHC / ATLAS 実験

ATLAS 検出器

ハドロンコライダーの難しさ

◆ 多重衝突

✤ S/Nが小さい

多重衝突(ルミノシティに依存)

◆ 衝突数/bunch crossing
 = ルミノシティ × 断面積 × bunch spacing
 = 7E33 [cm⁻²s⁻¹] × 80mb × 50n [s] ~ 28 (現行)
 = 5E34 [cm⁻²s⁻¹] × 80mb × 25n [s] ~ 100
 → 最大140

Efficiencyの理解 $N = \sigma \times \mathcal{L} \times BR \times \mathcal{A} \times \epsilon$ efficiencyのバンチあたり衝突数への依存性 ミューオン 電子 Efficiency 105 Electron identification efficiency [%] Ldt $\approx 4.7 \text{ fb}^{-1}$ Data 2011 **AS** Preliminary 100 0.98 95 0.96 90 Å Á Á Á Ă 0.94 85 Ldt =2264 pb 0.92 ò å 80 ň <u>=17.3 ò Ó n 2012 data, chain 3 ATLAS Preliminary 75 0.9 1.02 Data/MC 70 2012 selection criteria 1.01 Data Tight++ Data Loose++ Data Medium++ 65 0.99 MC Loose++ MC Medium++ MC Tight++ Δ 0.98 60[∟]0 20 12 18 2 6 8 10 14 16 4 50 0 5 25 30 35 45 10 15 20

バンチあたり衝突数

再構成されたpp衝突地点数

Trigger

- Raw rate ~ 80mb × 6 × 10³³ = 500M Hz
- Rate to tape ~ 400 Hz
- Factor of 1,000,000 reduction

標準模型の確認

ヒッグスの生成と崩壊

LHCでのSMヒッグスの生成 (125GeV)

♦ Γ (vector boson) ∝ m_{H^3}

- ♦ Γ (vector boson) ∝ m_H³

ヒッグスの崩壊

◆ SM 125GeV 崩壊比 (%)

H→bb	58	$H \rightarrow \gamma \gamma$	0.23
$H \rightarrow \tau \tau$	6.3	H→WW	22
$H \rightarrow \mu \mu$	0.022	H→ZZ	2.7
H→cc	2.7	$H \rightarrow Z \gamma$	0.16
H→ss	0.044	H→gg	8.6

全幅は4MeV

信号の手がかり

たとえば孤立レプトン

◆ 孤立した(周囲に他の粒子のいない)レプトン
 ▶ 重い粒子(W, Z)の崩壊によるレプトン

◆ ジェット近傍のレプトン ▶ b/cからの崩壊 π/Kの崩壊

Higgs-like to Higgs

Data & Event Selection

- ♦ H→ γ γ : 4.8 (7TeV) + 20.7 (8TeV) fb⁻¹
 - two isolated photons w/ p⊤ > 40, 30 GeV
- - isolated lep. p_T > 20, 15, 10, 7(e)/6(μ) GeV
 - ► 50<m12<106 GeV, 12-50<m34<115 GeV
- ♦ $H \rightarrow WW \rightarrow |\nu|\nu$: 4.6 + 20.7 fb⁻¹
 - isolated lepton p⊤ > 25, 15 GeV
 - missing ET, Mz veto
 - MII < 50-60 GeV, ΔΦII<1.8</p>

Statistical Method

Maximum likelihood ratio

conditional estimate

unconditional estimate

signal strength μ, 質量 mH,
 結合定数のSM予言値に対する比, 等々
 ・ θ: nuisance parameters

 $\begin{array}{l} \gamma \ \gamma \ m_{H} = 126.8 \pm 0.2 \pm 0.7 \ {
m GeV} \end{array}$

4 lepton $m_H = 124.3 \stackrel{+0.6}{_{-0.5}} \stackrel{+0.5}{_{-0.3}} \text{GeV}$

 $\gamma \gamma + 4$ lepton $m_H = 125.5 \pm 0.2 {+0.5 \atop -0.6} \text{GeV}$

- systematics : 0.7GeV in total
 - 0.4GeV : Z→ee calibration
 - O.4GeV : material estimates
 - O.2GeV : preshower energy scale
- resolution : 1.4 2.5 GeV
 - \odot extrapolation from e to γ

Mass in $H \rightarrow ZZ$

✤ Resolution : 1.6(4µ), 1.9(2e2µ), 2.4(4e) GeV

Signal strength w.r.t. SM expectation

結合定数

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m_{H}^{2} \phi^{2})$

←湯川結合

 $-\sum_{f} Y_{f} \phi \bar{f} f$

 $\lambda v \phi^3 - \lambda \frac{\phi^4}{4}$

 $+\frac{g^2}{2}\phi^2 W^+_{\mu}W^{-\mu} + \frac{(g^2 + g'^2)}{4}\phi^2 Z_{\mu}Z^{\mu}$

生成と崩壊に寄与する結合 g 00000 $H_{---} \Gamma_g$? Q0000 Γ_{γ} qH $\Gamma_{W,Z}$ $\sigma_H^i \times BR(H \to jj) =$ q $\frac{\sigma_H^{SM}}{\Gamma_i^{SM}} \times \frac{\Gamma_i \Gamma_j}{\Gamma_H}$ $\Gamma_{W,Z}$ $\mathcal{V}_{\mathcal{V}_{\nu}}$ $\Gamma_{W,Z}$ Γ_{f} Γ_f Q9 00000 湯 **-** H \overline{f} \bar{Q} g 00000

ゲージ vs 湯川

Yukawa indirectly confirmed
 VBF confirmed at 3.3 σ
結合定数測定

* κ : scaling factor to SM value

 $\sigma \cdot \mathbf{B} (gg \to H \to \gamma\gamma)$ $\sigma_{SM}(gg \to H) \cdot \mathbf{B}_{SM}(H \to \gamma\gamma)$

 $\frac{1}{\gamma\gamma} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$

Source (experimental)	Uncertainty (%)
Luminosity	±1.8 (2011), ±3.6 (2012)
Electron efficiency	±2-5
Jet energy scale	$\pm 1 - 5$
Jet energy resolution	±2-40
Source (theory)	Uncertainty (%)
QCD scale	$\pm 8 (ggF), \pm 1(VBF, VH), ^{+4}_{-9} (ttH)$
PDFs + α_s	± 8 (ggF, ttH), ± 4 (VBF, VH)

結合定数測定結果

❖ No Beyond SM contributions assumed ❖ Kf ≡ Kt = Kb = Kτ, Kv ≡ KW = KZ

結合定数測定結果 (別の仮定)

スピン・パリティ測定

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m_{H}^{2} \phi^{2})$

←スカラーボソン

 $+ \frac{vg^2}{2}\phi W^+_{\mu}W^{-\mu} + \frac{v(g^2 + g'^2)}{4}\phi Z_{\mu}Z^{\mu}$

 $-\sum_{f} Y_{f} \phi \bar{f} f$

 $- \lambda v \phi^3 - \lambda \frac{\phi^4}{\Lambda}$

 $+\frac{g^2}{2}\phi^2 W^+_{\mu}W^{-\mu} + \frac{(g^2 + g'^2)}{4}\phi^2 Z_{\mu}Z^{\mu}$

◆ 2 σ ちょっとから 1 σ 程度 (qqの割合に依存) で0+をfavor

H→ZZ での Spin/Parity 測定 arXiv:1108.2274v2 [hep-ph]

$0^+ vs 0^- by H \rightarrow ZZ$

✤ 0⁻ is excluded at 97.8% CL

0+以外の棄却

♦ O+ vs $1 \pm : H \rightarrow ZZ, WW$

Higgs boson \land

◆ ゲージセクターと結合してる

☆ 湯川もありそう

◆ 0+っぽい

✤ Lepton universality を破ってそう

Some new results

from ATLAS

Differential cross section in $H \rightarrow \gamma \gamma$

46

◆ 言い訳:2本目のジェットは parton shower
 ▶ 誤差も過小評価

Jet in $H \rightarrow \gamma \gamma$

ttH $(\rightarrow \gamma \gamma)$

- Event selection 1 (leptonic channel)
 - two photons, at least one lepton, at least one b-tagged jet, missing E_T>20GeV, veto 84<M_{eγ}<94GeV
- Event selection 2 (hadronic channel)
 - two photons, no leptons,

at least 6 jets, at least two b-tagged jets

expectation for 20.3 fb⁻¹

Channel	$ N_S $	ggF(%) V	/ <i>BF</i> (%)	WH(%)	ZH(%)	<i>tH</i> (%)	$t\bar{t}H(\%)$
Leptonic	0.55	0.6	0.3	7.7	2.4	6.1	82.8
Hadronic	0.36	5.3	1.1	1.1	1.3		91.2
		Channel	N_S	NB	N_S/N_B		
		Leptonic	0.55	$1.2^{+0.6}_{-0.5}$	0.45		
		Hadronic	0.36	$1.9^{+0.7}_{-0.5}$	0.19		48

ttH($\rightarrow \gamma \gamma$) Event Display

結果 ttH($\rightarrow \gamma \gamma$)

50

VH(→bb)

Object	0-lepton	1-lepton	2-lepton				
Lantons	0 loose leptons	1 tight lepton	1 medium lepton				
Leptons		+ 0 loose leptons	+ 1 loose lepton				
		2 <i>b</i> -tags					
Tets	$p_{\rm T}^{\rm jet_1} > 45 {\rm ~GeV}$						
JCIS	$p_{\rm T}^{\rm jet_2} > 20 {\rm ~GeV}$						
	$+ \le 1$ extra jets						
Missing E_	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 25 { m Gev}$	$E_{\rm T}^{\rm miss} < 60 {\rm ~GeV}$				
wiissing <i>L</i> _T	$p_{\rm T}^{\rm miss} > 30 {\rm GeV}$						
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$						
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$						
	$\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$						
Vector Boson		$m_{\rm T}^W < 120 {\rm GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$				

◆ Vector bosonのp⊤, b-tagのありなし, ジェットの数でbinning

Zcl

 0.89 ± 0.48

52

VH(→bb) 結果

$VZ(\rightarrow bb)$ as a Validation

スケジュール

2013-14 Long Shutdown 1 (LS1) (ATLAS pixelの追加)

2015-17 $\sqrt{s} = 13-14 \text{ TeV}, L = 10^{34}, 50-100 \text{ fb}^{-1}$

2018 LS2 (ATLAS Phase-I Upgrade)

2019-21 $L = 2-3 \times 10^{34}$, 300-400fb⁻¹

2022 LS3 (ATLAS Phse-II Upgrade)

202X $L = 5 \times 10^{34}$, luminosity leveling, ~3000fb⁻¹

解析方法 (ATLAS)

- ✤ Geantによるdetector simulationはやらない
 Generator からの4元ベクトルをsmear
 - Efficiency/Fake/Resolution は7TeVの解析 を再現
 - ● luminosityが上がっても変わらないと仮定

 ● Missing ETの分解能はbunchあたりの衝突
 数に対する依存性を外挿
- ◆ 系統誤差は7TeVと同じと仮定
 ◆ MCの断面積はNLOにスケール

使った過程

	ggF	VBF	VH	ttH			
$H \rightarrow \gamma \gamma$	0-jet	2-jet 1 and 2 leptons		leptonic & hadronic			
H→ZZ*→4I		inclusive					
H→WW	0-jet	2-jet					
$H \rightarrow \tau \tau$		2-jet		_			
$H \rightarrow \mu \mu$		added					
	WW $\rightarrow \nu \nu, \tau \tau \rightarrow +X$						

ttH $(\rightarrow \gamma \gamma)$

◆ トップ湯川へのアクセス Q00000 H ✤ 3000fb⁻¹ Q00000 * $122 < M\gamma\gamma < 128 \text{ GeV}$ Ilepton, H_T > 300GeV Events/GeV / 3 ab-1 300F ATLAS Preliminary (Simulation) $\sqrt{s} = 14 \text{ TeV}$ • S~200, B~1300 250 Ldt = 3000 fb iphoton 200 > 2lepton, no H_T , 150 100 Z veto 50 900 • S~30, B~110 120 130 110 140 150

 $M_{\gamma \gamma}$ [GeV]

◆ µの高い運動量分解能→高い質量分解能 ▶ S/Nは~0.2%程度 ↓ μの pT > 20, 15 GeV ◆ 背景事象は Z→µµ Events / 0.5 GeV ATLAS Preliminary (Simulation) 10¹ √*s* = 14 TeV 10⁹ — Z → μμ ttbarなど $\int L dt = 3000 \text{ fb}^{-1}$ $t\bar{t} \rightarrow \mu\nu X \mu\nu X$ 10^{8} NW→ μνμν 10⁷ \rightarrow H \rightarrow $\mu\mu$, m_=125 GeV Resonance search 10⁶ 10⁵ ◆ 3000fb⁻¹でS/√B>6 10⁴ 10³

 10^{2}

80

120

140

100

160

180

 $M_{\mu\mu}$ [GeV]

 $H \rightarrow \mu$

60

200

ATLAS vs CMS 300fb⁻¹での比較

CMS Projection Expected uncertainties on 10 fb ⁻¹ at μs = 7 and 8 TeV Higgs boson signal strength μ 300 fb ⁻¹ at μs = 14 TeV	精度	ATLAS	CMS		
$300 \text{ fb}^{-1} \text{ at } \mathbf{fS} = 14 \text{ TeV} \text{ w/o theory unc.}$	$H \to \gamma \gamma$	20%	15%		
$H \rightarrow \gamma \gamma \qquad \qquad$	H→ZZ	15%	11%		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$H \rightarrow \tau \tau$	40%	10%		
$H \rightarrow bb \qquad $	H→bb	not done	18%		
CMSの予想精度	理論	の不定性も含	含む		

✤ CMSの解析手法もATLASと同様

▶ 現在の検出器のefficiency/resolutionを仮定

✤ CMSの方がaggressive(?)

Peskin/Duhrssen との比較 LHC 300fb⁻¹ arXiv:1207.2516/ATL-PHYS-2003-030

				- \
精度	ATLAS	Peskin	g(nAA)/g(nAA) _{SM} -1 LHC/HLC/ILC/ILC/	ev]
$H \rightarrow \gamma \gamma$	20%	<mark>20⊕15%</mark>	0.1	
H→ZZ	15%	<mark>21⊕15%</mark>		
$H \rightarrow \tau \tau$	40%	N/A		
H→bb	not done	<mark>25⊕15%</mark>	$W Z b g \gamma \tau c t inv$	-

(注1) PeskinのH→bbは単独のチャンネル(注2) Peskinではg(hAA)の導出に緩い仮定

◆ 孤立レプトンの評価は結構あってた

► H→bbは楽観的→悲観的→現在はその中間

ヒッグスセクター

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi \partial^{\mu} \phi - m_{H}^{2} \phi^{2})$

 $+ \frac{vg^2}{2}\phi W^+_{\mu}W^{-\mu} + \frac{v(g^2 + g'^2)}{4}\phi Z_{\mu}Z^{\mu}$

 $-\sum_{f} Y_{f} \phi \bar{f} f$

 $- \lambda v \phi^3 - \lambda \frac{\phi^4}{4}$

 $+\frac{g^2}{2}\phi^2 W^+_{\mu}W^{-\mu} + \frac{(g^2 + g'^2)}{4}\phi^2 Z_{\mu}Z^{\mu}$

t, b

t, b

t, b

leo,

t, b

200

t, b

t, b

- ◆ ヒッグス機構理解の鍵
- ◆ まずはHH生成の検出

2222

t, b

t, b

t, b

lee

t, b

arXiv:1206.5001 [hep-ph]

ヒッグス崩壊の組み合わせ

	$H \rightarrow \gamma \gamma$	H→bb	$H \rightarrow \tau \tau$	H→WW →IνIν	H→ZZ →IIII	H→ZZ →llaa
$H \rightarrow \gamma \gamma$	×	\bigcirc	×	?	?	?
H→bb		×	△○?	\bigtriangleup	?	?
$H \rightarrow \tau \tau$			×?	?	?	?
$H \rightarrow WW$ $\rightarrow \nu \nu$				×?	×?	×?
H→ZZ →IIII					×	×
H→ZZ →llqq						×
HH→bbWW

- ♦ BR(HH→bbWW→bbl ν qq) ~ 10% ⇒ 10k @3000fb⁻¹
- one lepton + missingET + two jets (at least one b-tagged)
 - ▶ W質量を仮定して ν の pz

- ✤ ttbar が莫大
 - ▶ S/B ~ 10⁻⁵...

 $HH \rightarrow bb \gamma \gamma$

- ◇ 3000fb⁻¹で260事象生成
 ◇ p⊤(γ) > 25GeV, p⊤(b) > 40/25 GeV
 ◇ 2 isolated photons && 2 b-tagged jets
- ◆ 角度分布
- 50<M_{bb}<130 GeV
 && 120<M_{γγ}<130 GeV

観測はできそうだが単独でのλの測定は...

選別後事象数				
λ=0	26			
$\lambda = 1$	15			
λ=2	8			
BG	24			

$HH \rightarrow bb \tau \tau , bb \mu \mu$

◆ bb τ τ : ATLASの解析は終わっていないが arXiv:1206.5001[hep-ph]によると有望

parton level study

単位は [fb ⁻¹]	$\xi = 0$	$\xi = 1$	$\xi = 2$	$b\overline{b} au au$	$b\bar{b} au au$ [ELW]	$b\bar{b}W^+W^-$	S/N ratio
cross section before cuts	59.48	28.34	13.36	67.48	8.73	873000	$3.2 \cdot 10^{-5}$
reconstructed Higgs from τ s	4.05	1.94	0.91	2.51	1.10	1507.99	$1.9 \cdot 10^{-3}$
fatjet cuts	2.27	1.09	0.65	1.29	0.84	223.21	$4.8\cdot 10^{-3}$
kinematic Higgs reconstruction $(m_{b\bar{b}})$	0.41	0.26	0.15	0.104	0.047	9.50	$2.3 \cdot 10^{-2}$
Higgs with double b -tag	0.148	0.095	0.053	0.028	0.020	0.15	0.48

◆ bbµµ: HE-LHCなら可能性ありか

VV scattering needs to be checked

- * Spin/Parityの決定
 - ▶ 300fb⁻¹あれば5σ以上の分離
- ◆ ゲージ/湯川結合定数 ← 比の測定
 - ▶ 300fb⁻¹で10-20%程度
- ◆ 自己結合定数
 - ▶ 3000fb⁻¹でHH生成を検出できるかも

結論

◆ 2012年に発見した粒子はヒッグスっぽい

◆ LHCは世界で唯一のヒッグス製造工場

▶ 実験からの知見が不可欠

- ◆ 自然がどんな構造をしているかわからない
 - ・ 虚心坦懐に様々な角度から検証

 ・ SMで除外された過程も大切

$$\begin{split} A(X \to VV) &= \Lambda^{-1} \bigg[2g_1^{(2)} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\beta} + g_3^{(2)} \frac{\tilde{q}^{\beta} \tilde{q}^{\alpha}}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) \\ &+ g_4^{(2)} \frac{\tilde{q}^{\nu} \tilde{q}^{\mu}}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} + m_V^2 \bigg(2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7^{(2)} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*2} \bigg) \\ &+ g_8^{(2)} \frac{\tilde{q}_{\mu} \tilde{q}_{\nu}}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9^{(2)} t_{\mu\alpha} \tilde{q}^{\alpha} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^{\sigma} + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^{\alpha}}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} (\epsilon_1^{*\nu} (q\epsilon_2^{*}) + \epsilon_2^{*\nu} (q\epsilon_1^{*})) \bigg]. \end{split}$$

J^P	Production	Decay	Comments
	configuration	configuration	
0+	$gg \rightarrow X$:	$g_1 = 1 \ g_2 = g_3 = g_4 = 0$	
0-	$gg \rightarrow X$:	$g_4 = 1 g_1 = g_2 = g_3 = 0$	
1+	$q\bar{q} \rightarrow X$:	$g_1 = 0 g_2 = 1$	
1-	$q\bar{q} \rightarrow X:$	$g_1 = 1 g_2 = 0$	
2_{m}^{+}	$gg \rightarrow X: g_1 = 1$	$g_1 = g_5 = 1$	Graviton-like tensor with minimal couplings
2_{m}^{+}	$q\bar{q} \rightarrow X: g_1 = 1$	$g_1 = \overline{g_5} = 1$	Graviton-like tensor with minimal couplings
2-	$gg \rightarrow X: g_1 = 1$	$g_8 = g_9 = 1$	"Pseudo-tensor"

Possible channels for future Higgs selfcouplings studies for ES

σ_{HH} (14 TeV) = 33.71 fb (M. Spira, July 2012, HPAIR)

Decay channel	Branching ratio (%)	Cross Section	Events in 3 ab-1
bb + WW	24.81	8.36	25K
bbγγ	0.263	0.0887	266
ZZbb→4l bb	3.05→0.0137	1.03→0.0046	3084→13.9
ZZbb→2l2b bb	3.05→0.061	1.03→0.0205	3084→62
ΖΖγγ	0.01204	0.004	12.2
WW $\tau\tau \rightarrow l\nu qq \tau_l \tau_h$	2.72→0.181	0.917→0.061	2751 → 183
WW $\tau\tau \rightarrow l\nu l\nu \tau_l \tau_h$	2.72→0.029	0.917→0.0098	2751 → 29
bbττ→ bb τ _l τ _h	7.29→1.66	2.46→0.559	7376 →1678

p-value

◆ 検定量は色々ある

▶ 観測事象数, likelihood ratio, etc..

◆ (今回の) Significanceはp-valueから算出

Confidence Level

 ◆ CL_{s+b} < 5% なら95%CLで棄却
 ◆ CL_{s+b}(µ) = P(N < N_{obs} | µs+b) = 5% となるµを95%CLで棄却した, と言う

Beyond SM (SUSY)

◆ 様々なシナリオ ▶ 126GeVが2番目に 軽いヒッグス $H \rightarrow \gamma \gamma \epsilon enhance$ && H→bb/ττεsuppress ▶ 他たくさん ✤ SMで除外された モードの探索も重要