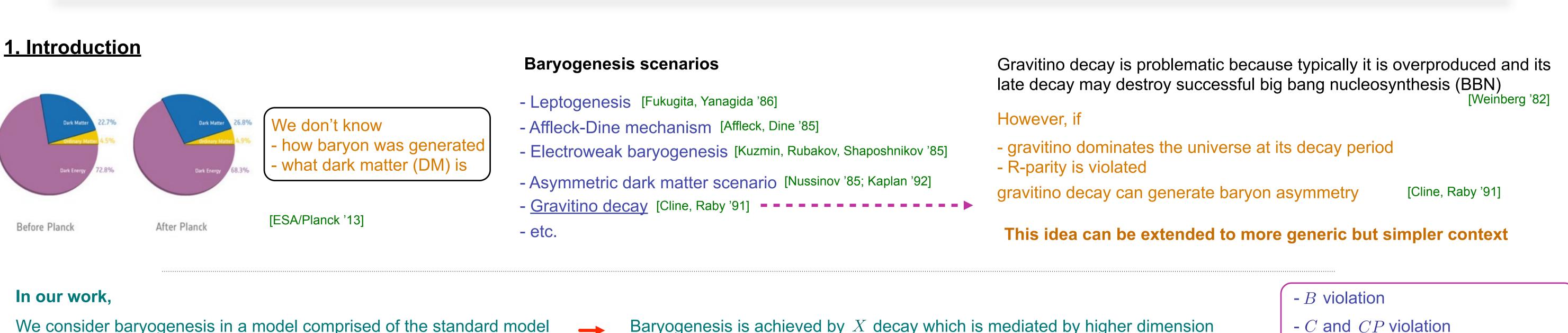
## **Baryogenesis in Higher Dimension Operators**

Koji Ishiwata (Caltech)

in collaboration with Clifford Cheung (Caltech)

Phys. Rev. D 88, 017901 (2013)



We consider baryogenesis in a model comprised of the standard model (SM) plus gauge singlet multiplet X

 $\mathcal{O}_{X\text{-}SM}$ 

-----

SM



#### **Experimental consequences:**

- X can be TeV, and the model can be tested in the experiments of  $n-\bar{n}$  oscillation, flavor physics or proton decay

# $\mathcal{O}_{X\text{-SM}} \sim rac{X u^c d^c d^c}{\Lambda^2}$

### - Lighter component can be DM

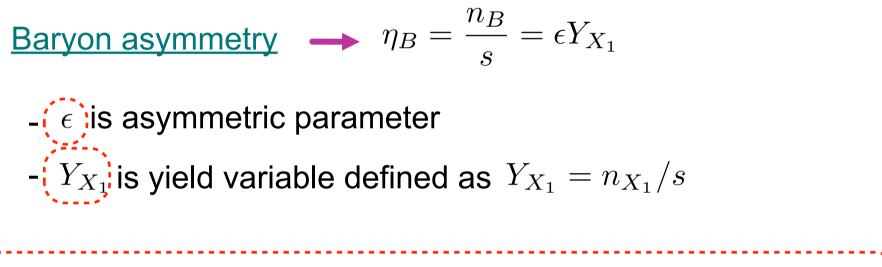
## <u>2. The model</u>

$$\mathcal{O}_{X-\mathrm{SM}} = \frac{\kappa_{IJij}}{\Lambda^2} (X_I u_i^c) (\bar{X}_J \bar{u}_j^c) + \frac{\lambda_{Iijk}}{\Lambda^2} (X_I u_i^c) (d_j^c d_k^c) + \mathrm{h.c.}$$

Hereafter I consider  $X_1, X_2$  for simplicity, and  $X_1$  is heavier component

## The cosmology of the model

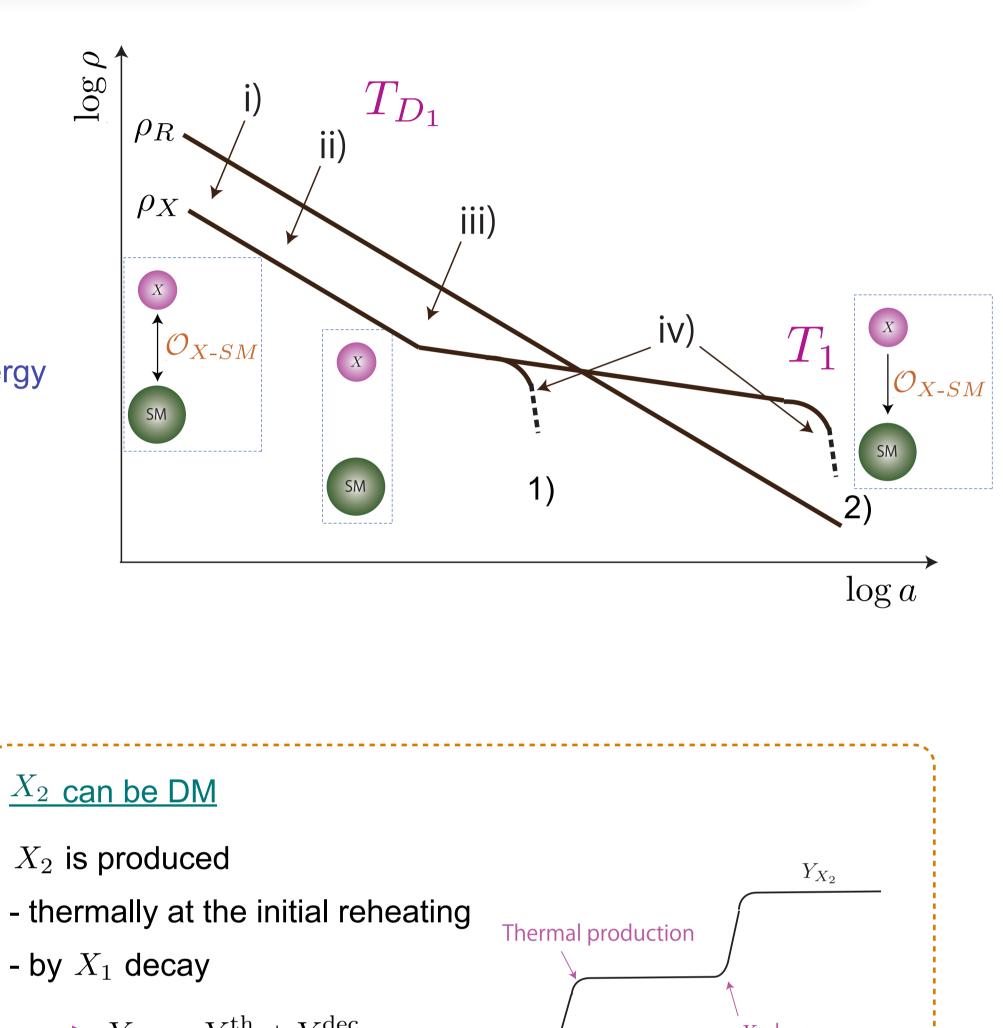
- i)  $X_1$  is thermalized with SM sector via  $\mathcal{O}_{X-SM}$
- ii)  $X_1$  decouples from SM while it's relativistic
- iii) When temperature drops below its mass,  $X_1$  redshifts as matter, then it evolves into a large fraction of the total energy iv)  $X_1$  decays via  $\mathcal{O}_{X-SM}$  to generate baryon asymmetry



 $\epsilon$  is given by difference between the branching ratios of  $X_1 \rightarrow u_i d_j d_k$  and  $\bar{u}_i \bar{d}_j \bar{d}_k$ 

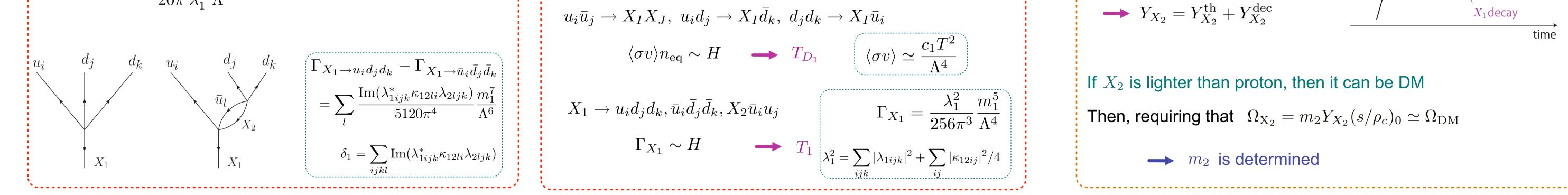
$$\bullet \quad \epsilon = \sum_{ijk} (\operatorname{Br}_{X_1 \to u_i d_j d_k} - \operatorname{Br}_{X_1 \to \bar{u}_i \bar{d}_j \bar{d}_k})$$
$$= \frac{1}{20\pi} \frac{\delta_1}{\lambda_1^2} \frac{m_1^2}{\Lambda^2}$$

| $Y_{X_1}$ depends on when $X_1$ decays:                      |                                                      |
|--------------------------------------------------------------|------------------------------------------------------|
| 1) Before dominating the universe                            |                                                      |
| $Y_{X_1} \simeq n_{\rm eq}/s(T_{D_1})$                       | $T_{D_1}$ : decoupling temperature                   |
| 2) After dominating the universe                             |                                                      |
| There's large entropy production, which reheats the universe |                                                      |
| $Y_{X_1} \simeq 3T_1/4m_1$ $T_1$ : set                       | econdary reheating temperature $m_1$ : mass of $X_1$ |
|                                                              |                                                      |

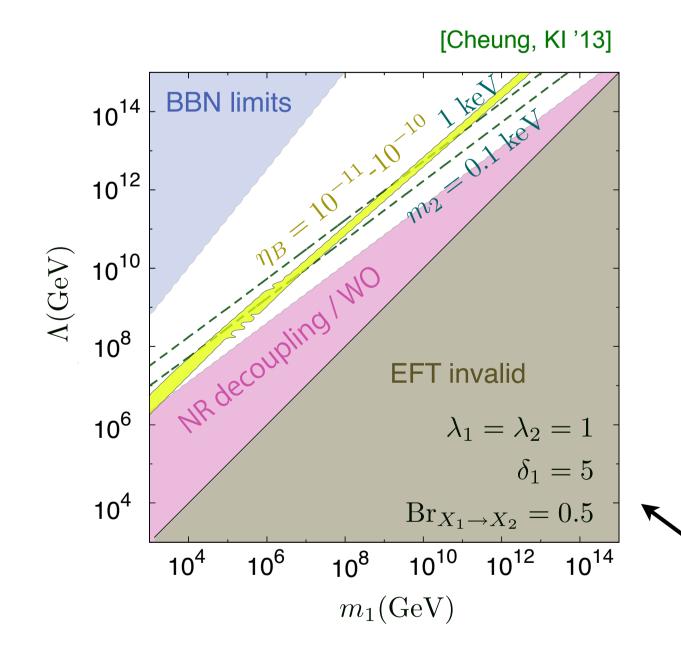


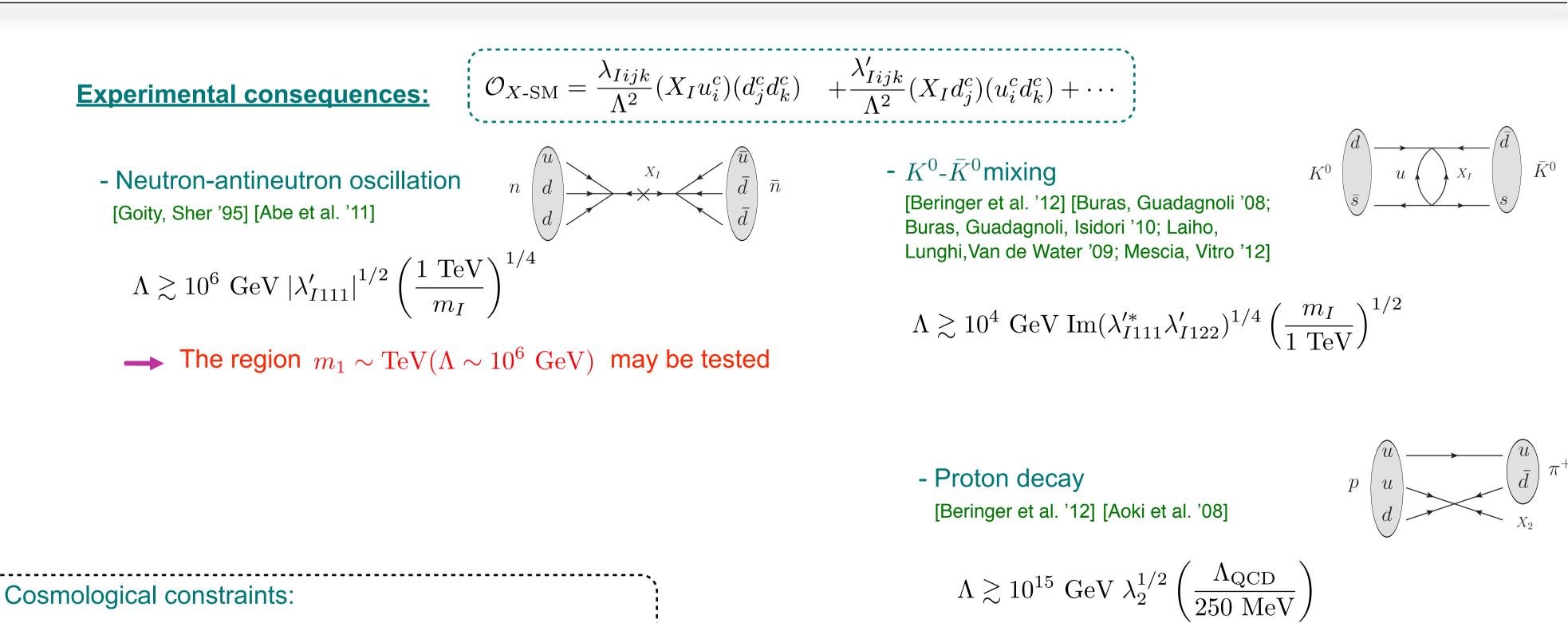
- Departure from equilibrium

"Sakharov's conditions" [Sakharov'67]









Successful baryogenesis in a wide parameter region: can be  ${\rm TeV}$  (when  $\Lambda \sim 10^6~{\rm GeV}$  )

Baryon asymmetry and DM can be explained when  $m_2 \sim 0.1\text{-}1 \ \mathrm{keV}$ 

- $X_1$  should decouple relativistically
- $X_1$  should decay before BBN
- $X_2$  should be kept in out of equilibrium after  $X_1$  decay

\_\_\_\_\_

We must assume hierarchical flavor structure in  $\lambda'_{2ijk}$ (e.g. minimal flavor violation)

## <u>4. Conclusion</u>

We have considered a model which consists of SM and additional singlet Majorana fermions  $\boldsymbol{X}$ 

In this framework, X are produced and decay via higher dimension operators which violate B, C, CP

#### As a result,

- The observed baryon asymmetry is generated by X decay
- Light components ( $\mathcal{O}(\mathrm{keV})$ ) can be DM
- The model may be tested in the experiments of  $n-\bar{n}$  oscillation, flavor physics or proton decay

Two possible scenarios in this model; Baryogenesis with 1) unstable  $X_2$  (no DM candidate) 2) stable  $X_2$  (which is DM candidate) Then, for each case, the model may be testable in 1)  $n-\bar{n}$  oscillation or  $K^0-\bar{K}^0$  mixing 2) Proton decay