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PART 1 Desert



LHC gave beautiful results

But In some sense, they Indicate
“the worst scenario”.
Higgs particle was discovered,

but nothing else.
Especially, no signal of the SUSY.

I

We need to reconsider the origin of the
fine tuning.



The naturalness problem

Suppose the underlying fundamental theory,
such as string theory, has the momentum
scale m¢ and the coupling constant g .

Then, by dimensional analysis and the power
counting of the couplings, the parameters of
the low energy effective theory are given as
follows:



naturalness problem (cont.’d)

dimension -2 (Newton constant) Gy~
S
dimension O 0:1,9,,93 ~ Js,
(gauge and Higgs couplings) A, ~ 0.2
tree
dimension 2 (Higgs mass) {} 0% g.’m.’.
unnatural ! — m,? ~(100GeV)” < g’m (1018GeV)

dimension 4
(vacuum energy or cosmological constant)

Qz 0.g. 2 +m.*

unnatural !''— 2 (2~ 3meV <m* (1018GeV)



SUSY as a solution to the naturalness problem

Bosons and fermions cancel the UV
divergences:

bosons fermions
S
= ﬁNMsusvél-

However, SUSY must be spontaneously
broken at some momentum scale M sy ,
below which the cancellation does not work.



(cont’d)

Therefore, If M,y IS close to m,, , the
Higgs mass Is naturally understood,
although the cosmological constant is still
a big problem.

However, no signal of new particles is
observed in the LHC below 1 TeV.

We have to think about other possibilities.



Possible explanation to the naturalness
problem other than SUSY

1. We do not have to mind. We should simply
take the parameters as they are.

2. Anthropic principle.

The parameters should be such that we can exist.
a) In some model, the wave function of the
universe IS a superposition of various worlds

each of which has different low energy
effective Lagrangians:

W) =|W)+|WP,)+| W)+

We are sitting in one of them. The parameters
there must be such that we exist.



b) The universe has different parameters place
by place. We are sitting at one place, where
the parameters are such that we can exist.

3. The parameters are fixed by some non-
perturbative effect of quantum gravity/string

theory such as Coleman’s baby universe
mechanism.

Although we do not understand the real reason,
nature chooses the parameters as we observe.



Possibility of desert

It may not be right to doubt the SM In the high
energy region by the reason that it is not natural.

The right attitude would be to examine simply
whether the SM is valid to the string scale or some
new physics Is needed below the scale .

If 1t Is the former case, there is a possibility for
the desert, that iIs, we have only the SM below the
string scale.

SM M
-_— >

String theory



Can the SM valid to the Planck/string scale?

In order to answer the question, we consider the
SM Lagrangian with cutoff momentum A,

L = (Duop) (D" ép) — mpopos — Ap(dpon)° 4+ -

and estimate its bare parameters in such a way that
the observed low energy parameters are recovered.

If no Inconsistency arises, it means that the SM can
be valid to the energy scale A.



The bare coupling Ag

As usual, the bare couplings can be approximated
by the running couplings at A in a mass
Independent scheme such as MS bar.

The error can be evaluated once the cutoff scheme
IS specified, and Is expected as small as the two-loop
corrections.

g = 2 () + T2 (1) 255 (A)
J

A dimensionless couplings
(gauge, Yukawa, Higg sself couplings)

We can approximate /liB = /IiMS (A)



The bare mass mg?

* In general, the bare mass consists of quadratically
divergent part and logarithmically divergent part:

2
m,° = aA +mIohyS b, log ——
\ \phys S
* Here we consider only the first part, or we simply
assume 2
Mys = 0.

. m IS determined by an order by order
perturbatlve calculatlon In the bare couplings

demanding m =0

2 2 2 2
Mmp = TTZB,_ 0-loop + TT?’B,, 1-loop + TnB,,Q—loop +

phys



Simple ®* theory

No IR divergences
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Ratio between I, and I,

The ratio depends on the regularization, but its
dependence Is within a factor of 2~3.

If we Introduce the proper time regularization

/ d%— — / do / d*ke " \we have

26
.[ - 3 . a N
= 16 (167T 2 gz = 00000
A2
If we employ the momentum cutoff A, we have 5, = — ,

which indicates 1/e = A?.

16



SM calculation

L = (Duop) (D"dp) — mpdpos — Ap(dpop)’ +- -
The calculation is simplified, If we consider the

symmetric phase (¢) =0, and calculate in the
andau gauge:

-.%_- — ()
k k

k=0




SM 1-loop
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SM 2-loop
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Regularization dependence Is small

1 1 26
In — ~ 0.005 /
e (1672)2 03 '

* The ratio Is regularization dependent, but it Is about
the order of 1/200.

* [t turns out that 2-loop contribution is small in the
case of the SM.



Renormalization group eqguation

dgy 1 41 g (19, 9, 44, 17
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Initial values

‘ = _ Yz ) — () N/ pt)l(‘
gs(mP°) = 1.1645 + 0.0031 (“'(”" = 4) i UO()IG( - 173.1.-3).

0.0007 GeV
| My mPoe |
A(mp™) = 0.12577+-0.00 7())( v —12¢ ) —(). (J()()OJ( Cl - 173.1:3) +0.00140,,,
1(‘ : ) 4
__pole
oo (mP?®) = 0.93587 + 0.00557 M 17315 ) — 0.00003( T 125
" Sl GeV Go\

0.00041 ag(mz) —0.1184
Dt 0.0007

) + 0.0020044.

G. Degrassi, S. DI Vita, J. Elias-Miro, J. R. Espinosa, G. F.
Giudice, G. Isidori and A. Strumia,

Higgs mass and vacuum stability in the Standard Model at
NNLO," JHEP 1208 (2012) 098 [arXiv:1205.6497 [hep-ph]].




Bare parameters of the cutoff theory (1)

| N e )

Myjiggs =126GeV
My =172 GeV

NO Inconsistency arises
below the string scale.

U(1)

—— sU@3)

i Yt

Higgs self coupling

23 Higgs mass 2



Bare parameters of the cutoff theory (2)

1.5

0.5

Myjiggs =126GeV
My, =190 GeV
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13 20

log,, A[(ieV}

Higgs field becomes unstable.

Higgs self coupling



Bare parameters of the cutoff theory (3)

Myjiggs =126GeV
Miop =150 GeV
Higgs self coupling

%consistency arises,

but the Higgs self
coupling tends to diverge.
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Bare parameters of the cutoff theory (4)

144

i Mijiges =100GeV
My, =172 GeV

Higgs field becomes unstable.

Higgs mass 2
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Bare parameters of the cutoff theory (5)

Mpjigys —100GeV
Mo =172 GeV

/ Higgs self coupling

NO Inconsistency arises,
but the Higgs self
coupling tends to diverge.
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Stability of the potential

909% CL from Tevatron (green) / Alekhin, Djouadi, Moch (orange)
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A(k)

90% CL from Tevatron (green) / Alekhin, Djouadi, Moch (orange)
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Froggatt Nielsen by the recent values
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Cut off dependence of the bare mass

mP%® = 173.34+ 2.8 CeV




Top mass dependence of the bare mass

Bare Higgs mass vanishes
at Planck scale if m=170GeV

168 170 172 174 176 178
mP [GeV]



Both mg? and A vanish around the Planck scale

Bare Higgs mass becomes zero if m=170GeV.
Quadratic coupling vanishes if m=171GeV.  A=Mp
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Triple coincidence

Three quantities,
ﬂ‘B’ ﬂ/l (ﬂ‘B)’ mB

become close to zero around the Planck/string scale.



Summary of theHiggs bare parameters

The SM can be valid to the string scale.
Desert is possible.

The experimental value of the Higgs mass seems to be just
on the stability bound.

Nature seems to like the marginal stability.

The bare Higgs mass becomes close to zero at the string
scale. It implies that SUSY is restored at the string scale.
Actually there are many string vacua in which SUSY is
broken at the string scale.

The Higgs self coupling and the beta function also becomes
close to zero at the string scale. It indicates that the Higgs
potential becomes almost flat around the string scale, which
opens the possibility that the Higgs field plays the roll of
Inflaton.

It Is Important to know the top mass within 1% error.



PART 2 the Naturalness



We consider the possibility that the fine tunings
result from not the conventional local field theory
but something slightly beyond.



2—1. Froggatt and Nielsen



Canonical and micro canonical ensembles

Jldo]s(H(p)—E) < [[dp]exp(—H (2)/T)

We start with a micro canonical like path integral:
Z = [[dg] (jd X — 1, )exp(l %))
:J'dm _[ [dg exp(l( [#]—m jd x¢*¢+mzlo)).
One value of M’ dominates in the RHS:
Z = jdm2 exp(—iVF (mz)).



Z = [[dg] (jd X ' p— |)exp(| %))
:J'dm exp(( [#]—m _fd X'+ m? IO)).

Assume that the Verr 1

effective potential for S e /\/

has two minima. N 52 ¥
2

% \/ N

m® <m,° m* =m m*>m_°

(#°)~ 8, g <(#)<e” (4°) -4



The original

2
effective potential. 2 /\/ X

If ¢°<1,/V <¢°, m?should be equal to m_°

in order for the vacuum to be a mixture of the two
phases such that

<_fd4x¢*¢>= ..

In other words, ' in /7 — jdm exp(—lVF( ))

behaves as =
(7 — 1, IV)m?

/\ (= 1oV om:




The Higgs potential should have a degenerate
minimum at a large value of the field.
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generalization

The micro canonical like path integral can be
generalized to

Z = [[dg]lp([d*x(#'¢—M>))exp(iS[4])
= [dm?w(m?) [[dg]exp(i(S[¢]-m*[d x(¢'s—M") ).

M ~ Planck scale 1s natural.

: 2 : :
Again one value of [Tl dominates in the RHS:

Z = Idmzw(mz)exp(—iVF (mz)).



2—-2. Coleman’ s Baby Universe



Coleman (‘88) an explicit mechanism to get the factorized action

Consider Euclidean path integral which involves
the summation over topologies,

> _[[dg]exp(—S). -

topology -

Then there should be a wormhole-like configuration in
which a thin tube connects two points on the universe.
Here, the two points may belong to either the same
universe or the different universe.

If we see such configuration from the side of the large
universe(s), it looks like two small punctures.

But the effect of a small puncture is equivalent to an insert
ion of a local operator.



Therefore, a wormhole contribute to the path
integral as

[[dg] > c,[d*xd*y/g(x)/g(y) O'(x) O'(y) exp(-S).

Summing over the number of wormholes, we have

o0

an(zc”jd x d*yy/g(x)y/g(y) O'(x) O’(y) ]

=exp(ZCide4x d*y\g(x)4/g(y) O'(x) O'(y) ]

Thus wormbholes contribute to the path integral as

| [dg] exp(—S +2.¢, ] d*xd*y{/g(x)/a(y) O'(x) O'(y) ) -

bifurcated wormholes
= cubic terms, quartic terms, ...




The effective action becomes a factorized form

Zc S, +Zc”ss + 2 _Cijk $iS;S, +-
Si=jd ng(x)Oi(x).

By introducing the Laplace transform

exp(—Sq (81,82,---)):jd/1 W(A, 4, exp( Z/ISIJ,
we can express the path integral as

Z = [[dp]exp(—S.) = [daw(2) | [d¢]exp[—izﬂ1 Sj

Coupling constants are not merely constant but to
be integrated.



A solution to the cosmological constant problem

Z = [dAw(A) [[dg]exp(—[+/aR-A [{g)
-

(9 X

A
~ IdAw(A)Idr exp(—(—r2 + A r4))

‘exp(1l/A), A>0
no solution, A <0

~_fdﬁw(A)<

A ~0 dominates irrespectively of w(A).



including multiverse

Z =[daw(2)[[dg]exp(—S (1))

— > %Zsinglen = €Xp (Zsingle) ]




Difficulty (1)
Problem of the Wick rotation

WDW eq. H ., ‘\{J > -0
H o = Huniverse + Hmatter  H graviton +
H jniverse = ( L D° +-- j —wrong sign
2a
ﬂ a : radius of the universe

“Ground state” does not make sense.

Wick rotation is not well defined.

H 1s bounded from below.

matter

H . 15 bounded from above.

A

H

universe




Difficulty (2)
Overall phase of the Partition function

The multiverse partition function

multl o j d 2’ W eXp( single )

Zgngle = J' [dg|exp(-S,)

The overall phase of Z 1s iImportant.

single

We need subtle analyses.



2—3. Lorentzian Path integral of
the factorized action



It 1s natural to imagine that the low energy effective
action of a theory including gravity has the same
structure as Coleman’s:

Serr = 2 .G Si+ > CiSS;+ D ¢SS S+,
i 1 ]

i jk

S; = | d®x/g(x)0; (%).

Then the coupling constants are determined by the state
Ser = » S+ > 26, (S;)S. + > 3¢, <Si><Sj>Sk L.
| ] i)jk

More precisely, the path integral is given by

Z = [[dg]exp(iSy) :jdzw(;t)j[w]exp(izi:z,, sij.

Coupling constants are not merely constant but to
be integrated.



It 1s natural to apply this action to the multiverse.
Z = [[dg]exp(iS.q) z_fdxlw(;t)j[dﬂexp[iZﬂ,, sij.
[[d¢] exp[ > A4S, j ii'zl“

Zl — _[[d ¢]single universe exp [I Z/’L' Si

|
7 7.

N

= [daw(2)exp(Z,(1)).




2-4. Partition function of
a single universe



Basic problem

Define and evaluate the partition
function of a single universe:

Z,(2)=|[d¢] exp(i Zﬂ, S j



The path Integral of a universe

If the 1initial and final states are given, the path

integral 1s evaluated as follows. )

:j[d¢ exp(iS) A

= (f|[[dadpdN]ex (I (pa—NH,) )\) !

=<fj dTexp( iTH )\l ’ i)

=(f]5(H, i) I—AIA:—%% pzia—a3U(a)

:<f ¢E:O><¢E:O‘i> 1 C C

U(a)Z—Z—A— m;tt_ rjd

<¢E‘¢E'>:5(E_E') .a a . a

a . radius of the universe
Question:
Is there a natural choice for them?



Initial state

For the 1nitial state, we assume that the universe
emerges with a small size e.

i) = u|a=¢)® | matter---),
u . probability amplitude of a universe emerging.



Evolution of the universe S3topology

U(a) U(a) U(a)
a *
/ i o
A<A A=A

cr cr

N\ ~curvature
~energy density

WKB solution , B S:jd4xH(R—A+matter)
A (a, 1)~ Sin Zda’p a', A +a) a
E O( ) \/a_l p(a,l) (:jo ( J)
with p(a)=y-2a'U(a). \ /
1 C C

U(a)z——A— matt _ “rad
a’ a® a




For the final state, we have two possibilities.

Final state: case 1 A<A,

The universe 1s closed.
finit  We assume the final state 1s

e
f)=u

a=¢)®|matter---).

The partition function

Zl(ﬁ):“c ‘5[|:|z)‘|>

~ const|dy_, (5)‘2.




Final state: case 2 A>A,

The universe 1s open.
oo It is not clear how to define the
" path integral for the universe:

Z,(2)=|[dg]exp(is) .

As an ad hoc assumption we consider a

\f>:alim c\/a,, |2, ) ®|matter ). v



Final state: case 2 contd

Then the partition function becomes

= U C\ﬂﬁzzo (aIR)¢*E:O (‘9)
~ ucyag \/a,RlQ/A Sin( a A + a’) b co(€)

NyCyiﬂm( wVA + )¢ (2)

d,(a \/a "r sm(jozda’p(a’)Jra)
1 C C

)=-2aU(a) U(@)= 2z A - a”;,at - arid

The result does not depend on a; except for the phase
which should come from the classical action.



Under the ad hoc assumption, we have
the partition function for a universe 7 ( ,1)

for A<A, const of order 1,

1 . 3 / "
forA> A constﬁsm(am A+a). v .

finite

Then the A integration for the multiverse partition

Z = jdxlw(/l)exp(zl(/l)).

has a large peak at A(1) ~ A, which means that

cr?

the cosmological constant at the late stages of the

universe almost vanishes.



2-5. Naturalness and Big Fix



Big Fix
For simplicity we assume the S°topology of the space and
that all matters decay to radiation at the late stages.

U(a)
_ 1 Crad
EA/ fffffffff U(a) = a2 —A- 2
Acr Nl/Crad
A=A

Then the multiverse partition function is given by
7 = jd/lw )exp(Z,(2))

1
- exp[const m] ~ exp(const\/Crad )

BIG FIX

The low energy couplings are determined In such a way
that the entropy at the late stages of the universe iIs
maximized.




Examples of the Big Fix (1)

If the cosmological evolution i1s completely understood,
we can calculate C_, (/1) theoretically, and all of the
renormalized couplings are in principle determined.

At present, we do not have enough knowledge about the
very early and late stages of the universe, especially the
origin of inflation, dark energy and dark matter.

However, some of the couplings can be determined without
knowing the details of the cosmological evolution.

case 1. Symmetry example 0y

C., 1. It bec.or.nes important only after the QCD phase
i transition.
| 2. The mass spectrum of hadrons is invariant under

>‘9QCD HQCD — ‘9QCD-

= C 18 minimum or maximum at 6,,, =0 at least locally.



Examples of the Big Fix (2)

case 2. End point example Higgs coupling A,

C : :

N 1. Some (renormalized) couplings are bounded.
S~ 2. C_, can be monotonic in them.
,imin SR C..4 is maximized at the end point.

A scenario for 4, .

Fix vy, to the observed value and vary A, .
assuming the leptogenesis
/IH Ny, = sphaleron process J
= baryon number J
= radiation from baryon decay ~

= Higgs mass 1s at its lower bound.



Summary 2

In wide classes of quantum gravity or string theory, the
low energy effective action has the factorized form:

:Zci —|—Z:CIJ . J—I—ZCIJKSSS + -

1 jk
The multiverse appears universally, and 1t becomes a

superposition of states with various values of the coupling
constants.

|t Is Important to investigate the consequences of such
action, but at present we do not fully understand their
physics. |t seems that we do not have even the right
definition of the path integral for such action.

Although 1t Is not conclusive, the naturalness problem
might be solved by the dynamics of such action. In the
most optimistic case, the Big Fix occurs, and all the low
energy coupling constants would be determined In a
predictable way.



Conclusion

" |t seems we have nothing other than a minor
modification of the SM below the string scale.

" It 1s possible that the fine tunings result
from not the conventional local field theory
but something (slightly) beyond.

" For example, we can consider the possibility
that the couplings are fixed to maximize the
entropy of the universe. This can be checked
for some couplings, 1f they do not play crucial
roles in the early or late universe.



Appendices



Higgs field as inflaton (1)

If we allow a fine tuning of the parameters of the
SM, the Higgs field can play the role of inflaton.

[with Y. Hamada and K. Oda]

The effective potential of the Higgs field is given by
A
Verr (4) = /I(C¢)¢4 - A 284 P+
ms, m,

Here the first term on the RHS is determined by
the low energy renormalizable theory, that Is the
standard model, and the other terms are so called
Plank suppressed terms that depend on the
underlying microscopic theory.

c IS a constant of order the coupling constants:
c~0.1.




Higgs field as inflaton (2)

Then the first term of V  looks as follows.

A

A(cg) g’

=/

~_ _“~ IoglO (C¢)

Therefore If we add the second term, we can
obtain a saddle point by tuning one parameter.

A

v A5 s
o +mP2¢/_/

(c4)

> Ioglo



Room for extra fields

There Is a room for introducing small
modification. For example, if we introduce a
scalar field, the bare coupling constants change
As below.

il 1 2 P 4 K o4
| Py 2125GEV L—E(ﬁﬂG) E(f EJ ¢ ¢+SM

1 My, =172.892 GeV




Neutrino Yukawa couplings

If we assume the see—saw mechanism,
Our analysis corresponding to the case where

MR Is small: ,. - | _9
m,, ~ y%-ﬂz /Mp ~ 0.1eV yp < 10

\

Mg < 101 GeV

The case where Mp large Is also Iinteresting.



2-1. The |IB matrix model



IIB Matrix Model
S = 12 Tr (%[A“, AT ; Y 4TAY W)

A candidate of the constructive definition of string theory.

Evidences

(1) World sheet regularization

Green—Schwartz action in the Schild Gauge

S = [ (O XF + WX W )
Regularization by matrix {, 11,1
j | - Tr

1

32

Tr(%[A", AT+ % ¥yt (A, P])

S —



(2) Loop equation and string field

Wilson loop = string field
w(k,,(-))=Tr(Pexp(i{dok,(c) A* + fermion))

< creation annihilation operator of |k, (-)>

loop equation — light-cone string field X" = x"x’ = const.

This can be shown with some
assumptions .




(3) effective Lagrangian and gravity

x4 4 gW*

Z

\
N

x4 q@~

Jl,_(1)*‘5"'

Integrate out
|__this part.

The loop integral gives the

exchange of graviton and di

1
Syt = gatoonst -t (f0f0)tr(F9,:19,))

(7 =x)

—const -t (f %, f9,)tr (F9,£9,,)+}

aton.



Space-time 1n the IIB matrix model

s——iTr( [A“ AT +;%ﬂ[Aﬂ ¥1)
g’

Various possibilities for the emergence of
space-time = various interpretations of A,

(1) A, as the space-time coordinates
mutually commuting A, = space-time

(2) A, as non-commutative space-time

non-commutative 4, = NC space-time

(3) A, as derivatives
in the naive large-N reduction



2-2. Derivative interpretation



Derivative interpretation of the IIB matrix
model

If the covariant derivative acts on the regular
representation field, its action can be decomposed
into D scalars.

@, - regular representation field on D-dim manifold #

(Aa¢)a — C(a)zﬁ Vbqa,g
V

vector

C

®V =V @..--@®V_  r : regular representation

“/(a=1,..,D) : the Clebsh-Gordan coefficients

(a)a

embedding Iin ten matrices

CY3

space of

i C 0./ Vb (a — 1 D) «| 10 matrices

(&)

g .
(A, o (a=D +1..10)

- 10




Clebsh-Gordan coefficients

The space of the regular representation is the
function space on G-

V. ={f:G->Cj}.
(7 acts on it as the left multiplication:
f(2)— f(972).

geG

An element of V,,, ®V,, isexpressedas v,(z),

vector reg

where g 1s the vector i1ndex.

G act on 1t as
v, (2) > R, (g)ub(g‘lz).

geG



If we define U(a) (Z) — R(a)b (Z_l)Ub (Z);
for each (a), v, (2) is the regular representation:
Vi (2)

HG R’ (z‘l) R." (Q)Ub (g‘lz) — R(a)b (z‘lg)ub (g‘lz)
ge
= v, (97'2), (a=1---,D).

If we regard ~z as a kind of continuous index,
the Clebsh-Gordan coefficients for the decomposition

Vieotor Vo =V @@V,

vector reg — " reg
can be written as

Cyr =R (z‘l) 5(z,2).

6(z,2') :delta function on G



field of the regular representatation

A field of the regular representation means that
we have a function on G at each point on M.

Locally 1t can be written as a function of xand z

o(x,2), (xeM,zeG).

We then glue the patches by the left multiplication of
the transition function

qﬂ[l](x’ Z[I]) — qp[‘]](x’ g[l"]] (X)_l Z[J]), X EU[I] mU[‘J]

sTe
ot e
* *

In other words, @ 1s a global
section of the principal G -bundle E,;,
assoclated with the transition functions.

Therefore the space of the regular representation
field Vis identicalto Vv =C”(E,,)



Endomorphic covariant derivative

Now we can explicitly perform the procedure to
convert the covariant derivative to endomorphisms.

We start with the covariant derivative acting on the
regular representation field:

V,=¢/ (x)(c’iﬂ + @2 (X)O, )

£0,,0(x,2) = (X, (1-£"7,,)7) - (X, 2)
As 1s discussed, if we multiply the CG coefficients,
Vi =Ray (27)el (x)(ﬁﬂ + &% (X)O )

each of V., (@=1.,D) 1s an endomorphism on V.

Therefore if we introduce UV and IR cutoff to
the space 1, each of Vv , 1s expressed by a matrix.



Classical EOM of the derivative interpretation

The classical EOM of the IIB matrix model 1s
(A [A.A]]=0.

If we impose the Ansatz
Ad=<v(a) (a=1..D)

0 (a=D+1..10).

1t becomes

0= |:V(a) ’ |:V(a) ’ V(b):ﬂ < 0= [Va’ [Va’vb]:l =(V, Rade )0y — Ry V

C

<V.R,“=0,R,=0=R, =0.

The Einstein equation follows from the EOM of the
IIB matrix model



multiverse 1n the matrix model

Multiverse appears naturally in the derivative interpretation.

[ A

0.8 — |
\\‘ ‘
Each block
b, ’
0 Caye’ Vo represents \ ’ :

‘\ a universe. O
/

\_/ Q
\ Y,

matrix model quantum gravity



2-3. Low energy effective action



Factorized action from IIB matrix model
Y. Asano, A Tsuchiya, HK

We can calculate the low energy effective
action by using the background field method,
and we obtain

Serr = 2 .G S+ > ¢SS+ > ¢SS, S+,
I 1]

i jk

S, = | d®x/g(x)0; (%).

© @

in the Lorentzian space time



Background field method

In the derivative interpretation, matrices are identified
with endomorphisms on V =C”(E,,, ).

If we 1introduce a coordinate basis of V
‘X, g>1Where (X1 g) = Eprin’
they are expressed as bilocal fieldson E_;, : (y.h)

A (X, 8:y,h)=(x,g|A|y.h). (o)

We decompose them to the background and fluctuation:
A (X gyh) = A (X, 8:y.h) + 4, (X, 9:y,h).
We further expand the background around flat space:

1
A’ (X, 9;y.h)=i0, + B, (X,9)+= { h’,(X,9),i0 }

1y e
+Z{a)(ba)(x, g),ObC}+--- 5(x— y)5gh




We can further expand the background by the Peter-Weyl
theorem:

B(a)(x’ g) — Z Z R(r) i(j) (g )[B(a)(rxj)i (X)J

r:rr.rep i, j

\ back d
(a)(X g)= Z ZR (J) L(a) (i) (X)}/fizfdsgroun

rirr.rep i,j

There are infinite towers of higher spin fields.



We do not expand %), but treat it as a bi-local field.
(We also decompose the fermionic field similarly.)
Then the action becomes
1

S =T ([ Ay A% ] +4[ Ay A% T Ay i

+2 :A(Oa) ! ¢(b) :2 + |:A(Oa)’ A(Ob):||:¢(a) ’ ¢(b) :l - Z[A(Oa) , ¢(b):||:A(Ob) : ¢(a):|
+4 :A(Oa) ’ ¢(b) : |:¢(a) ’ ¢(b) :l + |:¢(a) , ¢(b) :|2 + fermion).

The 0-th order term

1 0 Ao 2
So = ZTr(['AYa)’A(b)} )
can be evaluated by the heat kernel method, which
gives a local action:

Seﬁ(tree) =S, = ZCiSi’ S; = jﬁoi(x)'

0.(x) are local field consisting of the background fields.




The one-loop contribution is obtained by the Gaussian
integral of the quadratic part.

For simplicity, we consider one hermitian matrix ¢
instead of A, and v, because the mechanism of the
factorization is completely captured by this case.

We consider
S = —ETr([Aa,¢]2) + interactions,

whose quadratic part is given by

S, :—%Tr([A@a,ﬁ).



h
In terms of the bi-local field, /(y )
S, :—ETr([A 0] )

=%j dedDydgdh[ " (g-1> 4R (h) -2 o5 1A (X9 yh)]cﬁ(x,g;y,h) ,

where —> Square gives the propagator.

A( (X 9., h) A(a)L(X’g)_l_A(a)R(yih)’
Aar (X:9) =By (x,9) + { hey (x.9) 1 —% ° } i{w(a)(x g), O, }+---

P~

'A‘(a)R(y’h):_B(a)(y’h)Jrl{ (a)(y h), '%} le{a)(a)(y h), O[h]bc}

are Lorentz scalars.

'5‘( (X’g) and R(a)b(g_l)i
A

or(y,h) and R, (h” ) v



L2,y g2 L1, g1

Then the propagator is given by

Yo, hio y1, h
G (X, 953 Yooy [ %5, 953 V1, ) Yo, o 0, b

— <¢(X1’ J:: Y1 q1)¢(X2, 023 Y2, I, )>

=D (%, —%)8 (R, (0, (%" =%") = RO, () (Y, = ¥,°)) 84y 6,60r, -
D(X) : scalar propagator

This 1s invariant under
(1) independent translation on each index line:
X" — X +a’,
v >y +b% (1=12)
(2) independent Lorentz tr. on each index line:
X" — R (u)x", g, —> ug;,
Yia — Rab(v)yib’ h —>vh. (1=12)



Tn; Gn; Yn, Fin

T191; Y1, 1

T2, go; Yo, ho
The general one-loop

diagrams look like the figure, |
and are given by a sum of \
terms of the form

| :J‘d °%,---d°x dPy,---d Dyndgl...dgndhl...dhnnﬂ,

=1
R=F ({A(Xj),gj,i,O[g’]}j Fi,£{A(yJ')’hjiiio[hj]}]G(xi’gi;Yi’hi [ Xi10 Gis Yieas Moy )-
A(X) : differential polynomials of the backgroung fields at x

F 1s a Lorentz scalar because 1t comes from 1nsertions
of scalars A, (x,9) andR,"(g" ) Sois F'



We expand the back ground fields on X around X, (= X)
such as

B (X)= Z%(xf‘l — xal)- : -(xias — X )8a1 <0, Bioy (X).

Then F. becomes a sum of the terms like

A'(X)F, [< (xj —x),gj,i,O[g"] >J

ij

. J

Here A'(x) is a differential polynomial of the
background ﬁelgls with Lorentz indices 1.
Similarly for F .

Thus / becomes the sum of the terms
| = [d°xd°y[d®x---d"x, ,d°y,--d®y, ,dg,---dg,dh,---dh,

AGOA (YK, (fx,-x0,0y, - vy )



Because of the invariance of the propagators, K, is

invariant under translation on each index line:
x> — X +a’,
v —>yr+b% (i=1..,n)
covariant under Lorentz tr. on each index line:
X —> Rab(u)xib’ g, — ug;,
vy >R (V)Y h =>vh. (i=1..,n)
From this it follows

[d®x,--dPx, ,d°y,-d®y, dg, --dg,dn,--dh, K, ({x;=x.g;,y; - y.h;})
=C,C!,
where C, and C! are invariant constant tensors.

Thus we find that 7 is factorized into two scalars

I :didey A(X)A(yY).



Finally, because of the diffeomorphism invariance, the
terms of the effective action should be combined to

zc,, S, S =[d°xJg(x)0;(x).

In the two loop order, from the planar
diagrams we have

Serr” P =Y €1 SIS ;S

1, ],K

while non-planar diagrams give
S ﬂt2—|oop NP _ ZC"S' .



Probabilistic Interpretation



Probabilistic interpretation (1)

postulate w(z)=ud._o(2)
‘w(z)‘z dz o probability of finding a universe of size z

meaning of this measure

1 . [ ° / /
[zl (2) - jdzzp(z) o) senif (2
VA

—c (el I M
X _Idzz_de H z(2p+j—>z P Zp

T : age of the universe
T the time that has passed
after the universe i1s created

= |y (2)f dz~[uf dT

| y\z = probability of a universe emerging in unit time



Probabilistic interpretation (2)

‘l//> 1s a superposition of the universe with various age,

‘w(z)‘z dz ~| y‘z dT gives the probability of finding a
universe of age T ~T +dT .



Lifetime of the universe
dimensionless

H‘”(Z)‘Z dz ~ o _[dT —| 4" x(life time of the universe)

finit \§§j77/ 50
€

We introduce an infrared cutoff

for the size of universes.
ZIR

<€ —>

ceases bounces

0
to
exist r back



Wave Function of the multiverse (1)

Multiverse appears naturally in quantum gravity / string theory.

[ A

b8 | \
\\‘ ®

b, Each block
C(a) o Vi represents \ .

‘\ a universe. O
/

\_/ Q
\ Y,

matrix model quantum gravity



Wave Function of the multiverse (2)

The multiverse sate 1s a superposition of N-verses.
\‘Pmu,ﬁ>=jdiw Z\\P AY®|A) <z =[daw(2)[[dg] exp( Zz,sj

LI’N(zl,---,zN,/I)_gy(zl,/I) (2, )

v.A) ® |v.4) @

) = [d2w(2)Y (1 O L

N

O



Wave Function of the multiverse (3)

Probabilistic interpretation

o0

‘\Pmu,ti>:Idﬂw(i)Z‘TN,/l>®‘/1>

N=0

V(2,0 2y 4)=w(z2, 1) w(zy, 4)

2 2
‘\PN (211”" Z, ,l)‘ dz, ---dz, ‘W(i)‘ d1 represents
the probability of finding N universes with size
Z, ~72,+dz, -+, 2, ~ Z,, +0z,
and finding the coupling constants in

A~A+dA.



Probability distribution ofl

P(/I)I io-“dzlo-.leN ‘LPN (211"',ZN,Z)‘2‘W(Z)‘2
exp [ dzly (2.4) ) pf CHlarnd=vizd-yind)
(\W

) < |v)=p|de o)

2)= dz\¢E:O (z,2)| ~ (life time of the universe)

(1) can be very large.

|

) is chosen in such a way that 7(/4) is maximized,

irrespectively of w(1).



We have seen

the coupling constants are chosen in
such a way that the lifetime of the
universe becomes maximum.

the question

What values of the coupling constants make the lifetime
maximum?



Big Fix In prob. Int.



Cosmological constant

What value of A maximizesjdz‘ﬂ%zo(ziﬁ)‘z?

WKB sol #(z,4)~

with p Z /1 \/ -2U(z). S°topology

) \/z p(z,4) C .

assuming all matters decay to radiation

Ua(2) Ua(?) Ua(2) Ua(2)

/ / / / %%%%%%%%%% ﬁ

A<0 A=0 0<A<A, <A:Acr> A <A
The cosmological constant \ ~curvature~energy density
in the far future is Aer ~ 1/Chrqq(extremely small)

predicted to be very small.



The other couplings (Big Fix)
P(A)= exp( ‘m(/l)‘z) ‘w(/l)‘z —17(1)= jdz b 4 (z,/l)‘2

The exponent 1s divergent, and regulated by the IR cutoff :

ZIR 1
jdz‘¢E:O (Z,/'L)‘Z _ J'O Z\/r ~ . /Crad log AT (—Acr Nl/Crad

assuming all matters decay to radiation

BIG FIX

A are determined in such a way that C, (1)
IS maximized.




Example of the Big Fix

non-trivial example QCD coupling or proton mass M

We assume that dark matters decay faster than protons,
and do not consider matter dominant era by leptons

after the protons decay. U
1 Cmatt Crad

U (a) =5 - A~ G a
d d d d.

|¥ the curvature term balances with matter before

the proton decay, the universe bounce back when the
protons decay.

C,,q 1s maximized if the curvature term balances with the
energy density when the protons decay.



Example of the Big Fix

The curvature term balances with the energy density when
the protons decay.

1 GM N : total baryon number
= ==, M=Ngm. 3 Y
d. , m : proton mass
A = (GI\/I 72)5 . proton life time
= r=GM 4
T = m‘jUT5 ,GM = NBrzn
Mo Mg, Jgm e
o mé= P4 GUT
0" Ny
- 3
N Me?Me, . i CE 10" protons in (10 y)
B — 4 6 , ,
g m In our universe

= Ayecent = 10° x10°ly  Reasonable?



