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PART 1   Desert 



LHC gave beautiful results 

But in some sense, they indicate  

“the worst scenario”. 

    Higgs particle was discovered,  

    but nothing else. 

    Especially, no signal of the SUSY. 

We need to reconsider the origin of the 

fine tuning. 



Suppose the underlying fundamental theory, 
such as string theory, has the momentum 
scale mS and the coupling constant gS . 

 

The naturalness problem 

Then, by dimensional analysis and the power 
counting of the couplings, the parameters of 
the low energy effective theory are given as 
follows: 



dimension 2  (Higgs mass) 

dimension 4   

      (vacuum energy or cosmological constant) 

naturalness problem  (cont.’d) 

dimension  0  

        (gauge and Higgs couplings) 

dimension -2  (Newton constant) 
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SUSY as a solution to the naturalness problem  

Bosons and fermions cancel the UV 
divergences: 

However, SUSY must be spontaneously 
broken at some momentum scale MSUSY , 
below which the cancellation does not work. 
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(cont’d)  

Therefore, if MSUSY is close to mH , the 
Higgs mass is naturally understood, 
although the cosmological constant is still 
a big problem.  

 

However, no signal of new particles is 
observed in the LHC below 1 TeV. 

 

We have to think about other possibilities. 

 

 



Possible explanation to the naturalness 

problem other than SUSY  

1. We do not have to mind. We should simply 
take the parameters as they are. 

2. Anthropic principle. 

    The parameters should be such that we can exist. 

a) In some model, the wave function of the 
universe is a superposition of various worlds 
each of which has different low energy 
effective Lagrangians: 

1 2 3 .       

We are sitting in one of them. The parameters 
there must be such that we exist. 



Anthropic principle. (cont.’d) 

b) The universe has different parameters place          
by place. We are sitting at one place, where    
the parameters are such that we can exist. 

 3. The parameters are fixed by some non- 

   perturbative effect of quantum gravity/string   

   theory such as Coleman’s baby universe     

   mechanism. 

Although we do not understand the real reason, 

nature chooses the parameters as we observe.  

 



Possibility of desert 

It may not be right to doubt the SM in the high 
energy region by the reason that it is not natural. 

 

The right attitude would be to examine simply 
whether the SM is valid to the string scale or some 
new physics is needed below the scale . 

 

If it is the former case,  there is a possibility for 
the desert, that is, we have only the SM below the 
string scale. 

 

String theory 

SM ms 



Can the SM valid to the Planck/string scale? 

In order to answer the question, we consider the 
SM Lagrangian with cutoff momentum Λ, 

 

 

and estimate its bare parameters in such a way that 
the observed low energy parameters are recovered. 

 

If no inconsistency arises, it means that the SM can 
be valid to the energy scale Λ.  

.



The bare coupling λＢ  

As usual, the bare couplings can be approximated 

by the running couplings at Λ in a mass 

independent scheme such as MS bar.   

The error can be evaluated once the cutoff scheme 

is specified, and is expected as small as the two-loop 

corrections. 
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: dimensionless couplings

        (gauge, Yukawa, Higg sself couplings)
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• In general, the bare mass consists of quadratically 
divergent part and logarithmically divergent part: 

 

 

 

• Here we consider only the first part, or we simply 
assume  

 

•          is determined by an order by order 
perturbative calculation in the bare couplings 

   demanding  
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The ratio depends on the regularization, but its 

dependence is within a factor of 2~3. 

If we introduce the proper time regularization 

 

                                                               ,  we have 

                            ,                                                 . 

 

If we employ the momentum cutoff Λ, we have                   , 

which indicates                  . 

Ratio between I1 and I2 



SM calculation 

The calculation is simplified, if we consider the 

symmetric phase  ⟨φ⟩ = 0 , and calculate in the 

Landau gauge: 

.



SM 1-loop 
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SM 2-loop 



Regularization dependence is small 

• The ratio is regularization dependent, but it is about 

the order of 1/200. 

• It turns out that 2-loop contribution is small in the 

case of the SM. 



Renormalization group equation 



Initial values 

G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. 

Giudice, G. Isidori and A. Strumia,  

Higgs mass and vacuum stability in the Standard Model at 

NNLO," JHEP 1208 (2012) 098 [arXiv:1205.6497 [hep-ph]]. 



Bare parameters of the cutoff theory (1) 

mHiggs =126GeV 

   mtop =172 GeV 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

No inconsistency arises 

below the string scale. 



Bare parameters of the cutoff theory (2) 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

Higgs field becomes unstable. 

mHiggs =126GeV 

   mtop =190 GeV 



Bare parameters of the cutoff theory (3) 

mHiggs =126GeV 

   mtop =150 GeV 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

No inconsistency arises, 

but the Higgs self 

coupling tends to diverge. 



Bare parameters of the cutoff theory (4) 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

Higgs field becomes unstable. 

mHiggs =100GeV 

   mtop =172 GeV 



Bare parameters of the cutoff theory (5) 

mHiggs =150GeV 

   mtop =172 GeV 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

No inconsistency arises, 

but the Higgs self 

coupling tends to diverge. 



Stability of the potential 



mtop =171 GeV 

Standard Model Criticality Prediction: 

Top mass 173 ± 5 GeV and 

Higgs mass 135 ± 9 GeV. 

 

Froggatt, Nielsen(1995) 



mHiggs =125GeV 

mtop =171.31 GeV 

mHiggs =127GeV 

mtop =172.29 GeV 

mHiggs =129GeV 

mtop =173.26 GeV 

Froggatt Nielsen by the recent values 



small mt 

large mt 

Cut off dependence of the bare mass 



Bare Higgs mass vanishes  
at Planck scale if mt=170GeV      

1-loop only 
1+2 loops 

Top mass dependence of the bare mass 



Bare Higgs mass becomes zero if mt=170GeV. 

Quadratic coupling vanishes if mt=171GeV. Λ=MPl 

Both mB
2 and λ vanish around the Planck scale 



Three quantities, 

 

become close to zero around the Planck/string scale. 

Triple coincidence 

 , ,B B Bm  



• The SM can be valid to the string scale.  

   Desert is possible. 

• The experimental value of the Higgs mass seems to be just 

on the stability bound.  

     Nature seems to like the marginal stability. 

• The bare Higgs mass becomes close to zero at the string 

scale. It implies that SUSY is restored at the string scale. 

Actually there are many string vacua in which SUSY is 

broken at the string scale. 

• The Higgs self coupling and the beta function also becomes 

close to zero at the string scale. It indicates that the Higgs 

potential becomes almost flat around the string scale, which 

opens the possibility that the Higgs field plays the roll of 

inflaton. 

• It is important to know the top mass within 1% error. 

Summary of theＨｉｇｇｓ bare parameters 



PART 2   the Naturalness 



 
We consider the possibility that the fine tunings 

result from not the conventional local field theory 

but something slightly beyond. 

 

  



2-1. Froggatt and Nielsen 



Canonical and micro canonical ensembles 
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We start with  a micro canonical like path integral: 

One value of        dominates in the RHS: 
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The original  

effective potential. 
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The Higgs potential should have a degenerate 

minimum at a large value of the field.  

mH = 125.6 GeV 



generalization 
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Again one value of        dominates in the RHS: 
2m
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The micro canonical like path integral can be 

generalized to 

is natural. Planck scaleM



2-2. Coleman’s Baby Universe 



Consider Euclidean path integral which involves 

the summation over topologies, 

Coleman (‘88)    an explicit mechanism to get the factorized action 

Then there should be a wormhole-like configuration in 

which a thin tube connects two points on the universe.  

Here, the two points may belong to either the same 

universe or the different universe. 

   
topology

exp .dg S 

If we see such configuration from the side of the large 

universe(s), it looks like two small punctures.  

But the effect of a small puncture is equivalent to an insert 

ion of a local operator.  



Summing over the number of wormholes, we have 

bifurcated wormholes   

⇒  cubic terms, quartic terms, … 
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,
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Thus wormholes contribute to the path integral as 



The effective action becomes a factorized form 
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By introducing the Laplace transform  
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Coupling constants are not merely constant but to 

be integrated. 
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we can express the path integral as  



A solution to the cosmological constant problem 
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      expZ d w d S     

including multiverse 

 single single

0
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Z Z
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Difficulty (1)  

Problem of the Wick rotation  

 WDW eq. 

←wrong sign 

“Ground state” does not make sense.     

total 0H  

total universe matter graviton

2

universe

1

2

H H H H

H p
a

   


   

 

Wick rotation is not well defined.      t 

matter ,H

universeH

: radius of the universea

matterH is bounded from below.     

universeH is bounded from above.     



The overall phase of  singleZ

The multiverse partition function 

   multi singleexp .Z d w Z 

   single expZ dg S 

is important.  

We need subtle analyses. 

Difficulty (2)  

Overall phase of the Partition function  



2-3. Lorentzian Path integral of  
the factorized action 



It is natural to imagine that the low energy effective 

action of a theory including gravity has the same 

structure as Coleman’s: 
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More precisely, the path integral is given by 
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Then the coupling constants are determined by the state 
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Coupling constants are not merely constant but to 

be integrated. 

e.g. IIB matrix model 
Y. Asano, A. Tsuchiya, HK 
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It is natural to apply this action to the multiverse.  
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2-4. Partition function of  
a single universe 



Basic problem 

Define and evaluate the partition 

function of a single universe: 
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The path integral of a universe 
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Question: 

       Is there a natural choice for them? 

T

If the initial and final states are given, the path 

integral is evaluated as follows. 
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Initial state 

 For the initial state, we assume that the universe  

 emerges with a small size ε.  

,

: probability amplitude of a universe emerging.

i a matter 



  
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Evolution of the universe 

Λ～curvature    
       ～energy density 

with 

S3 topology 
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Final state: case 1 

 For the final state, we have two possibilities.  

finit
e 

 

The universe is closed. 

We assume the final state is  

 

.f a matter   

The partition function 
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Final state: case 2  

∞ 

 

The universe is open.  

It is not clear how to define the 

path integral for the universe: 
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As an ad hoc assumption we consider  
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Final state: case 2 contd 
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Then the partition function becomes 
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The result does not depend on       except for the phase 

which should come from the classical action. 
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Under the ad hoc assumption, we have  

  the partition function for a universe 

∞ 

finite 

 1Z 

crfor     of order 1,const
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4

1
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

Then the      integration for the multiverse partition  

    1exp .Z d w Z   

has a large peak at                 , which means that  

the cosmological constant at the late stages of the 

universe almost vanishes.  



  cr 



2-5. Naturalness and Big Fix 



Big Fix 

Then the multiverse partition function is given by 

cr rad1/C

BIG FIX  

The low energy couplings are determined in such a way 
that the entropy at the late stages of the universe is 
maximized. 

For simplicity we assume the      topology of the space and 

that all matters decay to radiation at the late stages. 

rad

2 4

1
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C
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Examples of the Big Fix (1) 

However, some of the couplings can be determined without 

knowing the details of the cosmological evolution. 

 radC 
If the cosmological evolution is completely understood, 

we can calculate              theoretically, and all of the  

renormalized couplings are in principle determined. 

case 1.  Symmetry QCDexample 

1. It becomes important only after the QCD phase 

    transition. 

2. The  mass spectrum of hadrons is invariant under 

                         
QCD QCD.  

⇒   is minimum or maximum at             at least locally.  QCD 0 radC

QCD

radC

Nielsen, Ninomiya 

At present, we do not have enough knowledge about the  

very early and late stages of the universe, especially the 

origin of inflation, dark energy and dark matter. 



case 2.  End point Hexample    Higgs coupling 

1.  Some (renormalized) couplings are bounded.  

2.          can be monotonic in them. 
radC

⇒         is maximized at the end point.  radCH

radC

min

A scenario for    .  H

Fix vh to the observed value and vary .H

assuming the leptogenesis 

 ⇒ sphaleron process 

 ⇒ baryon number  
H

 ⇒ radiation from baryon decay  

⇒ Higgs mass is at its lower bound.  

Examples of the Big Fix (2) 



Summary 2 
In wide classes of quantum gravity or string theory, the 
low energy effective action has the factorized form: 
 
 
The multiverse appears universally, and it becomes a 
superposition of states with various values of the coupling 
constants.  
 
It is important to investigate the consequences of such 
action, but at present we do not fully understand their 
physics. It seems that we do not have even the right 
definition of the path integral for such action.  

Although it is not conclusive, the naturalness problem 
might be solved by the dynamics of such action. In the 
most optimistic case, the Big Fix occurs, and all the low 
energy coupling constants would be determined in a 
predictable way. 

eff .i i i j i j i jk i j k

i i j i jk

S c S c S S c S S S     



• It seems we have nothing other than a minor 
modification of the SM below the string scale. 

• It is possible that the fine tunings result 
from not the conventional local field theory 
but something (slightly) beyond. 

• For example, we can consider the possibility 
that the couplings are fixed to maximize the 
entropy of the universe. This can be checked 
for some couplings, if they do not play crucial 
roles in the early or late universe. 

Conclusion 



Appendices 



Higgs field as inflaton (1) 

If we allow a fine tuning of the parameters of the 

SM, the Higgs field can play the role of inflaton. 

The effective potential of the Higgs field is given by  

    4 6 86 8
eff 2 4

P P

.V c
m m

 
        

Here the first term on the RHS is determined by 

the low energy renormalizable theory, that is the 

standard model, and the other terms are so called 

Plank suppressed terms that depend on the 

underlying microscopic theory.  

c is a constant of order the coupling constants: 

                                c ~ 0.1 . 

[with Y. Hamada and K. Oda] 



Higgs field as inflaton (2) 

Then the first term of Veff looks as follows. 

Therefore if we add the second term, we can 

obtain a saddle point by tuning one parameter. 

  4 66

2

P

c
m


   

  4c  

 10log c

 10log c



Room for extra fields 

There is a room for introducing small 

modification. For example, if we introduce a 

scalar field, the bare coupling constants change 

As below. 

 
2 4 2 †1

SM
2 4! 2

L 

 
        

mHiggs =125GeV 

mtop =172.892 GeV 

κ 
ρ 



• If we assume the see-saw mechanism, 

• Our analysis corresponding to the case where  
MR is small: 

 

 

 

• The case where        is large is also interesting. 

Neutrino Yukawa couplings  



2-1. The IIB matrix model 
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IIB Matrix Model 
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Green-Schwartz action in the Schild Gauge 

Regularization by matrix 
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 {  ,  } → [  ,  ] 

         

         →    Tr

A candidate of the constructive definition of string theory. 

Evidences 

(1) World sheet regularization 

Ishibashi, HK, Kitazawa, Tsuchiya 



(2) Loop equation and string field 

)))(exp(())(( fermionAkdiPTrkw  


 

)(| k

Wilson loop = string field 

 

   ⇔  creation annihilation operator of  

loop equation  → light-cone string field 
 

This can be shown with some  

assumptions . 

.90 constxxx 



(3) effective Lagrangian and gravity 

Integrate out 
this part. 

 )1()1( 1 ax 

 )2()2( 1 ax 

})()(

)()({
)(

1

)2()2()1()1(

)2()2()1()1(

8)2()1(












fftrfftrconst

fftrfftrconst
xx

Seff

The loop integral gives the 

exchange of graviton and dilaton.  
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Various possibilities for the emergence of 

space-time ⇒ various interpretations of Aμ  

(1)  Aμ  as the space-time coordinates  

    mutually commuting  Aμ  ⇒ space-time  

Space-time in the IIB matrix model  

(2)  Aμ  as non-commutative space-time  

    non-commutative  Aμ  ⇒ NC space-time  

(3)  Aμ  as derivatives 

in the naive large-N reduction  



2-2. Derivative interpretation 



embedding in ten matrices  

 
,

( ) ( 1.. )

0 ( 1..10)

b

a b

a

C a D
A

a D


 



  
 

 

  




 b

b

aa CA 
,

)(

If the covariant derivative acts on the regular 

representation field, its action can be decomposed 

into D scalars. 

,

( ) , ( 1,.., )b

aC a D

  : the Clebsh-Gordan coefficients 

vector r r rV V V V    r : regular representation 

 : regular representation field on D-dim manifold M 

Hanada, HK, Kimura  

Derivative interpretation of the IIB matrix 

model  



Clebsh-Gordan coefficients  

The space of the regular representation is the  

function space on G: 

(9,1)G spin

 : .V f G reg

G acts on it as the left multiplication: 

   1 .
g G

f z f g z



vector regV V   ,a zAn element of   is expressed as  

where a is the vector index. 

     1 .b

a a b
g G

z R g g z  



G act on it as 



       1

( ) ,b

a ba
z R z z 

 

         

   

( )

1 1 1 1

( ) ( )

1

( ) , 1, , .

a

c b b

a c b a b
g G

a

z

R z R g g z R z g g z

g z a D



 



   







 

If we define  

for each       ,             is the regular representation: 

   , 1

( ) ( ) , .b z b

a z aC R z z z  

 ,z z 

If we regard z  as a kind of continuous index,  

the Clebsh-Gordan coefficients for the decomposition 

:delta function on G 

vector reg reg regV V V V   

can be written as 

( )a
   a

z



field of the regular representatation  

A field of the regular representation means that  

we have a function on G  at each point on M.  

 ( , ), , .x z x M z G  

We then glue the patches by the left multiplication of 

the transition function 

Locally it can be written as a function of x and z 

               1,
( , ) ( , ), .

I I J I J J I J
x z x g x z x U U 


  

 I
U

 J
U

In other words,       is a global  

section of the principal G -bundle  

associated with the transition functions. 


prinE

Therefore the space of the regular representation 

field V is identical to    prin .V C E



Endomorphic covariant derivative 

Now we can explicitly perform the procedure to 

convert the covariant derivative to endomorphisms. 

  ˆ( )cd

a b cde x x O

    

ˆ ( , ) ( , (1 ) ) ( , )ab ab

ab abO x z x z x z       

As is discussed, if we multiply the CG coefficients, 

    1

( ) ( )
ˆ( ) ,b cd

a a b cdR z e x x O

 
   

( )a ( 1,.., )a D

( )a

each of  

Therefore if we introduce UV and IR cutoff to  

the space V, each of         is expressed by a matrix. 

is an endomorphism on V . 

We start with the covariant derivative acting on the 

regular representation field: 



Classical EOM of the derivative interpretation 

If we impose the  Ansatz 

it becomes  

The classical EOM of the IIB matrix model is   

  ( 1.. )

0 ( 1..10).

a

a

a D
A

a D

 
 

 

 , 0.a a bA A A   

 ( ) ( ) ( )0 , , 0 , , ( )

0 , 0 0 .

cd ca

a a b a a b a ab cd ab c

cd

a ab ab ab

R O R

R R R

                  

    

The Einstein equation follows from the EOM of the 

IIB matrix model 



multiverse in the matrix model 

Multiverse appears naturally in the derivative interpretation.  

matrix model 

・ 

b

b

aC 




,

)(

,

( )

b

a bC 

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Each block 

represents 

a universe. 

・ 

quantum gravity 

0 

0 



2-3. Low energy effective action 



We can calculate the low energy effective 

action by using the background field method, 

and we obtain 

.)()(

,eff

xOxgxdS

SSScSScScS
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kji
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kjij
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iji
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
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

 

xy xz

Y. Asano, A Tsuchiya, HK 

Factorized action from IIB matrix model 

y

in  the Lorentzian space time 



In the derivative interpretation, matrices are identified 

with endomorphisms on 

We decompose them to the background and fluctuation: 

If we introduce a coordinate basis of V 

 , ; , , , .a aA x g y h x g A y h

Background field method 

We further expand the background around flat space: 

 .prinV C E

  prin, ,where , ,x g x g E

they are expressed as bilocal fields on :prinE

     0
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x g O x y  


    



  


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We can further expand the background by the Peter-Weyl 

theorem: 

There are infinite towers of higher spin fields. 

 

 

( )

( ) ( ) ( )

:irr.rep ,

( )

( ) ( ) ( )

:irr.rep ,

( , ) ( ),

( , ) ( ),

j i

a r i a r j

r i j

b j b i

a ar i r j

r i j

B x g R g B x

h x g R g h x





 

 
background  

fields 



We do not expand       , but treat it as a bi-local field.       

    (We also decompose the fermionic field  similarly.) 

Then the action becomes 

( )a





2
0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )

2
0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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4 , , , fermion .
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S Tr A A A A A

A A A A A
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

    

    

           

                  

           

The 0-th order term 

 2
0 0

0 ( ) ( )

1
,

4
a bS Tr A A   

can be evaluated by the heat kernel method, which 

gives a local action: 
( tree)

eff 0 , ( ).i i i i

i

S S c S S gO x    
      are local field consisting of the background fields. ( )iO x



The one-loop contribution is obtained by the Gaussian 

integral of the quadratic part.  

For simplicity, we consider one hermitian matrix        

instead of                    because the mechanism of the 

factorization is completely captured by this case. 


 and ,aA 

We consider 
  21

, interactions,
2

aS Tr A   

whose quadratic part is given by 

 2

2
(0)1

, .
2

aS Tr A


    



In terms of the bi-local field, 
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where 
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 are Lorentz scalars. 
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A y h R h
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 
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Square gives the propagator. 
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Then the propagator is given by 
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(1) independent translation on each index line: 

(2) independent Lorentz tr. on each index line: 
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( ) : scalar propagatorD x



The general one-loop  

diagrams look like the figure,  

and are given by a sum of 

terms of the form  

1 1 1 1

1

,
n

D D D D

n n n n i
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I d x d x d y d y dg dg dh dh P
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( ) : differential polynomials of the backgroung fields at A x x

iF is a Lorentz scalar because it comes from insertions  
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( ) ( ),  and ( ) .b
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 


of scalars    So is        .    iF 



We expand the back ground fields on     around                 

such as 
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Here            is a differential polynomial of the 

background fields with Lorentz indices I.  
Similarly for       . 

Thus I  becomes the sum of the terms    
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Then       becomes a sum of the terms like     
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Because of the invariance of the propagators ,        is 

From this it follows    
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covariant under Lorentz tr. on each index line: 
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 

  

I JK

where                  are invariant constant tensors.     and I JC C

   .D DI d xd y A x A y 

Thus we find that I  is factorized into two scalars    



In the two loop order, from the planar 

diagrams we have 
2-loop

eff

, ,

,i jk i j k

i j k

S c S S S

Finally, because of the diffeomorphism invariance, the 

terms of the effective action should be combined to  

1-loop

eff , ( ) ( ).D

i j i j i i

i j

S c S S S d x g x O x  

while non-planar diagrams give 

2-loop NP

eff .i i

i

S c S

z y

x



Probabilistic interpretation 



Probabilistic interpretation (1) 

  postulate 

 T : age of the universe 

 
2

probability of finding a universe of size z dz z 

   0Ez z  

 
2

0

1

( )

1

Edz z dz
z p

z d

z

d
z

T

 

  

 


21

2

H
H z p z zp

p

 
       

 

    0

1
exp

( )

z

E z i dz p z
z p z

 
 

 meaning of this measure 

z

T

 
2 2

z dz dT ⇒   

2
 probability of a universe emerging in unit time 

the time that has passed  

after the universe is created 



Probabilistic interpretation (2) 

  is a superposition of the universe with various age, 

z

T

 +   

z

T

z

T
 +    +…   

 

T T dT
gives the probability of finding a 

universe of age                  . 
 

2 2
z dz dT 



infrared cutoff 

We introduce an infrared cutoff  

for the size of universes. 

IRz

ceases 
to 
exist 

bounces 
back 

o
r 

   
2 2 2

life time of the universez dz dT    

dimensionless 

∞ finit
e 

Lifetime of the universe 



Wave Function of the multiverse (1) 

Multiverse appears naturally in quantum gravity / string theory.  

matrix model 

・ 

b

b

aC 




,

)(

b

b

aC 




,

)(

Each block 

represents 

a universe. 

・ 

quantum gravity 

Okada, HK 



Wave Function of the multiverse (2) 

The multiverse sate is a superposition of N-verses. 

 multi

0

,N

N

d w   




   

     1 1, , , , ,N N Nz z z z     

,  ,  

 multi

N

d w   

   exp i i

i

Z d w d i S   
 

   
 
 



Wave Function of the multiverse (3) 

Probabilistic interpretation 

 multi

0

,N

N

d w   




   

     1 1, , , , ,N N Nz z z z     

1 1 1, , N N Nz z dz z z dz 

the probability of finding N universes with size  

   
2 2

1 1, , ,N N Nz z dz dz w d  

and finding the coupling constants in  

.d  

represents  



Probability distribution of  

     1 1, , , , ,N N Nz z z z     



     

    

    

2 2
1

1

0

2 2

2 2

, , ,
!

exp ,

exp

N
N N

N

dz dz
P z z w

N

dz z w

w

  

  

  





 









   
2

0 , (life time of the universe)Edz z    

0E    

     is chosen in such a way that           is maximized,    

can be very large.    

irrespectively of   .w 



We have seen 

the coupling constants are chosen in 

such a way that the lifetime of the 

universe becomes maximum. 

What values of the coupling constants make the lifetime 

maximum? 

the question 



Big Fix in prob. Int. 



WKB sol with 

Cosmological constant 

Λ～curvature～energy density 

(extremely small) 

What value of Λ maximizes 

0 

? 

S3 topology 

The cosmological constant 
in the far future is 
predicted to be very small.  

IRz

 
 

0

1
,

,
E z

z p z
 


  , 2 ( ).p z U z  

assuming all matters decay to radiation 

 
2

0 ,Edz z 

0  cr0    
cr   cr  



The other couplings (Big Fix)  

      
2 2

expP w   

The exponent is divergent, and regulated by the IR cutoff : 

 
2

0 rad
0

cr

1
, log .

IR

E IR

z

dz z C z
z

 


  cr rad1/C

   
2

0 ,Edz z     



BIG FIX   

  are determined in such a way that            
is maximized. 

 radC 

assuming all matters decay to radiation 



Example of the Big Fix 

mnon-trivial example   QCD coupling or  proton mass 

We assume that dark matters decay faster than protons,  

and do not consider matter dominant era by leptons 

after the protons decay. 

If the curvature term balances with matter before 
the proton decay, the universe bounce back when the 
protons decay. 
The earlier the protons decay, the less Crad remains.   

Crad  is maximized if the curvature term balances with the 

energy density when the protons decay.    

  matt rad

2 3 4

1 C C
U a

a a a
    a

U

*a



Example of the Big Fix (cont’d) 

The curvature term balances with the energy density when 

the protons decay.    

2 3

* *

1
, .B

GM
M N m

a a
 

 
1

2 3
*a GM

: total baryon number

: proton mass

: proton life time

BN

m



⇒ GM  4

4 5 2
,GUT B

P

m N m
GM

g m m
  

2 4
6

4

P GUT

B

m m
m

g N
⇒ 

2 4
105

4 6
10P GUT

B

m m
N

g m


in our universe  

Cf.   
3

78 1010  protons in 10  ly

⇒ 
9 10

present 10 10 lya   Reasonable? 


