Z'-ino driven electroweak baryogenesis

Eibun Senaha (Nagoya U), Aug 6, 2013. @YITP

$$m_{H_3}^2 = \frac{R_\lambda v_S}{v_d v_u} \left(v^2 + \frac{v_d^2 v_u^2}{v_S^2} \right), \quad m_{H^\pm}^2 = m_W^2 + \frac{2R_\lambda v_S}{\sin 2\beta} - \frac{|\lambda|^2}{2} v^2, \quad R_\lambda = \frac{|\lambda||A_\lambda|}{\sqrt{2}} \cos(\delta_{A_\lambda} + \delta_\lambda + \theta).$$

 $T_C: T$ at which V_{eff} has the two degenerate minima.

 \Box In the light Z' (small v_s) region, the EWPT can be strong 1st-order due to the doubletsinglet Higgs mixing effects. □ In such a case, Z' must be leptophobic.

Conclusions

We have considered the EWBG in the UMSSM.

D EWPT can be strongly 1st-order due to the doublet-singlet Higgs mixing effects.

 \Box In such a case, the Z' boson has to be less than (150–300) GeV and thus leptophobic.

 \square Z'-ino can provide the CP-violating source for the sufficient BAU.

Next step

Model building and experimental constraints