PPP2013 @ Kyoto univ., 5-9, August, 2013

Possibility of Another Well-mixed Light Higgs

Kwang Sik Jeong, Yutaro Shoji, Masahiro Yamaguchi

Department of Physics, Tohoku University

GeV, we need

Next-to-MSSM Why NMSSM?

 $\begin{bmatrix} \text{Electroweak Symmetry Breaking} \\ \frac{1}{2}m_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2 \\ m_{H_u}^2 = m_{H_u}^2|_{tree} - \frac{3}{8\pi^2} \left[|y_t|^2 (2m_{\tilde{t}}^2 + |A_t|^2) \ln \frac{M_{mess}}{m_{\tilde{t}}} \right] + \dots \end{bmatrix} \longleftrightarrow \begin{bmatrix} \text{Higgs Mass} \\ m_h^2 = m_Z^2 \cos^2 2\beta \\ + \frac{3y_t^2}{4\pi^2} m_t^2 \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} - \frac{1}{12} \left(\frac{A_t^2}{m_{\tilde{t}}^2} \right)^2 \right] + \dots \end{bmatrix}$

3. $b \rightarrow s\gamma$ constraint on the charged higgs mass

 $m_H \simeq m_{H^{\pm}} \gtrsim 350 \text{GeV}.$

4. LEP bound on the sVV coupling for $m_s \lesssim 114 \text{GeV}$, where s will decay dominantly into $b\bar{b}$.

Approximation

In order to keep R_h^{VV} close to 1, we have to cancel the modification from θ_2

	L
• To avoid a fine-tuning, we need	• To get 125
$-\mathbf{Small} \ m_{\tilde{t}}^2$	-Large $m_{\tilde{t}}^2$
$-$ Small A_t .	-Large A_t .

- \star In the NMSSM, additional contributions to the Higgs mass can alleviate the tension between them;
 - -Tree level contribution: $\delta m_h^2 = \frac{2\lambda^2}{q^2+q'^2}m_Z^2\sin^2 2\beta$
 - -Singlet-doublet mixing w/ keeping the $h \rightarrow VV$ signal ratios close to the SM predictions.^[1]
- $\Rightarrow We \ consider \ a \ light \ singlet-like \ boson \ with \ a \ sizable \ fraction \ of \ the \ SM-like \ Higgs \ and \ examine \ the \ possibility \ of \ detection \ at \ collider \ experiments.$

Model Description

A general singlet extension of the MSSM is written with arbitrary functions f(S) and $\tilde{f}(S)$:

 $W = \lambda S H_u H_d + f(S) + (\text{MSSM} - \text{Yukawa})$ $-\mathcal{L}_{soft} = A_\lambda \lambda S H_u H_d + \tilde{f}(S) + h.c. + (\text{MSSM} - \text{soft masses}, \text{ A - terms}).$

Mass Matrix in the CP-even Higgs Sector

The mass matrix is described with 6 independent massive parameters and $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$;

 $\left(\frac{m^2}{m^2} - \frac{\Lambda_2 \sin^2 2\beta}{m^2} \right) = \left(\frac{\Lambda_2 \sin^2 2\beta}{m^2} - \frac{\Lambda_2 \sin^2 2\beta}{m^2} \right)$

with one from θ_1 . Since the coefficient of $\sin \theta_1$ is larger than 3 and we are considering $\theta_2 > 0.3$, θ_1 should always be positive and of the order of θ_2^2 or less. Thus we approximate all the relations up to $\theta_1^m \theta_2^n \theta_3^k$ with 2m + n + k = 2;

$$\begin{split} \lambda^2 \simeq &\frac{1}{v^2} \left\{ M_Z^2 - \frac{1}{2} (\tan\beta - \cot\beta) \left[(m_h^2 - m_0^2) - (m_h^2 - m_s^2) \theta_2^2 \right] \right\} \\ \mu \simeq &- \frac{m_H^2 - m_s^2 \theta_3}{2v \cos^2 2\beta \lambda} \left(1 - \frac{1}{2} (\tan\beta - \cot\beta) \frac{m_h^2 - m_s^2 \theta_2}{m_H^2 - m_s^2 \theta_3} \right) \\ \theta_1 \simeq &\frac{(R_h^{VV} - 1) + \theta_2^2}{1.67 \cot\beta + 1.39 \tan\beta} \\ \theta_3 \simeq &\frac{\theta_1 m_H^2 - m_h^2}{m_H^2 - m_s^2} \left(1 - \frac{1}{\theta_1} \frac{M_Z^2 - \lambda^2 v^2}{m_H^2 - m_h^2} \right). \end{split}$$

We have several implications from the above relations.

- λ^2 is roughly determined by m_0 and $\tan \beta$.
- The larger m_H becomes, the more constrained is θ_3 .
- If m_H is small, also μ becomes small.
- When m_H is small, we need a small $\tan \beta$ and a small λ .
- If R_h^{VV} is enhanced, μ gets slightly large.

Examples

Fixing $(m_H, \theta_3, \tan \beta, R_h^{VV})$, we can draw these constraints and signal ratios on

$$M^{2} = \begin{pmatrix} m_{0} - \Lambda_{3} \sin 2\beta & \Lambda_{3} \sin 2\beta \cos 2\beta & \lambda b [2\mu - \Lambda_{1} \sin 2\beta] \\ \Lambda_{3} \sin 2\beta \cos 2\beta & \Lambda_{3} \sin^{2} 2\beta + \frac{2\Lambda_{2}}{\sin 2\beta} & \lambda v \Lambda_{1} \cos 2\beta \\ \lambda v [2\mu - \Lambda_{1} \sin 2\beta] & \lambda v \Lambda_{1} \cos 2\beta & \Lambda_{4} \end{pmatrix}$$

with basis (SM-like higgs " \hat{h} ", another doublet higgs " \hat{H} ", singlet " \hat{s} "), where $\Lambda_3 = M_z^2 - \lambda^2 v^2$ and other Λ 's are independent functions dependent on $f^{(n)}(\mu/\lambda)$ and $\tilde{f}^n(\mu/\lambda)$. m_0^2 is defined by M_Z^2 plus quantum corrections to the mass parameter of \hat{h} and $\mu = \lambda \langle s \rangle$.

Mixing Angles and Mass Eigenvalues

Since the mass matrix has enough free parameters, we can reparameterize it with mass eigenvalues $(m_h^2 = 125^2 \text{GeV}^2, m_H^2, m_s^2)$ and mixing angles $(\theta_1, \theta_2, \theta_3)$. The 125GeV Higgs h becomes a mixture of \hat{h} , \hat{H} and \hat{s} ;

 $h = \cos \theta_1 \cos \theta_2 \hat{h} - \sin \theta_1 \hat{H} - \cos \theta_1 \sin \theta_2 \hat{s}.$

Thus its coupling to SM particles are determined by θ_1, θ_2 and $\tan \beta$. Constraints

- 1. Since the original parameters, especially μ , λ and m_0^2 , are not arbitrary, we already have several constraints on mass matrix:
- perturbative bound

$$0 < \lambda^2 = \frac{1}{v^2} \left[M_Z^2 - \frac{M_{12}^2}{\sin 2\beta \cos 2\beta} \right] \lesssim 0.7^2$$

• chargino search

$$100 \text{GeV} \lesssim |\mu| = \left| \frac{M_{13}^2 + M_{23}^2 \tan 2\beta}{2\lambda v} \right|$$

singlet-fraction vs. m_s planes. The upper figures show values of μ, λ , and m_0 and the constraints. Meanwhile the bottom ones show corresponding R_h^{bb} and $R_h^{\gamma\gamma}$. The yellow regions are excluded by the constraint on m_0^2 . The gray regions are excluded by the LEP search. In all figures, θ_2 is negative.

- assuming $A_t = 0$ and the stop mass is above 600GeV and below a few TeV $(105 \text{GeV})^2 \lesssim m_0^2 = M_{11}^2 + M_{12}^2 \tan 2\beta \lesssim (120 \text{GeV})^2$ 2. The Higgs signal ratios $R_h^{ij} \equiv \frac{\sigma_h \text{Br}(h \rightarrow ij)}{\sigma_s^{\text{SM}} \text{Br}^{\text{SM}}(h \rightarrow ij)}$
- R_h^{VV} should be close to 1

 $0.9 \lesssim R_h^{VV} \simeq 1 + (1.7 \cot \beta + 1.4 \tan \beta)\theta_1 - \theta_2^2 \lesssim 1.1$

• Similarly, we have R_h^{ff} and $R_h^{\gamma\gamma}$ but the constraints are not so severe. $R_h^{bb} = R_h^{\tau\tau} \simeq (1 - 2\theta_1 \tan \beta) R_h^{VV}$ $R_h^{\gamma\gamma} \simeq (1 - 0.57\theta_1 \cot \beta - 2.5\delta C_{\gamma}) R_h^{VV}$,

where δC_{γ} is the radiative correction from the charged higgsino loop^[2];

 $\delta C_{\gamma} \simeq 0.17 \frac{\lambda v}{|\mu|} \theta_2.$

- A sizable singlet component in 125GeV higgs can be compatible with the current data within low energy SUSY.
- When the singlet-doublet mixing is sizable and R_h^{VV} is close to 1, R_h^{ff} is suppressed. Meanwhile if higgsinos are light, $R_h^{\gamma\gamma}$ is suppressed or enhanced depending on the sign of θ_2 .
- Less fine-tuned mixing angles require small m_H and then μ is constrained to be small. Thus the LSP will have a sizable higgsino component.
- If one allows fine-tuned mixing angles, μ can be large.
- It is still possible to observe another Higgs boson at future collider experiments and if it is observed, the higgsinos and the other higgs bosons will be naturally light.

References [1]K. Choi, S. H. Im, K. S. Jeong, M. Yamaguchi, 1211.0875/hep-ph. [2]D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, 1207.1718/hep-ph.