Physics of right-handed neutrinos -- tests of the seesaw mechanism --

淺賀 岳彦 (新潟大学)

基研研究会素粒子物理学の進展2015@YITP

TA, Tsuyuki arXiv:1508.04937 TA, Tsuyuki arXiv:1509.02678

@YITP, Kyoto (2015/09/16)

Plan of this talk

Introduction

• the seesaw mechanism for neutrino masses

- Limits on heavy neutral leptons in the seesaw mechanism
 neutrino masses, cosmology, direct/indirect searches
- Lepton number violation in the seesaw mechanism
 neutrinoless double beta decay
 e⁻ e⁻ → W⁻ W⁻ ("inverse neutrinoless double beta decay")
- Perturbativity in the seesaw mechanism
- Summary

Introduction

Origin of neutrino masses

- Neutrino mass scales
 - **•** Atmospheric: $\Delta m_{\rm atm}^2 \simeq 2.4 \times 10^{-3} {\rm eV}^2$
 - **D** Solar : $\Delta m_{\rm sol}^2 \simeq 7.5 \times 10^{-5} {\rm eV}^2$
 - \Rightarrow Clear signal for new physics beyond the SM !
- Important questions:

What is the origin of neutrino masses?

- What are the implications to other physics?
- **B** How do we test it experimentally?

$$\delta L = i \overline{\nu_R} \partial_\mu \gamma^\mu \nu_R - F \overline{L} \nu_R \Phi - \frac{M_M}{2} \overline{\nu_R} \nu_R^c + \text{h.c.}$$

Minkowski '77 Yanagida '79 Gell-Mann, Ramond, Slansky '79 Glashow '79

• Seesaw mechanism $(M_D = F\langle \Phi \rangle \ll M_M)$

$$-L = \frac{1}{2} (\overline{\nu_L}, \overline{\nu_R^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + h.c = \frac{1}{2} (\overline{\nu}, \overline{N^c}) \begin{pmatrix} M_\nu & 0 \\ 0 & M_M \end{pmatrix} \begin{pmatrix} \nu^c \\ N \end{pmatrix} + h.c.$$
$$M_\nu = -M_D^T \frac{1}{M_M} M_D$$

\square Light active neutrinos \mathcal{V}

 \rightarrow explain neutrino oscillations

Heavy neutral leptons N

• Mass M_M

• Mixing $\Theta = M_D / M_M$

mixing in CC current $v_L = U v + \Theta N^c$

5

 $U^T M_{\nu} U = diag(m_1, m_2, m_3)$

$$(N \simeq \nu_R)$$

2015/05/16

Review of Particle Physics

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Heavy Neutral Leptons, Searches for

(A) Heavy Neutral Leptons

- Stable Neutral Heavy Lepton MASS LIMITS

Note that LEP results in combination with REUSSER 91 exclude a fourth stable neutrino with m < 2400 GeV.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>45.0	95	ABREU	92B	DLPH	Dirac
>39.5	95	ABREU	92B	DLPH	Majorana
>44.1	95	ALEXANDER	91F	OPAL	Dirac
>37.2	95	ALEXANDER	91F	OPAL	Majorana
none 3-100	90	SATO	91	KAM2	Kamiokande II
>42.8	95	¹ ADEVA	90s	L3	Dirac
>34.8	95	¹ ADEVA	90s	L3	Majorana
>42.7	95	DECAMP	90F	ALEP	Dirac

¹ADEVA 90S limits for the heavy neutrino apply if the mixing with the charged leptons satisfies $|U_{1\,i}|^2 + |U_{2\,i}|^2 + |U_{3\,i}|^2 > 6.2 \times 10^{-8}$ at $m_{1\,0} = 20$ GeV and $> 5.1 \times 10^{-10}$

Yukawa Coupling and Mass of HNL

2015/05/16

Yukawa Coupling and Mass of HNL

2015/05/16

Mixing and Mass of HNL

Important parameters of HNL

Interactions of HNL

gauge interaction through mixing

 \rightarrow relevant for search experiments

Two key parameters of HNL

\square mass M_I

\square mixing $\Theta_{\alpha I}$

Yukawa interaction

Limits on HNLs in the seesaw mechanism

See, for example, the recent analysis Deppisch, DeV, Pilaftsis (arXiv:1502.06541) and references therein.

• Limits on mixing Θ_{eI}

Deppisch, Dev, Pilaftis '15

• Limits on mixing $\Theta_{\mu I}$

Deppisch, Dev, Pilaftis '15

• Limits on mixing $\Theta_{\tau I}$

Deppisch, Dev, Pilaftis '15

• Limits on mixing $\Theta_{\tau I}$

Deppisch, Dev, Pilaftis '15

Bound from seesaw mechanism

 Mixings of HNL must be sufficiently large to explain masses of active neutrinos !

 $|\Theta_1|^2 \ge \frac{m_l}{M_1}$

• Bound on the mixing of the lightest HNL N_1

$$m_{l} = - \begin{cases} m_{1} (m_{3}) \text{ in the NH (IH) for 3RHN } (\mathcal{N} = 3) \\ m_{2} (m_{1}) \text{ in the NH (IH) for 2RHN } (\mathcal{N} = 2) \end{cases}$$

 $|\Theta_1|^2 \equiv \sum_{\alpha=e,\mu,\tau} |\Theta_{\alpha 1}|^2$

NOTE: $|\Theta_1|^2$ can be zero for $\mathcal{N} = 3$

• Limits on mixing Θ_{eI}

Deppisch, Dev, Pilaftis '15

Seesaw relation between mixings

• Neutrino mass matrix
$$\widehat{M_{\nu}} = \begin{pmatrix} \mathbf{0} & M_D \\ M_D^T & M_M \end{pmatrix}$$
 $\mathbf{0} = \begin{bmatrix} \widehat{M_{\nu}} \end{bmatrix}_{\alpha\beta} = \begin{bmatrix} \widehat{U}\widehat{M_{\nu}}^{diag}\widehat{U}^T \end{bmatrix}_{\alpha\beta}$

Seesaw relation

$$0 = \sum_{i=1,2,3} m_i U_{\alpha i} U_{\beta i} + \sum_I M_I \Theta_{\alpha I} \Theta_{\beta I}$$

- When $|\Theta_1|^2 \gg m_{\nu}/M_1$,
 - Cancellation between HNLs is required ← fine tuning
 - Stability of this relation can be ensured by some symmetry Kersten, Sumirnov '07, …
 - This relation is crucial in physics of right-handed neutrinos in the seesaw mechanism

• Limits on mixing $\Theta_{\tau I}$

Deppisch, Dev, Pilaftis '15

BBN constraint on lifetime

- Long-lived HNLs may spoil the success of BBN
 - **D** Speed up the expansion of the universe

•
$$\rho_{\text{tot}} = \rho_{\text{SM}} + \rho_N \implies H^2 = \frac{\rho_{\text{tot}}}{3 M_P^2}$$

- p-n conv. decouples earlier \Rightarrow overproduction of ⁴He $n + \nu \leftrightarrow p + e^{-}, ...$
- **Distortion of spectrum of active neutrinos**
 - $N \rightarrow \nu \, \overline{\nu} \, \nu, \ e^+ \ e^- \, \nu, \dots$
 - Additional neutrinos may not be thermalized
- \Rightarrow Upper bound on lifetime
- \Rightarrow Lower bound on mixing

Lifetime bound from BBN

• Limits on mixing Θ_{eI}

Deppisch, Dev, Pilaftis '15

• Limits on mixing $\Theta_{\tau I}$

Deppisch, Dev, Pilaftis '15

Indirect search (EWPD)

 $\Gamma = \Gamma^{SM} \times \left(UU^{\dagger} \right)_{ee} \times \left(UU^{\dagger} \right)_{uu}$

- PMNS mixing matrix U of active neutrinos is not "UNITARY" $UU^{\dagger} + \Theta\Theta^{\dagger} = 1$ $v_{L\alpha} = U_{\alpha i} v_i + \Theta_{\alpha I} N_I^c$
 - **D** Impact of non-unitarity on μ decay: $\mu \rightarrow e \bar{\nu}_e \nu_\mu$
 - $G_F^{SM} = \sqrt{2}g^2 / (8m_W^2)$ $G_F \Big|_{OBS} = G_F^{SM} \times (UU^{\dagger})_{ee} \times (UU^{\dagger})_{\mu\mu}$

■ Upper bound from EW precision data (EWPD) Antusch, Fischer '14 $(s_W^2, \Gamma(Z \to f\bar{f}), \Gamma_{inv}, \Gamma(W \to \ell v), m_W$, lepton universality, CKM elements,)

$$|\Theta_e|^2 < 2.1 \times 10^{-3} \ , \ \left|\Theta_\mu\right|^2 < 4 \times 10^{-4} \ , \ |\Theta_\tau|^2 < 5.3 \times 10^{-3}$$

@90% CL

Takehiko Asaka (Niigata Univ.)

Direct searches

■ Peak search in meson decays $(M^+ \to \ell^+ N)$ [Shrock '80] ■ Measure E_e in $\pi^+ \to e^+ N$ $\mathfrak{S}^+ = \pi^+ \to e^+$

$$E_e = \frac{m_{\pi}^2 - m_e^2 - M_N^2}{2 m_{\pi}}$$

stop

$$\pi^+ \rightarrow e^+ v$$

 $\pi^+ \rightarrow e^+ N$
 E_e

Beam dump experiments

 $K^+ \rightarrow e^+ N$

→ SHiP, LBNE (now DUNE)

Direct searches

- Search @LEP • $Z \rightarrow \nu N$ (3.3 × 10⁶ Z) • FCC-ee (10¹² Z)
- Search @LEPII
 - $e^+e^- \rightarrow \nu N \ (N \rightarrow e W \text{ with } W \rightarrow jets)$ → ILC ($\sqrt{s} = 500 \text{ GeV}, 500 \text{ fb}^{-1}$)
- Search @LHC
 - $\square pp \to \ell^+ N \to \ell^+ \ \ell^+ j j$
- Search @LHCb
 - $\square B^- \to N \mu^- \to \pi^+ \mu^- \mu^-$
- Search @Belle

$$\square B^- \to X \ell N, N \to e^{\pm} \pi^{\mp}, \mu^{\pm} \pi^{\mp}$$

• Limits on mixing Θ_{eI}

Deppisch, Dev, Pilaftis '15

Lepton number violation in the seesaw mechanism

1) Neutrinoless double beta decay

2) Inverse neutrinoless double beta decay

Neutrinoless double beta $(0\nu\beta\beta)$ decay $(Z,A) \rightarrow (Z+2,A) + 2e^{-1}$

- LNV ($\Delta L = +2$) process mediated by Majorana massive neutrinos
- **\square** Half-life of $0\nu\beta\beta$ decay

$$T_{1/2}^{-1} = A \frac{m_p^2}{\langle p^2 \rangle^2} |m_{\rm eff}|^2$$

$$m_{\rm eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + \dots$$

2015/03/21

W.H. Furry 1939

$0\nu\beta\beta$ decay

Takehiko Asaka (Niigata Univ.)

2015/03/21

$$m_{eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + \sum_I f_\beta(M_I) M_I \Theta_{eI}^2$$

active neutrinos heavy neutral leptons
- HNLs may give a significant
contribution to m_{eff} !
$$m_{eff}^N = - \begin{bmatrix} M_I \Theta_{eI}^2 & (M_I^2 \ll \langle p \rangle^2) \\ \frac{\langle p \rangle^2}{M_I} \Theta_{eI}^2 & (M_I^2 \gg \langle p \rangle^2) \\ \frac{\langle p \rangle^2}{M_I} \Theta_{eI}^2 & (M_I^2 \gg \langle p \rangle^2) \end{bmatrix}$$
$$m_{eff}^N = \frac{\langle p \rangle^2}{\langle p \rangle^2 + M_I^2}$$
$$\sqrt{\langle p^2 \rangle} \sim 200 \text{ MeV}$$

Faessler, Gonzalez, Kovalenko, Simkovic '14

2015/05/16

$0\nu\beta\beta$ decay in the seesaw

Stringent constraint on the mixing:

This bound cannot be applied to some cases in the seesaw mechanism !

$0\nu\beta\beta$ decay in the seesaw

Seesaw relation plays an important role !

$$0 = \sum_{i} m_i U_{ei}^2 + \sum_{I} M_I \Theta_{eI}^2$$

• When all HNLs are light $M_I \ll \sqrt{\langle p^2 \rangle} \sim 0.1$ GeV (i.e. $f_\beta = 1$),

$$m_{\rm eff} = \sum_{i} m_i U_{ei}^2 + \sum_{I} f_\beta(M_I) M_I \Theta_{eI}^2 = 0$$

- **D** This shows $0\nu\beta\beta$ decay does not occur even if neutrinos are Majorana fermions.
- **\square** In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay

$0\nu\beta\beta$ decay in the seesaw

• When all HNLs are degenerate $M_I = M_N$,

$$m_{\rm eff} = \sum_{i} m_i U_{ei}^2 + \sum_{I} f_{\beta}(M_I) M_I \Theta_{eI}^2 = m_{\rm eff}^{\nu} [1 - f_{\beta}(M_N)]$$

This shows $0\nu\beta\beta$ decay does not depend on the mixing of HNL **I** In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay

■ $e^-e^- \rightarrow W^-W^-$ offers test for LNV $e^ W^ W^ W^ W^ W^ W^ W^ W^ W^-$ [T. G. Rizzo 1982]

- e^-e^- collision is option of ILC, CLIC
- Advantages over $0\nu\beta\beta$ decay
 - Signal is clean
 - Free from uncertainty in nuclear matrix elements
 - Can occur even if $0\nu\beta\beta$ decay is absent

→ Inverse $0\nu\beta\beta$ decay and $0\nu\beta\beta$ decay are complementary tests for LNV in the seesaw mechanism

Inverse $0\nu\beta\beta$ decay in the seesaw

• Maximal cross section of $e^-e^- \rightarrow W^-W^-$

TA, Tsuyuki '15

Inverse $0\nu\beta\beta$ decay in the seesaw

How obtain large cross section ? --- idea

of right-handed neutrinos ≥ 3

• Even with the seesaw relation and the $0\nu\beta\beta$ bound, the mixing of N_2 can be large as $|\Theta_{e2}|^2 < |\Theta_e|^2_{EWPD} = 2.1 \times 10^{-3} \rightarrow \text{Large } \sigma(e^-e^- \rightarrow W^-W^-)$

Inverse $0\nu\beta\beta$ decay in the seesaw

• Sensitivity of mixing $(@100 \text{ fb}^{-1})$

TA, Tsuyuki '15

LNV in the seesaw

- Comments on inverse $0\nu\beta\beta$ decay
 - **D** Polarized beams
 - cross section becomes four times larger
 - turned on/off by flipping beam polarization
 - **\square** To avoid the $0\nu\beta\beta$ bound,

HNL with $M_1 < M_2$ and $\Theta_{e1} = -\frac{M_1}{M_2}\Theta_{e2}$ is required

good target for experimental searches

\square Inverse $0\nu\beta\beta$ is severely restricted from perturbativity

Other LNV processes in the seesaw mechanism

■
$$pp \rightarrow \ell^+ N \rightarrow \ell^+ \ \ell^+ j j$$
 @LHC
■ $B^+ \rightarrow \ell^+ N \rightarrow \ell^+ \ \ell^+ \pi^-$ @SuperKEKB
■ $K^+ \rightarrow \ell^+ N \rightarrow \ell^+ \ \ell^+ \pi^-$ @J-PARC

••••

Perturbativity in the seesaw mechanism

TA, Tsuyuki arXiv:1509.02678

Takehiko Asaka (Niigata Univ.)

Testability of HNL

• HNL N_1 can be observed if it has sufficiently small mass and large mixing $|\Theta_1|^2 \gg m_{\nu}/M_1$

Implication of N_1 with large mixing

- Seesaw relation: $0 = \sum_{i} \mathcal{O}_{\alpha i}^{2} m_{i} + \mathcal{O}_{\alpha 1}^{2} M_{1} + \sum_{I=2}^{\mathcal{N}} \mathcal{O}_{\alpha I}^{2} M_{I}$ $\mathcal{N}: # \text{ of RHNs}$
- There exists at least one HNL N_2 to cancel the N_1 contribution ! $\Theta_{\alpha 2}^2 M_2 = -\Theta_{\alpha 1}^2 M_1$

Mixings:
$$|\Theta_{\alpha 2}|^2 = \frac{M_1}{M_2} |\Theta_{\alpha 1}|^2 \qquad |F_{\alpha 2}|^2 = \frac{M_2^2}{\langle \Phi \rangle^2} |\Theta_{\alpha 2}|^2$$
Vukawa couplings:
$$|F_{\alpha 2}|^2 = \frac{M_2}{M_1} |F_{\alpha 1}|^2 \qquad |F_{\alpha 2}|^2 = \frac{M_2^2}{\langle \Phi \rangle^2} |\Theta_{\alpha 2}|^2$$

Perturbativity gives the upper bound on the mixing

$$|\Theta_{\alpha 1}|^{2} \leq \sum_{I=2}^{\mathcal{N}} |\Theta_{\alpha I}|^{2} \frac{M_{I}}{M_{1}} = \sum_{I=2}^{\mathcal{N}} \frac{|F_{\alpha I}|^{2} \langle \Phi \rangle^{2}}{M_{1} M_{I}} \leq \frac{4\pi (\mathcal{N}-1) \langle \Phi \rangle^{2}}{M_{1} M_{2}}$$

Takehiko Asaka (Niigata Univ.)

Perturbativity in the seesaw mechanism

Upper bound on mixing

HNL searches at low energy can probe high energy phenomena such as leptognesis !

Summary

Takehiko Asaka (Niigata Univ.)

Summary

- Right-handed neutrinos are well-motivated physics beyond the Standard Model
- They can explain neutrino masses through the seesaw mechanism and baryon asymmetry of the universe (BAU) (via leptogenesis, neutrino oscillation, …) at the same time.
- Experimental tests of such right-handed neutrinos are important to understand the origin of neutrino masses and BAU