QCD *θ* 項の 2-loop 輻射補正

坂野 達哉 (名古屋大学 E 研) 共同研究者: 久野純治 北原鉄平 長村尚弘 JHEP 02 (2024) 195 (arXiv:2311.07817)

素粒子物理学の進展 2024 (PPP2024) 2024/08/23

Introduction

QCD における CP 対称性の破れ

$$\mathcal{L}_{CPV} = -\bar{q} \left(m_q P_R + m_q^* P_L \right) q + \theta_G \frac{\alpha_s}{8\pi} G \tilde{G}$$

$$\xrightarrow{\text{カイラル回転}} - |m_q| \bar{q}q + (\theta_G - \arg(m_q)) \frac{\alpha_s}{8\pi} G \tilde{G}$$

場の再定義に依らない物理的なパラメータ: $\bar{\theta}$

$$\bar{\theta} = \theta_G - \sum_{\text{\# of quark}} \arg(m_q)$$

$ar{ heta}$ は中性子電気双極子能率(nEDM) d_n の測定から決まる [J. Liang, et al. arXiv:2301.04331]

 $|d_n| \simeq 1.48 \times 10^{-16} \bar{\theta} \,\mathrm{e} \cdot \mathrm{cm}$

現在の d_n の値 [C. Abel, et al. Phys. Rev. Lett. 124 (2020)]

 $|d_n| < 1.8 \times 10^{-26} \,\mathrm{e} \cdot \mathrm{cm}$

 d_n から来る $\bar{\theta}$ の上限

 $\left|\bar{\theta}\right| \lesssim 1.2 \times 10^{-10}$

PPP2024

SM の枠組みでクォークは 2 つの CP 位相を持てる

1. CKM 行列の複素位相

 $\delta_{\rm CKM} \simeq 1.2$

2. QCD θ 項

 $\bar{\theta} \lesssim 10^{-10}$

何故 $\bar{\theta}$ は不自然に小さいのか \rightarrow 強い CP 問題

解の1つ:Pまたは CP 対称性を課す模型(ex. 左右対称模型、Nelson-Barr 模型)

- P-odd かつ CP-odd な θ 項は Lagrangian に書けない
- 低エネルギースケールで SM になるために P や CP は自発的に破れる

このような模型では対称性の自発的破れに伴って *θ* が輻射補正から生成される

 $\bar{\theta} = \vec{\theta}_{\text{tree}} + \delta \theta$

θ への補正を正確に評価 → 模型の検証

従来の方法:藤川の方法を用いて、量子補正込みのくりこまれたクォーク質量の虚部で評価 [J. R. Ellis and M. K. Gaillard, Nucl. Phys. B 150 (1979)]

$$\mathcal{L}_{CPV} = -\bar{q} \, \underbrace{(m_q + \Delta m_q)}_{\text{renormalized mass}} P_R q + \text{h.c.} \rightarrow \bar{\theta} = -\arg(m_q + \Delta m_q)$$

問題点

• $\arg(m_q + \Delta m_q)$ 以外の寄与は評価できない

 \longleftrightarrow くりこみ群の効果で dipole 演算子が θ に寄与する [E. E. Jenkins, et al. JHEP 01 (2018)]

• Δm_q を定義するくりこみ条件が不明

本研究では Feynman 図の直接計算によって QCD θ 項への 2-loop level の補正を調べた

- ・ diagram 計算による θ の評価では $\arg(m_q + \Delta m_q)$ 以外の寄与も 評価できることを明らかにした
- ・ 従来の方法で θ を評価する際はクォークの運動量0で定義した Δm_q を使うのが適切であることを確認した

diagram 計算によって QCD θ への補正を評価した結果をいくつか紹介する

- 1. クォークの有効理論での 1-loop θ の評価 → dipole 演算子が θ に寄与することを確認
- 2. CP を破る湯川相互作用を持つ模型での 2-loop level の θ の評価
 - Δm_q の定義を明らかにした上で、 $\arg(m_q + \Delta m_q)$ で評価する従来の方法との比較
 - 従来の方法では不十分な場合があることも見る

quark EFT & 1-loop θ

まずは 1-loop diragram の計算によって $\arg(m_q)$ 以外の寄与も評価できることを見る 次元 5 までの演算子を含むクォーク有効理論(1-flavor, $\theta_G=0$)

$$\mathcal{L}_{\text{eff}} = \bar{q} \left[i D - \left(m_q^* P_L + m_q P_R \right) \right] q - \frac{1}{2} g_s \mu_q \bar{q} (\sigma \cdot G) q - \frac{i}{2} g_s d_q \bar{q} (\sigma \cdot G) \gamma_5 q$$

 θ に寄与する diagram

背景グルーオン場の有効作用(log det)を評価すると

$$\Delta S = -\left(\frac{i}{2}\log\frac{m_q^*}{m_q} + 2|m_q|\tilde{d}_q\log\frac{|m_q|}{\mu}\right)\int \mathrm{d}^4x\,\frac{\alpha_s}{8\pi}G\tilde{G}$$

• 藤川の方法で評価できていた部分:
$$rac{i}{2}\lograc{m_q^*}{m_q}=rg(m_q)$$

・ diagram 計算によって評価できた部分: chromo EDM
$$\tilde{d}_q$$
 からの寄与
くりこみ群方程式 $\left(\mu \frac{\mathrm{d}\theta}{\mathrm{d}\mu} = 4m_q \tilde{d}_q\right)$ の結果と整合

diragram による評価では $\arg(m_q)$ 以外の寄与も含めて評価できる

一方で 2-loop 以上では log det の評価は困難 → 別の方法で評価

2-loop *θ* の評価

CPを破る湯川相互作用持つ模型で θ 項への 2-loop 補正を見る

- 1. EFT による理解(review)
 - クォーク質量の位相 + くりこみ群の効果
- 2. diagram の直接計算による評価
 - 極限で EFT の結果と整合することを確認
 - $\arg(m_q + \Delta m_q)$ で評価する際の Δm_q の定義を明確にする
 - $\arg(m_q + \Delta m_q)$ では不十分な場合があることも見る

今回扱う模型

QCD θ 項への 2-loop 補正を簡単な模型で調べた

(仮想的な) クォーク q と実スカラー ϕ 間の CP を破る湯川相互作用 ($\operatorname{Im}(y_q) \neq 0$) を持つ模型

$$-\mathcal{L} = \bar{q} \left(\operatorname{Re}[m_q] + i \operatorname{Im}[m_q] \gamma_5 \right) q + \frac{1}{2} m_{\phi}^2 \phi^2 + y_q \phi \bar{q} P_R q + y_q^* \phi \bar{q} P_L q$$

2007項代司子9 2後茶位柏

$$\arg(m_q) \simeq \frac{\operatorname{Im}(m_q)}{\operatorname{Re}(m_q)}$$
$$\operatorname{Im}((y_q m_q^*)^2) \simeq \operatorname{Im}(y_q^2) \operatorname{Re}(m_q)^2$$

PPP2024

light quark EFT (1)

クォーク q がスカラー
$$\phi$$
 より十分軽い場合 $(m_q \ll m_{\phi})$
 \rightarrow QCD θ 項への補正はクォークの有効理論で理解できる
スケール $\mu = m_{\phi}$ で重い ϕ を積分すると CP を破る次元 6 までの演算子は
 $-\mathcal{L}_{\text{eff}} = \bar{q}i \operatorname{Im}[m_q + \Delta m_q(\mu)]\gamma_5 q + \frac{i}{2}g_s \tilde{d}_q \bar{q} \sigma^{\mu\nu} \gamma_5 G_{\mu\nu} q - C_4^q(\bar{q}q)(\bar{q}i\gamma_5 q)$
 $- C_5^q(\bar{q} \sigma^{\mu\nu} q)(\bar{q}i\sigma_{\mu\nu}\gamma_5 q) + \Delta \theta_{\text{th}} \frac{\alpha_s}{8\pi} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} + \frac{1}{3} \omega f^{abc} G_{\mu\nu}^a G_{\rho}^{b\nu} \tilde{G}^{c\rho\mu}$

- Δm_q(µ): 運動量 0 で定義したクォーク質量への補正
- \tilde{d}_q : chromo-電気双極子能率, C_4^q : 4-fermi 演算子
- $\Delta \theta_{\rm th}$: θ への閾値補正(EFT では決まらない)
- その他の演算子(C^q₅, ω): 高次の寄与なので無視する

くりこみ群の効果 $(m_q \le \mu \le m_{\phi})$

・ $ilde{d}_q$ と C^q_4 の混合: $ilde{d}_q,~C^q_4~
ightarrow~ ilde{d}_q(\mu)$ [J. Hisano, et al. Phys. Lett. B 713 (2012)]

$$\mu \frac{\mathrm{d}\tilde{d}_q}{\mathrm{d}\mu} = \frac{4m_q}{16\pi^2} C_4^q$$

• \tilde{d}_q の θ への寄与 [E. E. Jenkins, et al. JHEP 01 (2018)]

$$\mu \frac{\mathrm{d}\theta}{\mathrm{d}\mu} = 4m_q \tilde{d}_q(\mu)$$

従来の方法 $\arg(m_q + \Delta m_q)$ と合わせると

$$\bar{\theta} = \delta\theta_{\rm EFT} = -\frac{{\rm Im}[m_q + \Delta m_q]}{{\rm Re}[m_q]} - 2\int_{\log m_{\phi}^2}^{\log m_q^2} {\rm Re}[m_q]\tilde{d}_q(\mu)\,\mathrm{d}\log\mu^2 + \Delta\theta_{\rm th}$$

PPP2024

次に diagram 計算による θ 項への補正を考える

$$\bigotimes \mathfrak{m}$$
 $(\mathsf{CPV}) \mathfrak{m} \bigotimes \to G\tilde{G}$

- 先に見た有効作用を求める際の log det の計算は、2-loop 以上では困難
- 通常の計算方法では運動量保存のために全微分項 $G ilde{G} \propto \partial \left[A\partial A + rac{2}{3}A^3
 ight]$ を扱えない
- \rightarrow Fock-Schwinger gauge method

Fock-Schwinger gauge : $(x - x_0)^{\mu}A_{\mu}(x) = 0$

- 並進対称性(=運動量保存)を破る \Rightarrow 全微分項 $G\tilde{G} \propto \partial \left[A\partial A + \frac{2}{3}A^3\right]$ を扱える
- ゲージ不変な量では並進対称性が回復

[S. N. Nikolaev, A.V. Radyushkin, Phys. Lett. B 110 (1982), Nucl. Phys. B 213 (1983)]

• ゲージ場を field strength で展開できるため、効率的な計算が可能

$$A_{\mu}(q) = -\frac{i(2\pi)^4}{2}G_{\nu\mu}(0)\frac{\partial}{\partial q_{\nu}}\delta^{(4)}(q) + \cdots$$

QCD θ 項への $\text{Im}(m_q)$ の寄与 → 1-loop diagram の評価 $(\arg(m_q)$ と整合) [J. Hisano, et al. JHEP 03 (2023)]

PPP2024

今回扱っている模型

$$-\mathcal{L} = \bar{q} \left(\operatorname{Re}[m_q] + i \operatorname{Im}[m_q] \gamma_5 \right) q + \frac{1}{2} m_{\phi}^2 \phi^2 + y_q \phi \bar{q} P_R q + y_q^* \phi \bar{q} P_L q$$

 θ 項へ寄与する diagram は 2-loop までを考えると

 $Im(m_q)$ の寄与 + 2-loopの寄与(+ クォーク質量への counter termの寄与)

→ Fock-Schwinger gauge method を用いた diagram 計算によって θ 項への補正を評価

Result

クォークが軽い場合 $(m_q \ll m_\phi)$

Fock-Schwinger gauge method を用いた 2-loop level の QCD θ 項の評価

diagram 計算計算による θ の評価は $m_q \ll m_\phi$ で EFT の方法と整合する ($\Delta \theta_{\rm th}$ はここで決める)

$$\delta\theta_{1-\text{loop}} + \delta\theta_{2-\text{loop}} = \delta\theta_{\text{EFT}} = -\frac{\text{Im}[m_q + \Delta m_q]}{\text{Re}[m_q]} - 2\int_{\log m_q^2}^{\log m_q^2} \text{Re}[m_q]\tilde{d}_q(\mu) \,\mathrm{d}\log\mu^2 + \Delta\theta_{\text{th}}$$

• Feynman 図の評価によって $\arg(m_q + \Delta m_q)$ 以外の寄与も評価できた

・
$$ilde{d}_q,\ \Delta heta_{
m th}$$
 の寄与は $\mathcal{O}\!\left(m_q^2/m_\phi^2
ight)$ で抑制される

 $m_q \sim m_\phi$ のときはどうか?

クォークが軽い場合 $(m_a < m_b)$

 $m_q \leq m_\phi$ でループ関数の解析解の振る舞い

青: クォーク質量の 1-loop 補正の複素位相 $\delta heta = -\arg(\Delta m_q)$ オレンジ: 2-loop diagram の解析解 $\delta heta = \delta heta_{2-loop}$

 $\Delta m_q(\mu)$ は運動量 0 で定義したクォーク質量の補正 スケール μ は $\mu^2=m_\phi^2$ に取る

 $m_{\phi}/m_q \lesssim 10$ では Feynman 図の直接計算によって評価すべき

クォークが重い場合 $(m_a \ge m_{\phi})$

 $m_q \ge m_\phi$ でループ関数の解析解の振る舞い

青: クォーク質量の 1-loop 補正の複素位相 $\delta heta = -\arg(\Delta m_q)$ オレンジ:2-loop diagram の解析解 $\delta heta = \delta heta_{2-loop}$

 $\Delta m_q(\mu)$ は運動量 0 で定義したクォーク質量の補正 スケール μ は $\mu^2 = m_q^2$ に取る (重いクォークが積分されるスケール)

 $m_{\phi}/m_q\gtrsim 0.1$ では Feynman 図の直越計算によって評価すべき クォークの有効理論で記述できない $m_{\phi}/m_q\ll 1$ で一致する理由は不明 • QCD θ 項へのクォーク質量の複素位相以外の寄与: $\bar{\theta} = -\arg(m_q + \Delta m_q) + \cdots$

- ・ クォーク質量への補正 Δm_q を運動量 0 で定義すると 質量の階層性が大きいときは $\arg(m_q + \Delta m_q)$ に一致
- 質量の階層性が小さいときは $\arg(m_q + \Delta m_q)$ による評価では不十分

Fock-Schwinger gauge method では QCD θ 項への高次補正を正確に評価できる

中性子の電気双極子能率の測定により ∂ は制限される

- 現在の制限は $\bar{\theta} \lesssim 10^{-10}$
- 将来実験で 1~2 桁の精度向上が見込まれている

強い CP 問題の解の1つである P 対称性を課す模型(左右対称模型)において $\delta\theta$ への 3-loop の寄与(最低次)を調べる

• 先行研究での見積もり: $\delta heta_{3-\mathrm{loop}}$ は実験からの制限より数桁下

[J. Hisano, et al. JHEP 03 (2023)]

• $\delta \theta_{3-\text{loop}}$ を正確に評価することで模型のパラメータに制限をつける

Backup

Weinberg operator

$$\begin{split} \operatorname{Im}(m_q) \, \mathfrak{E} 含む \, \mathbf{1} \text{-loop diagram からの Weinberg operator への寄与は} \\ & \frac{\mathrm{d}}{\mathrm{d}m_q} \Delta S \supset \operatorname{tr} \left[\left\{ \frac{1}{p^2 - |m_q|} \left(\frac{1}{2} g_s(\sigma \cdot G) \right) \right\}^3 \frac{1}{p^2 - |m_q|} m_q^* P_R \right] \\ & \supset i \int \mathrm{d}^4 x \, \frac{c}{m_q |m_q|^2} G G \tilde{G} \qquad (c: 適当な実係数) \end{split}$$

$$m_q$$
 で積分すれば $\Delta S \supset -i \int d^4x \frac{c}{|m_q|} GG\tilde{G}, \frac{d}{dm_q} \to \frac{d}{dm_q^*}$ も考えると
 $\Delta S \supset i \int d^4x \left[\frac{c}{|m_q|} - \frac{c}{|m_q|} \right] GG\tilde{G} = 0$
実は $G\tilde{G}$ より高次の gluon CPV 演算子は 1-loop で現れない
の

2フレーバーの場合

CP 対称性を破る湯川相互作用を持つ模型(2フレーバー: $i = l, h, m_l \ll m_h \sim m_{\phi}$)

$$-\mathcal{L} = \bar{q}_i \left(\operatorname{Re}[m_i] + i \operatorname{Im}[m_i] \gamma_5 \right) q_i + \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{y_{ij} \bar{q}_i}{p_R q_j \phi} + \text{h.c.}$$

• 軽いクォーク (q_l) と重いクォーク (q_h) を含む

•
$$\operatorname{Im}(y_{ll} = \operatorname{Im}(y_{hh})) = 0, \ \operatorname{Im}(y_{lh}) \neq 0$$

θ 項への 2 ループの寄与

最も主要な寄与: $-\operatorname{Im}(\Delta m_l)/\operatorname{Re}(m_l) \sim \mathcal{O}(m_h/m_l)$

その他の寄与: $\mathcal{O}(m_l/m_h), \mathcal{O}(m_l/m_{\phi})$

Nelson-Barr 模型

minimal BBP model (+ real scalar S)

[L. Bento et al. Phys. Lett. B 267 (1991)]

	chirality	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_N
Q	\mathbf{L}	3	2	1/6	0
u	R	3	1	2/3	0
d	R	3	1	-1/3	0
H	_	1	2	1/2	0
ψ	L	3	1	-1/3	k
ψ^c	R	3	1	-1/3	$_{k}$
Σ_a	_	1	1	0	k
S	_	1	1	0	0

$$-\mathcal{L}_Y^d = y_u^{ij} \tilde{H} \bar{Q}_i u_j + y_d^{ij} H \bar{Q}_i d_j + g^{ai} \Sigma_a \bar{\psi}_L d_i + f S \bar{\psi} \psi^c + \text{h.c.}$$

$$V(\Sigma_a, H) = \gamma_{ab} \Sigma_a^* \Sigma_b |H|^2 + \frac{1}{2} \tilde{\gamma}_{ab} \Sigma_a^* \Sigma_b S^2$$

•
$$\Sigma_a$$
の相対位相 \rightarrow CP の破れ

•
$$f\langle S
angle$$
 で ψ の質量を与える

 $\delta\theta$ への寄与

$$\Delta\theta_{\Sigma} \simeq \frac{1}{16\pi^{2}} \gamma_{ab} g^{ak} g^{ck} \frac{\operatorname{Im}[\langle \Sigma_{b} \rangle \langle \Sigma_{c} \rangle^{*}]}{m_{h}^{2} - m_{\Sigma}^{2}} \qquad \qquad \Delta\theta_{S} \simeq \frac{1}{8\pi^{2}} \tilde{\gamma}_{ab} g^{ak} g^{ck} \frac{\langle S \rangle}{m_{\psi}} \frac{\operatorname{Im}[\langle \Sigma_{b} \rangle \langle \Sigma_{c} \rangle^{*}]}{m_{S}^{2} - m_{\Sigma}^{2}}$$
軽いクォーク質量の寄与が支配的

重い粒子のみ含む(階層性:小)

 $m_\psi \sim m_S, \ \langle \Sigma_a
angle$ なら $\Delta \theta_S$ を Feynman 図によって評価すべき

PPP2024