

Revisiting Metastable Cosmic String Breaking

PPP2024 @ YITP, Kyoto Akifumi Chitose (ICRR, U. Tokyo)

Based on:

JHEP 04 (2024) 068 [arXiv:2312.15662]

Akifumi Chitose, Masahiro Ibe, Yuhei Nakayama, Satoshi Shirai and Keiichi Watanabe

Stochastic Gravitational Wave Background

- Evidenced by PTA observations (NANOGrav, InPTA, EPTA, PPTA, CPTA)
 - Observed at nHz range
- Many possible origins
 - Black holes?
 - Phase transition?
 - Domain walls?

•

Cosmic Strings Probing BSM with GW

- Linear solitons in QFT
- Created in the Universe by e.g. spontaneous U(1) breaking
- Predicted by many BSM physics
 - GUT
 - Dark photon

Credit: Daniel Dominguez from CERN's Education, Communications & Outreach (ECO) Department.

Gravitational waves from loops

Network of long strings

Cosmic Strings for PTA

Failure of stable cosmic strings

Cosmic Strings for PTA

Failure of stable cosmic strings

Metastable Cosmic Strings

- Spontaneously cut by monopole-antimonopole pair creation
- ► Arise from e.g. $G \to U(1) \to 1$ w/ G: simply connected

Metastable Cosmic Strings

Early times

Metastable Cosmic Strings

GW spectrum depends on the decay rate

- Precise estimate of the decay rate is crucial
 - For decay rate $\propto \exp[-\pi\kappa]$, $\sqrt{\kappa} \sim 8$

String breaking rate

Tunneling and bounce see e.g. [Coleman, 1985]

- Procedure:
 - Go to imaginary time
 - $\triangleright \approx$ invert the potential
 - Find the bounce solution
 - Action: S_B
 - Decay rate: $\Gamma \sim \exp[-S_B]$

String breaking rate

Preskill-Vilenkin approximation [Preskill & Vilenkin, 1992]

- Neglect monopole size and string width
- $S_E = 2\pi \rho_E^* M_M \pi \rho_E^{*2} T_{\text{str}}$

$$ightharpoonup
ho_E^* = M_M/T_{\rm str}$$
 , $S_B = \pi M_M^2/T_{\rm str} = \pi \kappa$

- M_M : monopole mass, $T_{\rm str}$: string tension
- String width $T_{\rm str}^{-1/2} \ll \rho_E^*$ required

$$\rightarrow \sqrt{\kappa} \gg 1$$
 ... Is this OK for PTA ($\sqrt{\kappa} \sim 8$)?

→ Alternative evaluation desired

Re-evaluation of Bounce Action

Setup

SU(2) gauge theory w/ adjoint Higgs & fundamental Higgs

$$\mathscr{L} = -\frac{1}{4g^2}F^2 - |Dh|^2 - \left(D\overrightarrow{\phi}\right)^2 - V_{\text{Higgs}}(h,\phi)$$

• h: SU(2) fundamental, ϕ : SU(2) adjoint

$$V_{\text{Higgs}}(h,\phi) = \lambda \left(|h|^2 - v^2 \right)^2 + \tilde{\lambda} \left(\overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left(\phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2$$

• Assumptions: λ , $\tilde{\lambda}$, $\gamma > 0$, V > v

Setup

Symmetry breaking pattern

$$V_{\text{Higgs}}(h,\phi) = \lambda \left(|h|^2 - v^2 \right)^2 + \tilde{\lambda} \left(\overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left(\phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2$$

- ► SU(2) \rightarrow U(1) by $\phi^a = V\delta_3^a$
 - U(1) generator: $\tau^3/2$
- U(1) \rightarrow 1 by $h_i = v\delta_i^1$

$$\phi^{a} = V\delta_{3}^{a}$$

$$\gamma V^{2} |h_{2}|^{2}$$

Setup

Cosmic Strings and Monopoles

- ► 1st SSB: SU(2) \rightarrow U(1) by $\phi = V\delta_3^a$
 - Monopoles formed by ϕ
- ► 2nd SSB: U(1) \rightarrow 1 by $h_1 = ve^{i \times 0}$
 - Cosmic strings formed by h_1
 - ▶ But SU(2) is simply connected \rightarrow only metastable

How to evaluate the bounce action?

- Solve 4D Euclidean field equation?
 - Bounce: saddle point of S_E
 - → nontrivial algorithm needed
 - Less symmetric than vacuum decay
- → Alternative strategy

Strategy Conceptual sketch

Construct independently

Step 1: Build "excited strings" with an Ansatz

- Make β -dependent static string configuration
 - β : unwinding parameter (ordinary string at $\beta=0$, vacuum at $\beta=\pi/2$)
 - ▶ 4D field configuration $\leftarrow \beta$ -dependent Ansatz [Shifman & Yung, 2002]

Unwinding the string (ctd.)

Step 2: Promote β to a field on the string

- Construct effective 2D theory about $\beta(t_E, z)$
- The bubble is circular
 - Reduces to 1D theory:

$$S_E = 2\pi \int_0^\infty \rho_E \, \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\text{eff}}(\beta) \beta^2 + T(\beta) \right]$$

► EoM solvable → bounce action

Summary

→ Upper bound on the actual bounce action

Results Sample field configuration

Results

Interpretation of NANOGrav results

- Yellow: our S_B < Preskill-Vilenkin
 - Overlaps with NANOGrav region
 - Modifies the interpretation

Conclusions & Outlook

- A robust upper bound on the bounce action for string breaking was calculated
 - free of the conventional assumption
- The Preskill-Vilenkin approximation can be inappropriate to interpret the PTA data
- Next steps:
 - Optimal bounce action?
 - More realistic setup?
 - Inflation model?

Thank you!

Backup

from U(1) breaking

Simplest setup: abelian Higgs

$$V(\phi) = \lambda \left(\phi^{\dagger} \phi - v^2 \right)^2$$

- U(1): $\phi \rightarrow e^{i\alpha}\phi$
 - broken by $\langle \phi \rangle = v$

from U(1) breaking (ctd.)

Wound about z axis

from U(1) breaking (ctd.)

Monopoles

0 dimensional cousin of cosmic string

Arise from winding on 2D sphere

Behave like point-like particles*

Each point: 4D field configuration

True (optimal) bounce action:

$$S_E[\bullet] = \min_{\text{path joining the two sides}} \max_{\Phi \in \text{path}} S_E[\Phi]$$

 $\exists \mathsf{path} \ \mathsf{that}$ $\{ \mathsf{joins} \ \mathsf{the} \ \mathsf{two} \ \mathsf{vacua} \}$ $\{ \mathsf{stays} \ \mathsf{within} \ \mathsf{the} \ \mathsf{effective} \ \beta \ \mathsf{theory} \}$ $\{ \mathsf{has} \ \mathsf{maximum} \ S_E \ \mathsf{at} \ \bullet \}$

$$\rightarrow S_E[\bullet] \geq S_E[\bullet]$$

When does thin-wall break down?

- Introduce " β -thin-wall approximation"
- Thin-wall approximation to the 1D effective theory of $\beta(\rho_E)$
 - Valid only for $V \gg v$
- Preskill-Vilienkin approximation: similar but different
 - ▶ β -thin-wall: Ansatz → effective 1D theory → thin-wall
 - Preskill-Vilenkin: assume thin-wall in the 4D theory

Results

Hint for stronger results?

- solid: bounce, dashed: β -thin-wall
- For large hierarchy:
 - Primitive: Preskill-Vilenkin $\times \mathcal{O}(1)$
- For small hierarchy:
 - β -thin-wall deviates from the bounce
 - Preskill-Vilenkin: also questionable

Strategy

Unwinding the string

$$a + i(b\tau_1 + c\tau_3)$$

$$a^2 + b^2 + c^2 = 1$$

•
$$h = U(v \ 0)^{\mathsf{T}}, \ \phi = U(\tau_3/2)U^{\dagger}$$

controls the U(1) winding

•
$$h_1 = e^{-i\varphi}v$$
 for $\beta = 0$

- $U = i\tau_1 = \text{const. for } \beta = \pi/2$
 - completely unwound

On metastability

Stable strings vs. PTA

- Nanograv's spectrum: blue tilted
- GW spectrum from stable cosmic strings →
 - The amplitude and the low-frequency cutoff correlate
 - ► → Mismatch with Nanograv

[Gouttenoire et al., 2019]

On metastability

Metastable strings vs. PTA

- Finite lifetime moves the cutoff to the right
 - ▶ better fit with the PTA data

[Buchmüller et al., 2023]

Magnetic fields

10

Cross section of the breaking string

 $x_{1,2}$

 $x_{1,2}$

Other parameters Light W

Other parameters SUSY-like

Other parameters

Heavy W

β -thin-wall approximation

 $T(0) - T(\pi/2)$

• Maximum: $S_B = \pi \frac{m_{\text{eff}}^2}{T(0)}$

$$S_B = 2\pi \int_0^\infty \rho_E d\rho_E \left[\frac{1}{2} \mathcal{K}_{\text{eff}}(\beta) \beta'^2 + T(\beta) - T(0) \right]$$

$$\approx -\pi \rho_E^{*2} \left[T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_E^* \int_{\text{wall}} d\rho_E \left[\frac{1}{2} \mathcal{K}_{\text{eff}}(\beta) \beta'^2 + T(\beta) - T(0) \right]$$

$$= -\pi \rho_E^{*2} \left[T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_E^* m_{\text{eff}}$$

$$M_{\text{eff}} := \int_0^{\frac{\pi}{2}} d\beta \sqrt{2 \mathcal{K}_{\text{eff}}(\beta) (T(\beta) - T(0))}$$

Kinetic term

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E = 2\pi \int_0^\infty \rho_E \mathrm{d}\rho_E \left[\frac{1}{2} \mathcal{K}_{\mathrm{eff}}(\beta) \beta^2 + T(\beta) \right]_{120}^{160}$$

$$S_E$$

Primitive Ansatz [Shifman & Yung, 2002]

$$h(x) = U\begin{pmatrix} \xi_{\beta}(\rho) \\ 0 \end{pmatrix}$$

• $A_{\theta}(x) = iU\partial_{\omega}U^{-1}[1 - f_{\beta}(\rho)]$, other components: 0

$$U = e^{-i\tau_3 \varphi} \cos \beta + i\tau_1 \sin \beta$$

•
$$\xi_{\beta}(0) = 0$$
, $\xi_{\beta}(\infty) = v$, $f_{\beta}(0) = 1$, $f_{\beta}(\infty) = 0$, $\varphi_{\beta}(0) = V \sin 2\beta$, $\varphi_{\beta}(\infty) = 0$

Setup

Couplings vs. Masses

- Scale hierarchy: $\sqrt{\kappa_{PV}} = M_M/\sqrt{T_{\rm str}} \sim V/v \propto m_W/m_\gamma$
 - Gauge field : $m_W = gV$, $m_\gamma = \frac{1}{\sqrt{2}}gv$
 - (Scalars : $m_{\phi} = \sqrt{8\tilde{\lambda}}V$, $m_{h_1} = 2\sqrt{\lambda}v$, $m_{h_2} = \sqrt{\gamma}V$)
- Euclidean action in terms of the masses: $S_E = \frac{1}{g^2}[g \text{ independent}]$

Couplings vs. Masses (detailed)

- Gauge field : $m_W = gV$, $m_{\gamma} = \frac{1}{\sqrt{2}}gv$
 - Scale hierarchy: $V/v \propto m_W/m_\gamma$
- Scalar triplet : $m_{\phi} = \sqrt{8\tilde{\lambda}}V$
- Scalar doublet: $m_{h_1} = 2\sqrt{\lambda} v$, $m_{h_2} = \sqrt{\gamma} V$
- Euclidean action:

$$g^{2}\mathcal{H} = \frac{1}{4}F^{2} + \left|D\hat{h}\right|^{2} + \frac{1}{2}\left(D\hat{\phi}\right)^{2} + \frac{m_{\phi}^{2}}{8m_{W}^{2}}\left(\hat{\phi}^{2} - m_{W}^{2}\right)^{2} + \frac{m_{h_{1}}^{2}}{4m_{\gamma}^{2}}\left(\left|\hat{h}\right|^{2} - 2m_{\gamma}^{2}\right)^{2} + \frac{m_{h_{2}}^{2}}{m_{W}^{2}}\left|\left(\hat{\phi} - \frac{m_{W}}{2}\right)\hat{h}\right|^{2}$$