**Based on: JHEP 04 (2024) 068 [arXiv:2312.15662] Akifumi Chitose, Masahiro Ibe, Yuhei Nakayama, Satoshi Shirai and Keiichi Watanabe**



## **Revisiting Metastable Cosmic String Breaking PPP2024 @ YITP, Kyoto Akifumi Chitose (ICRR, U. Tokyo)**

## **Stochastic Gravitational Wave Background**

- ‣ Evidenced by PTA observations (NANOGrav, InPTA, EPTA, PPTA, CPTA)
	- ‣ Observed at nHz range
- ‣ Many possible origins
	- ‣ Black holes?
	- ‣ Phase transition?
	- Domain walls?

 $\blacktriangleright$ 

….





- ‣ Linear solitons in QFT
- ‣ Created in the Universe by e.g. spontaneous U(1) breaking
- ‣ Predicted by many BSM physics
	- ‣ GUT
	- ‣ Dark photon

#### **Probing BSM with GW Cosmic Strings**



Credit: Daniel Dominguez from CERN's Education, Communications & Outreach (ECO) Department.





#### **Cosmic Strings Gravitational waves from loops**

#### **Network of long strings**



![](_page_3_Picture_3.jpeg)

#### **Cosmic Strings for PTA Failure of stable cosmic strings**

![](_page_4_Figure_1.jpeg)

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_2.jpeg)

#### **Cosmic Strings for PTA Failure of stable cosmic strings**

![](_page_6_Figure_1.jpeg)

## **Metastable Cosmic Strings**

- ‣ Spontaneously cut by monopole-antimonopole pair creation
- Arise from e.g.  $G \to U(1) \to 1$  w/ *G*: simply connected

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_6.jpeg)

#### **Metastable Cosmic Strings Early times**

![](_page_8_Picture_1.jpeg)

*f*

![](_page_8_Figure_2.jpeg)

#### **Metastable Cosmic Strings GW spectrum depends on the decay rate**

- ‣ Precise estimate of the decay rate is crucial
	- ‣ For decay rate ∝ exp[−*πκ*], *κ* ∼ 8

![](_page_9_Figure_3.jpeg)

- ‣ Procedure:
	- ‣ Go to imaginary time
		- ‣ invert the potential ≈
	- ‣ Find the bounce solution
		- Action: S<sub>B</sub>
	- ‣ Decay rate: Γ ∼ exp[−*SB*]

#### **Tunneling and bounce** see e.g. [Coleman, 1985]**String breaking rate**

*x x*

![](_page_10_Figure_7.jpeg)

- ‣ Neglect monopole size and string width
- $\mathcal{S}_E = 2\pi \rho_E^* M_M \pi \rho_E^{*2} T_{str}$ 
	- $\rightarrow$   $\rho_E^* = M_M/T_{str}$ , *E*<sup>\*</sup> = *M<sub>M</sub>*/*T*<sub>str</sub> , *S<sub>B</sub>* = *πM*<sub>*M*</sub>/*T*<sub>str</sub> = *πκ* 
		- $\blacktriangleright M_M$ : monopole mass,  $T_{\rm str}$ : string tension
- ► String width  $T_{\rm str}^{-1/2} \ll \rho_E^*$  required  $\rightarrow$   $\sqrt{\kappa}$   $\gg$   $1 \cdots$  Is this OK for PTA ( $\sqrt{\kappa}$   $\sim$  8)? →**Alternative evaluation desired**

# $t_{\rm E}$ Vacuum Monopole worldline

![](_page_11_Picture_7.jpeg)

#### Preskill-Vilenkin approximation [Preskill & Vilenkin, 1992] **String breaking rate**

**Re-evaluation of Bounce Action**

#### **Setup SU(2) gauge theory w/ adjoint Higgs & fundamental Higgs**

$$
\blacktriangleright \mathscr{L} = -\frac{1}{4g^2}F^2 - |Dh|^2 - \left(D\overrightarrow{\phi}\right)^2 - V_{\text{Higgs}}(h,\phi)
$$

► *h*: SU(2) fundamental,  $\phi$ : SU(2) adjoint

$$
\sim V_{\text{Higgs}}(h,\phi) = \lambda \left( |h|^2 - v^2 \right)^2 + \tilde{\lambda} \left( \overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left( \phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2
$$

► Assumptions:  $λ$ ,  $λ$ ,  $γ > 0$ ,  $\widetilde{\wr}$ ,  $\gamma > 0$ ,  $V > \nu$ 

#### **Setup Symmetry breaking pattern**

• 
$$
V_{\text{Higgs}}(h, \phi) = \lambda \left( |h|^2 - v^2 \right)^2 + \tilde{\lambda} \left( \overrightarrow{\phi}^2 - V^2 \right)^2 + \gamma \left| \left( \phi^a \frac{\tau^a}{2} - \frac{V}{2} \right) h \right|^2
$$
  
\n•  $SU(2) \rightarrow U(1)$  by  $\phi^a = V \delta_3^a$   
\n•  $U(1)$  generator:  $\tau^3/2$   
\n•  $U(1) \rightarrow 1$  by  $h = v \delta_3^1$ 

- -
- $\rightarrow$  U(1)  $\rightarrow$  1 by  $h_i = v\delta_i^1$

#### **Setup Cosmic Strings and Monopoles**

- ► 2nd SSB:  $U(1)$  → 1 by  $h_1 = ve^{i \times 0}$ 
	- $\triangleright$  Cosmic strings formed by  $h_1$
	- ‣ But SU(2) is simply connected → only metastable

#### $\overline{\kappa_{PV}} \propto V/\nu$

#### → interested in  $V/v = \mathcal{O}(1)$

![](_page_15_Picture_9.jpeg)

 $\rightarrow$  1st SSB: SU(2) → U(1) by  $\phi = V\delta_3^a$ 3

‣ Monopoles formed by *ϕ*

- ‣ Solve 4D Euclidean field equation?
	- ‣ Bounce: saddle point of *SE* → nontrivial algorithm needed
	- ‣ Less symmetric than vacuum decay
- → Alternative strategy

![](_page_16_Figure_5.jpeg)

![](_page_16_Picture_7.jpeg)

#### **How to evaluate the bounce action? Strategy**

#### **Strategy Conceptual sketch**

![](_page_17_Picture_1.jpeg)

## Compose

#### Construct independently

#### **Strategy Step 1: Build "excited strings" with an Ansatz**

- Make *β*-dependent static string configuration
	- $\beta$ : unwinding parameter (ordinary string at  $\beta = 0$ , vacuum at  $\beta = \pi/2$ )
	- $\triangleright$  4D field configuration ←  $\beta$ -dependent Ansatz [Shifman & Yung, 2002]

![](_page_18_Picture_4.jpeg)

![](_page_18_Figure_5.jpeg)

#### **Strategy Unwinding the string (ctd.)**

![](_page_19_Picture_1.jpeg)

## **Strategy**

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

#### **Step 2: Promote** *β* **to a field on the string** Strategy β = 0

- ‣ Construct effective 2D theory about *β*(*t <sup>E</sup>*,*z*)
- ‣ The bubble is circular
	- ‣ Reduces to 1D theory:  $S_E = 2\pi$ ∞ 0  $\rho_E$  d $\rho_E$  | 1  $\frac{1}{2}$   $\mathcal{K}_{\text{eff}}(\beta)\beta^2 + T(\beta)$
	- ‣ EoM solvable → bounce action

![](_page_21_Figure_5.jpeg)

![](_page_22_Picture_0.jpeg)

#### → Upper bound on the actual bounce action

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

#### **Results Sample field configuration**

![](_page_23_Figure_1.jpeg)

#### **Interpretation of NANOGrav results**

- $\triangleright$  Yellow: our  $S_B$  < Preskill-Vilenkin
	- ‣ Overlaps with NANOGrav region
	- ‣ Modifies the interpretation

![](_page_24_Figure_5.jpeg)

#### **Results**

![](_page_24_Figure_6.jpeg)

### **Conclusions & Outlook**

- - ‣ free of the conventional assumption
- 
- ‣ Next steps:
	- ‣ Optimal bounce action?
	- ‣ More realistic setup?
	- Inflation model?

![](_page_25_Picture_8.jpeg)

#### ‣ A robust upper bound on the bounce action for string breaking was calculated

‣ The Preskill-Vilenkin approximation can be inappropriate to interpret the PTA data

Thank you!

## **Backup**

- ‣ Simplest setup: abelian Higgs
- $\mathbf{v} \cdot \mathbf{V}(\boldsymbol{\phi}) = \lambda \left( \boldsymbol{\phi}^{\dagger} \boldsymbol{\phi} \nu^2 \right)$ 2
- $\rightarrow$  U(1):  $\phi \rightarrow e^{i\alpha}\phi$ 
	- broken by  $\langle \phi \rangle = v$

![](_page_28_Picture_5.jpeg)

#### **from U(1) breaking Cosmic Strings**

#### **Cosmic Strings from U(1) breaking (ctd.)**

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

#### **Cosmic Strings from U(1) breaking (ctd.)**

![](_page_30_Picture_1.jpeg)

#### **0 dimensional cousin of cosmic string Monopoles**

- ‣ Arise from winding on 2D sphere
- ‣ Behave like point-like particles\*

![](_page_31_Picture_3.jpeg)

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

Each point: 4D field configuration

![](_page_33_Figure_1.jpeg)

#### True (optimal) bounce action:  $S_E[\bullet] = \min_{\text{resch } i \text{ series of the } i}$ path joining the two sides max Φ∈path  $S_{E}[\Phi]$

![](_page_34_Picture_2.jpeg)

∃path that joins the two vacua stays within the effective  $β$  theory has maximum  $S_E^{\vphantom{\dagger}}$  at

 $\rightarrow S_E[\bullet] \geq S_E[\bullet]$ 

![](_page_35_Picture_3.jpeg)

### **When does thin-wall break down?**

- Introduce "*β*-thin-wall approximation"
- $\blacktriangleright$  Thin-wall approximation to the 1D effective theory of  $\beta(\rho_E)$ 
	- ‣ Valid only for *V* ≫ *v*
- ‣ Preskill-Vilienkin approximation: similar but different
	- *β*-thin-wall: Ansatz → effective 1D theory → thin-wall
	- ‣ Preskill-Vilenkin: assume thin-wall in the 4D theory

- ► solid: bounce, dashed: β-thin-wall
- ‣ For large hierarchy:
	- $\triangleright$  Primitive: Preskill-Vilenkin  $\times$  0(1)
- ‣ For small hierarchy:
	- *β*-thin-wall deviates from the bounce
		- ‣ Preskill-Vilenkin: also questionable

#### **Hint for stronger results? Results**

![](_page_37_Figure_7.jpeg)

![](_page_37_Picture_8.jpeg)

## **Unwinding the string**  $\rightarrow$  *U* = *e*<sup>−*iτ*<sub>3</sub>*φ*</sup> cos *β* + *iτ*<sub>1</sub> sin *β* ∈ *S*<sup>2</sup> ⊂ SU(2)  $\blacktriangleright h = U(\nu 0)$ <sup> $\vdash$ </sup>, ‣ controls the U(1) winding  $\blacktriangleright h_1 = e^{-i\varphi} v \text{ for } \beta = 0$  $\blacktriangleright$   $U = i\tau_1 = \text{const.}$  for  $\beta = \pi/2$ ‣ completely unwound  $T, φ = U(τ<sub>3</sub>/2)U<sup>†</sup>$ **Strategy**  $a + i(b\tau_1 + c\tau_3)$

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_2.jpeg)

- ‣ Nanograv's spectrum: blue tilted
- ‣ GW spectrum from stable cosmic strings →
	- ‣ The amplitude and the low-frequency cutoff correlate
	- $\rightarrow$  Mismatch with Nanograv

#### **Stable strings vs. PTA On metastability**

![](_page_39_Figure_5.jpeg)

- ‣ Finite lifetime moves the cutoff to the right
	- $\rightarrow$  better fit with the PTA data

#### **Metastable strings vs. PTA On metastability**

![](_page_40_Figure_3.jpeg)

#### **Magnetic fields Cross section of the breaking string**

 $B_i =$   $\epsilon^{ijk} \frac{\phi^a}{\phi^b}$ *V Fa jk*

#### **Primitive**

![](_page_41_Figure_2.jpeg)

![](_page_41_Picture_288.jpeg)

#### **Improved**

![](_page_41_Picture_5.jpeg)

#### **Other parameters Light W**

![](_page_42_Figure_1.jpeg)

#### **Other parameters SUSY-like**

![](_page_43_Figure_1.jpeg)

#### **Other parameters Heavy W**

![](_page_44_Figure_1.jpeg)

#### *β***-thin-wall approximation**

![](_page_45_Picture_3.jpeg)

$$
S_B = 2\pi \int_0^{\infty} \rho_E d\rho_E \left[ \frac{1}{2} \mathcal{K}_{\text{eff}}(\beta) \beta^2 + T(\beta) - T(0) \right]
$$
  
\n
$$
\approx -\pi \rho_E^{*2} \left[ T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_E^* \int_{\text{wall}} d\rho_E \left[ \frac{1}{2} \right] d\rho_E \left[ T(0) - T\left(\frac{\pi}{2}\right) \right] + 2\pi \rho_E^* m_{\text{eff}} \quad \text{and} \quad m_{\text{eff}} := \int_0^{\frac{\pi}{2}} d\rho_E \sqrt{2\mathcal{K}_{\text{eff}}(\beta) (T(\beta) - T(0))} \quad \text{and} \quad m_{\text{eff}} := \int_0^{\frac{\pi}{2}} d\rho_E \sqrt{2\mathcal{K}_{\text{eff}}(\beta) (T(\beta) - T(0))} \quad \text{and} \quad m_{\text{eff}} = 2\pi \rho_E^* m_{\text{eff}} \quad \text{and} \quad m_{\text{eff}} =
$$

► Maximum: 
$$
S_B = \pi \frac{m_{\text{eff}}^2}{T(0) - T(\pi/2)}
$$

$$
\sum_{E} = 2\pi \int_0^{\infty} \rho_E \mathrm{d}\rho_E \left[ \frac{1}{2} \mathcal{K}_{\text{eff}}(\beta) \beta^2 + T(\beta) \right]
$$

![](_page_46_Figure_2.jpeg)

#### **Kinetic term**

#### **Primitive Ansatz**

$$
h(x) = U \begin{pmatrix} \xi_{\beta}(\rho) \\ 0 \end{pmatrix}
$$

![](_page_47_Figure_7.jpeg)

![](_page_47_Figure_8.jpeg)

$$
\blacktriangleright A_{\theta}(x) = iU\partial_{\varphi}U^{-1}[1 - f_{\beta}(\rho)], \text{ other c}
$$

$$
\blacktriangleright \phi(x) = VU\frac{\tau_3}{2}U^{-1} + \varphi_\beta(\rho)\left[\frac{\tau_1}{2}\sin\beta - \frac{\tau_2}{2}\right]
$$

$$
\blacktriangleright U = e^{-i\tau_3 \varphi} \cos \beta + i\tau_1 \sin \beta
$$

 $\phi$  **−**  $\xi_{\beta}(0) = 0$ ,  $\xi_{\beta}(\infty) = v$ ,  $f_{\beta}(0) = 1$ ,  $f_{\beta}(\infty) = 0$ ,  $\varphi_{\beta}(0) = V \sin 2\beta$ ,  $\varphi_{\beta}(\infty) = 0$ 

[Shifman & Yung, 2002]

![](_page_48_Figure_0.jpeg)

![](_page_48_Picture_1.jpeg)

#### **Setup Couplings vs. Masses**

- $\blacktriangleright$  Scale hierarchy:  $\sqrt{\kappa_{PV}} = M_M/\sqrt{T_{\rm str}} \sim V/\nu \propto m_W/m_\gamma$ 
	- $\blacktriangleright$  Gauge field :  $m_W = gV$ ,  $m_\gamma =$ 1
	- $\sim$  (Scalars :  $m_{\phi} = \sqrt{8\lambda V}$ ,  $m_{h_1} = 2\sqrt{\lambda V}$ ,  $m_{h_2} = \sqrt{\gamma V}$ )  $\widetilde{\wr}$
- $\blacktriangleright$  Euclidean action in terms of the masses:  $S_E=$

$$
\sim V/v \propto m_W/m_\gamma
$$

*gv*

![](_page_49_Figure_6.jpeg)

## **Couplings vs. Masses (detailed)**

• Gauge field : 
$$
m_W = gV
$$
,  $m_\gamma = \frac{1}{\sqrt{2}}gv$ 

- ► Scale hierarchy:  $V/v \propto m_W/m_\gamma$
- ‣ Scalar triplet : *m<sup>ϕ</sup>* = 8*λ*  $\widetilde{l}$ *V*
- $\blacktriangleright$  Scalar doublet:  $m_{h_1} = 2\sqrt{\lambda} \nu$  ,  $m_{h_2} = \sqrt{\gamma} V$
- Euclidean action:

$$
g^{2}\mathscr{H} = \frac{1}{4}F^{2} + \left|D\hat{h}\right|^{2} + \frac{1}{2}\left(D\hat{\phi}\right)^{2} + \frac{m_{\phi}^{2}}{8m_{W}^{2}}\left(\hat{\phi}\right)^{2}
$$

 $\frac{p}{\sqrt{W}}\left(\hat{\phi}^2 - m_W^2\right)$  $\overline{W}$ 2 +  $m_h^2$  $h_1$  $\frac{m_1}{4m_\gamma^2}$  ( $|\hat{h}|^2 - 2m_\gamma^2$  $\ddot{\phantom{a}}$ *γ*) 2 +  $m_h^2$  $h_2$  $\frac{m_W^2}{m_W^2}$  ( $\phi$  $-\frac{m_W}{2}$  $\left(\frac{\nu_W}{2}\right){\hat h}$ 

![](_page_50_Picture_8.jpeg)