Compactified SM	Radion Stabilization	Interpolating BB 000000	Numerical Calculation	Conclusion 000

New Vacuum Solutions and Black Strings in the 4D Standard Model

Yu Hamada¹, Yuta Hamada^{2,3}, Hayate Kimura³

¹DESY, ²KEK, ³SOKENDAI

PPP2024, Aug. 22, 2024

String theory $\xrightarrow{\text{compactify}}$ enomous lower dimensional vacua (String landscape)

The same is true for standard model : SM landscape

 $\mathsf{Ex}:$ compactified on $S^1 \to \mathsf{stabilized}$ by Casimir energy of SM particles

On the other hand,

this S^1 vacuum is reproduced near the horizon of "quantum" black string in our 4D world

Sec. $1{\sim}3$ are the review of [Arkani-Hamed et. al. 07]

We construct this black string solution by numerical calculation

Compactified SM •000	Radion Stabilization	Interpolating BB 000000	Numerical Calculation	Conclusion 000

Compactified SM

The action for SM+GR

Our starting point is 4D SM+GR action :

$$S = \int d^4x \sqrt{-g^{(4)}} \left(\frac{1}{2}M_4^2 \mathcal{R}^{(4)} - \Lambda_4 + \dots\right)$$

 $\mathcal{R}^{(4)}$: 4D Ricci scalar M_4 : 4D Planck mass

 Λ_4 : 4D cosmological constant

... include other fermions, gauge fields in SM

Kaluza Klein mechanism for 4D metric

Compactify one spacial dimention on S^1 by Kaluza-Klein mechanism. The metric components are decomposed :

$$g_{\mu\nu}^{(4)} \to g_{ij}^{(3)}, A_i, \mathbf{R} \ (i, j = 0, 1, 2)$$

 $R: S^1$ radius in 4D \rightarrow scalar in 3D (radion)

integrate out the compact coordinate $x_3 \rightarrow$ effective 3D action :

$$S = \int d^3x \sqrt{-g^{(3)}} \left[\frac{1}{2} r M_4^2 \mathcal{R}^{(3)} - r M_4^2 \left(\frac{\partial R}{R} \right)^2 - \frac{r M_4^2}{8} \left(\frac{2\pi R}{r} \right)^2 R^2 F_{ij} F^{ij} - \frac{r^3 \Lambda_4}{(2\pi R)^2} + \dots \right]$$

Classical potential for the radion is the cosmological const. term :

$$V_0^{(3)}(R) = \frac{r^3 \Lambda_4}{(2\pi R)^2}$$

The radion field (moduli of S^1) can not be stabilized.

Compactified SM 0000	Radion Stabilization	Interpolating BB 000000	Numerical Calculation	Conclusion 000

Radion Stabilization

Casimir energy as radion potential

(constant) expectation values for scalars with quantum correction

= the stationary point of the effective potential

1-loop free fields correction for effective potential is following :

$$V^{(4)} = \underbrace{\frac{V_0^{(4)}}{\text{classical potential}}}_{\text{classical potential}} -\frac{i}{2} \sum_{\text{particle}} (-1)^{2s_p} n_p \int \frac{d^4k}{(2\pi)^4} \ln\left(m_p^2 + k^2\right)}{\text{Casimir potential} \equiv V_1^{(4)}}$$

Note that one dimention is compactified

$$\implies \text{the momentum is quantized as } \frac{2\pi n}{R} \text{ and } \int \to \sum$$
$$\implies R \text{ appaer in } V_1^{(4)} : \text{ radion potential}$$

The sum is evaluated as following :

$$V_1^{(4)} = -\sum_{\text{particle}} (-1)^{2s_p} n_p \frac{m_p^4}{2\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi n\theta_p)}{(2\pi R m_p n)^2} K_2(2\pi R m_p n)$$

 $heta_p$ is the parameter which characterize the boundary conditions of fields :

$$\psi_p(x_3 + 2\pi R) = e^{i2\pi\theta_p}\psi_p(x_3)$$

Possible θ_p reflects symmetry of the field :

 ψ_p has U(1) symmetry $\Longrightarrow \theta_p$ can be arbitrary value

gauge boson, graviton \implies periodic ($\theta_p = 0$)

Assumptions for stabilization

In previous solution, the assumption :

- Neutrino spectrum is normal hierarchy and lightest Neutrino is massless
 - The existence and type (dS, AdS) of solution is sensitive to Neutrino mass and dof
 - Casimir of the other particle is not relevant in this scale
 - 2 The boundary condition of Majorana fields is periodic instead of anti-periodic

 \implies fields feel \mathbb{Z}_2 flux on S^1 (cf. Aharonov-Bhom effect)

Compactified SM	Radion Stabilization	Interpolating BB ●00000	Numerical Calculation	Conclusion 000

Interpolating Black Brane

Interpolating BB

Interpolating Black Brane

The important perspective :

Extremal charged black brane interpolate between non-compact spacetime and compact spacetime which is compactified by its charge flux

Then, is there any black brane which interpolate with previous vacuum?

 $S^2 \times AdS_2$: Vacuum solution stabilized by electric flux Q

(potential for moduli : $F_{\mu\nu}F^{\mu\nu}$)

 Compactified SM
 Radion Stabilization
 Interpolating BB
 Numerical Calculation
 Conclusion

 Analogy to the new vacuum
 Our new vacuum is only one spacial dimension is compactified
 →
 consider an object extended 1D from the BH : Black String
 Conclusion

 \mathbb{Z}_2 charged Black String should reproduce the new $S^1 \times AdS_3$ vacuum near its horizon

Einstein equations are written as following :

$$\frac{A'}{A} = -\frac{R'}{R} - \sqrt{\frac{R'^2}{R^2} - \frac{V_1^{(4)} + \Lambda_4}{M_4^2}}, \quad R'' + \gamma R' = -\partial_R U(R)$$
$$\left(\partial_R U(R) = \frac{R}{M_4^2} \left(V_1^{(4)} + \Lambda_4 - \frac{1}{2}R\partial_R V_1^{(4)}\right), \quad \gamma = -2\left(\frac{R'}{R} + \sqrt{\frac{R'^2}{R^2} - \frac{V_1^{(4)} + \Lambda_4}{M_4^2}}\right)\right)$$

* For simplicity, discuss the $\Lambda_4=0$ case R EOM : classical mechanical EOM with friction γ and potential U(R)

 \implies shooting problem

 $ds^{2} = A^{2}(z)(-dt^{2} + dx^{2}) + dz^{2} + R^{2}(z)d\phi^{2}$

Extremal black string solution ?

For A,

- consistent with expected boundary condition at $z \rightarrow -\infty$: $A'|_{z=-\infty} = 0, \ R|_{z=-\infty} \propto z$
- When $R \equiv R_0$, $A \sim e^{-z\sqrt{V_1^{(4)}(R_0)/M_4}}$: $AdS_3 \times S^1$ R = 0: conical singularity R = 0: conical singularity

"Stopping solution" of $R \ {\rm EOM}$ should be extremal solution

 $z \to \infty$

 $\begin{cases} R(\infty) = R_0\\ A(\infty) \sim e^{-zl} \to 0 \end{cases}$

: horizon, $AdS_3 \times S^1$

Compactified SM	Radion Stabilization	Interpolating BB 000000	Numerical Calculation	Conclusion 000

Numerical Calculation

- This solution indeed interpolates flat part and AdS part : when $z \to \infty,~A \sim e^{-lz},$ $l \sim 8.4 \times 10^{-34} [\rm eV]$
- $A \to 0$ when $z \to \infty$: $z \to \infty$ corresponds to the horizon

Hayate Kimura (SOKENDAI)

Compactified SM 0000	Radion Stabilization	Interpolating BB 000000	Numerical Calculation	Conclusion ●00

Conclusion

- By using of Casimir energy, we can obtain the new vacuum solution in SM : SM vacuum is not unique, but there is SM Landscape
- The compact SM vacuum is reproduced near the horizon of a 4D black string

Future direction

- asymptotically dS_4
- non-extremal black string
- cosmological argument ?
- $E_8 \times E_8$ heterotic SUGRA