Higgs LFV decays in generalzed DFSZ type *UNIVERSITY OF WARSAW axion models in progress Kodai Sakurai (Tohoku U.)

Collaborators: Marcin Badziak (U. of Warsaw)

Summary

- We discuss if the two LFV decay modes of h(125) can be enhanced or not in generalized DFSZ axion models.
- In the case of non-chiral alignment Yukawa couplings $(\Gamma_{\ell\ell'}^R \neq \Gamma_{\ell'\ell}^R)$, $h \to e\tau$ and $h \to \mu\tau$ can be large simultaneously.
- The parameter region where hLFVs are enhanced can be explored by the searches of axion LFV couplings.

Lepton Flavor violation (LFV)

- Representative process
 - Lepton flavor violating (cLFV) decays : $e \rightarrow \mu \gamma$, $\mu \rightarrow 3e$, ...
 - Higgs LFV decays: $h \to e\tau$, $h \to \mu\tau$, $h \to e\tau$
- In the framework of the SM $+m_{\nu}\bar{\nu}_{L}^{c}\nu_{L}$

These couplings can be suppressed by specific conditions for g_{au} and g_{ad} .

$$C_p + C_n = 0.50(5)(C_u + C_d - 1) - 2\delta, \qquad C_u + C_d = 1,$$

$$C_p - C_n = 1.273(2)\left(C_u - C_d - \frac{1-z}{1+z}\right), \qquad C_u = \frac{1}{1+z} \sim 2/3.$$

3

Lepton current appears in the charged current:

$$-\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} (\bar{e}_L, \bar{\mu}_L, \bar{\tau}_L) \gamma^{\mu} U_{\text{PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} W^+_{\mu}$$

Due to the GIM mechanism, LFV appears at 1-loop level

e.g.) $\mu \rightarrow e\gamma$

$$BR = \frac{3\alpha}{32\pi} \Big| \sum_{k=1}^{3} \frac{(U)_{\mu k} (U)_{ek}^* m_{\nu_k}^2}{m_W^2} \Big|^2 = \mathcal{O}(10^{-54})$$

 \rightarrow Clear evidence of new physics if LFV is discovered.

Motivations

In Ref. [1], it is shown that due to the bound of cLFV, only one of $h \rightarrow e\tau$ or $h \rightarrow \mu\tau$ can be large:

 $C_u + C_d = N_1 / (\sum_i N_i) = 1$ $rightarrow N_2 + N_3 = 0$

N_i: Anomaly coefficient for the *i*th generation quarks

 $N_1 = (X_{u_L} + X_{u_R} - X_{d_L} - X_{d_R})/2$

- Nucleophobic axion induces Flavor violation.
- (2+1) flavor space $Q(f_1) = Q(f_2) = X_{fa}, \quad Q(f_3) = X_{f_3}$ The quark couplings are given by $C_u = c_\beta^2$, $C_d = s_\beta^2$ Nucleophobia is realized $\tan\beta \sim 0.7$.
- Nonalignment Yukawa coupling [$\xi_{ii}^{e_{L/R}} \equiv (V_{eL/R})_{3i}^* (V_{eL/R})_{3i}$]

$$\begin{pmatrix} \Gamma_{he_{i}e_{i}}^{R} \end{pmatrix} = - \begin{pmatrix} \frac{m_{e_{i}}}{v} [s_{\beta-\alpha} + (-t_{\beta} + \frac{1}{c_{\beta}s_{\beta}})c_{\beta-\alpha}]\delta_{ij} - \frac{c_{\beta-\alpha}m_{\tau}}{c_{\beta}s_{\beta}v}\sqrt{\xi_{ii}^{e_{L}}\xi_{jj}^{e_{R}}} \end{pmatrix}$$

$$\xi_{11}^{e_{R}} = \xi_{22}^{e_{R}} = 0$$

$$\Gamma_{he_{i}e_{j}}^{R} = \begin{pmatrix} \Gamma_{hee}^{R} & 0 & \Gamma_{he\tau}^{R} \\ 0 & \Gamma_{h\mu\mu}^{R} & \Gamma_{h\mu\tau}^{R} \\ 0 & \Gamma_{h\mu\mu}^{R} & \Gamma_{h\mu\tau}^{R} \end{pmatrix}$$

(from $BR_{\mu \to e\gamma}^{exp} < 4.2 \times 10^{-13}$) $\Gamma^R_{\tau\mu}\Gamma^R_{e\tau}, \ \Gamma^R_{\mu\tau}\Gamma^R_{\tau e} \lesssim 10^{-8}$ ($\mathcal{L} = \bar{\ell}'_L \Gamma^R_{\ell'\ell} \ell_R h + \text{h.c.}$) nn. $\frac{\Gamma_{\tau\mu}^{R} \stackrel{\prime}{}_{\Gamma_{L}} \otimes \Gamma_{e\tau}^{R}}{\tau_{L}} \otimes \frac{\Gamma_{e\tau}^{R}}{\tau_{R}} e_{L}} \sim \frac{m_{\tau} \Gamma_{\tau\mu}^{R} \Gamma_{e\tau}^{R} e}{16\pi^{2} m_{\mu}^{2}} \left(-9 - 6\log\left(\frac{m_{\tau}^{2}}{m_{h}^{2}}\right)\right)$ μ_R

- They assumed that $\Gamma_{\ell\ell'}^R = \Gamma_{\ell'\ell}^R$. However, if it's not the case, $\mu \rightarrow e\gamma$ is not so severe.
- Can two Higgs LFV decay modes be enhanced at the same time?
 - This possibility isn't studied much in the framework of general structure of the Yukawa couplings.
 - Excess of 2.1 σ in $h \rightarrow \mu \tau$ and $h \rightarrow \mu \tau$ in ATLAS [2].

 $h \tau \tau$ ✓ cLFV bounds $\mu \to e\gamma$: $\Gamma^{R}_{\tau\mu}\Gamma^{R}_{e\tau}$, $\Gamma^{R}_{\mu\tau}\Gamma^{R}_{\tau e} \leq 10^{-8}$ $\tau \rightarrow \ell \gamma : |\Gamma^R_{\tau \mu, \mu \tau}|^2, |\Gamma^R_{\tau e, e \tau}|^2 \lesssim 10^{-4}$

Enhancement of $h \rightarrow \mu \tau$ and $h \rightarrow e \tau$

Numerical calcurations

Generalized DFSZ axion models

- The original motivation of the model is the realization of "nucleophobic" axion [3].
- Bounds from Neutron star cooling and SN 1987A for $m_a < 20 \text{meV}$ [4]

 $|g_{an}|, |g_{ap}| \lesssim 10^{-9}$

Reference: [1]: Gianluca Blankenburg, John Ellis, Gino Isidori, Phys.Lett.B 712 (2012) 386-390. [2]: ATLAS Collaboration, JHEP 07 (2023) 166. [3]: Luca Di Luzio, Federico Mescia, Enrico Nardi, Paolo Panci, Robert Ziegler, Phys.Rev.Lett. 120 (2018) 26. [4]: https://cajohare.github.io/AxionLimits/