テンソルネットワークの進展

素粒子物理学の進展2024 (PPP2024) 2024年8月22日@YITP

Contents

- Introduction of tensor networks
 - Why/What's tensor network (TN)
 - Lagrangian/path integral approach
 - Tensor renormalization group (TRG)
 - Recent progress of TN study
- Topical Topics

- using TRG method
- Spectroscopy
 Entanglement entropy

Contents

- Introduction of tensor networks
 - Why/What's tensor network (TN)
 - Lagrangian/path integral approach
 - Tensor renormalization group (TRG)
 - Recent progress of TN study

takeda@hep.s.kanazawa-u.ac.jp

Contents

- Introduction of tensor networks
 - Why/What's tensor network (TN)
 - Lagrangian/path integral approach
 - Tensor renormalization group (TRG)
 - Recent progress of TN study
- Topical Topics

- using TRG method
- Spectroscopy
 Entanglement entropy

Why tensor networks?

Good

Applicable to any models even for complex action

≈ no sign problem

- Extremely large volume (thermodynamic limit)
- High-precision is attainable in 2D system with simple internal d.o.f.

Bad

Expensive for higher dimensional system

Why tensor networks?

Good

Applicable to any models even for complex action

≈ no sign problem

Challenge to

- QCD + μ
- θ-term
- Lattice SUSY
- Real-time dynamics
- Chiral gauge theory

Other methos to overcome sign problem

- Complex Langevin
- Lefshetz thimble
- Path optimization
- Quantum computing

...

Notational rules

Rank 2 tensor (matrix)

$$j - i = A_{ij}$$

Tensor : vertex index : link

Notational rules

Rank 2 tensor (matrix)

Rank 3 tensor

 B_{ijk}

Tensor : vertex index : link

Contraction (summation) rule

Contraction (summation) rule

index connecting with a single tensor : no summation

What's tensor network?

Example: TN for square lattice

What's tensor network?

Example: TN for square lattice

A target quantity (wave function/partition function) is represented by tensor network

Two approaches in TN

	Hamiltonian approach	Lagrangian approach
TN is used to express	wave function	partition function, path integral
target system	quantum many-body system	Classical statistical system, Path-integral rep. of quantum field theory
combining with	variational method	coarse-graining (real-space renormalization group)

Coarse-graining

Tensor renormalization group (TRG) PRL99,120601(2007)

http://www.na.scitec.kobe-u.ac.jp/~yamamoto/lectures/cse-introduction2009/cse-introduction090512.PPT

No truncation error but introducing statistical error

All-mode renormalization Ohki+ PRD107,114515(2023)

Studies of Lagrangian approach

2D system

- Spin model : lsing model Levin & Nave PRL99,120601(2007), Aoki et al. Int. Jour. Mod. Phys. B23,18(2009), X-Y model Meurice et al. PRE89,013308(2014), X-Y model with Fisher zero Meurice et al. PRD89,016008(2014), O(3) model Unmuth-Yockey et al. LATTICE2014, X-Y model + μ Meurice et al. PRE93,012138(2016)
- Abelian-Higgs Bazavov et al. LATTICE2015
- φ⁴ theory Shimizu Mod.Phys.Lett.A27,1250035(2012), Sakai et al., JHEP05(2019)184
- QED₂ Shimizu & Kuramashi PRD90,014508(2014) & PRD90,034502(2018)
- QED₂ + θ Shimizu & Kuramashi PRD90,074503(2014), Kanno+ Lattice 2024
- Gross-Neveu model + μ ST & Yoshimura PTEP043B01(2015)
- CP(N-1) + θ Kawauchi & ST PRD93,114503(2016)
- Towards Quantum simulation of O(2) model Zou et al, PRA90,063603
- N=1 Wess-Zumino model (SUSY model) Sakai et al., JHEP03(2018)141
- Hubbard model Akiyama et al., PRD104(2021)014504
- U(N) and SU(N) gauge theory Nishimura et al., JHEP12(2021)011
- 3D system Higher order TRG(HOTRG) : Xie et al. PRB86,045139(2012)
 - Ising, Potts model Wan et al. CPL31,070503(2014)
 - Pure fermion system Sakai et al., PTEP063B07(2017)
 - Gauge Ising Yoshimura et al., JHEP08(2019)023
 - Hubbard model Akiyama et al., PTEP(2022)023I01
 - SU(2) gauge Tsuchiya et al., arXiv:2205.08883
 - SU(2) principle chiral + μ Akiyama et al., arXiv:2312.11649
- 4D system
 - Ising model Akiyama et al., PRD100,054510(2019), Sasaki+Sugimoto Lattice 2024
 - Complex φ⁴ + μ Akiyama et al., JHEP09(2020)177
 - NJL model Akiyama et al., JHEP01(2021)121
 - Real φ⁴ theory Akiyama et al., PRD104(2021)034507
 - Z₂ gauge-Higgs + μ Akiyama et al., JHEP05(2022)102
 - Z₃ gauge-Higgs + μ Akiyama et al., JHEP05(2023)077

dimensionality

Spectroscopy using TRG method

arXiv:2404.15666 (to be published in PRD)

共同研究者

Fathiyya Az-zahra(金沢大) 山崎剛(筑波大)

Energy spectrum

Schrödinger eq.

(e.g., 0^{-+} for pion) quantum number : J^{PC} , flavors, ... $\hat{H}|n,q\rangle = E_{n,q}|n,q\rangle \qquad (n=0,1,2,\cdots)$

QCD Hamiltonian

$$\hat{H}|\Omega
angle=0$$
 : vacuum

Two-point function (Euclidean time)

$$\lim_{\beta \to \infty} \operatorname{Tr} \left[\hat{\mathcal{O}}_{q}^{\dagger}(\tau) \hat{\mathcal{O}}_{q}(0) e^{-\beta \hat{H}} \right] = \sum_{n=0}^{\infty} |\langle \Omega | \hat{\mathcal{O}}_{q}(0) | n, q \rangle|^{2} e^{-\tau E_{n,q}}$$
$$\hat{1} = \sum_{n,q'} |n,q'\rangle \langle n,q'|$$

Hadron spectroscopy with MC

$$\lim_{\beta \to \infty} \operatorname{Tr} \left[\hat{\mathcal{O}}_q^{\dagger}(\tau) \hat{\mathcal{O}}_q(0) e^{-\beta \hat{H}} \right] = \sum_{n=0}^{\infty} |\langle \Omega | \hat{\mathcal{O}}_q(0) | n, q \rangle|^2 e^{-\tau E_{n,q}}$$

Hadron spectroscopy with MC

$$\lim_{\beta \to \infty} \operatorname{Tr} \left[\hat{\mathcal{O}}_{q}^{\dagger}(\tau) \hat{\mathcal{O}}_{q}(0) e^{-\beta \hat{H}} \right] = \sum_{n=0}^{\infty} |\langle \Omega | \hat{\mathcal{O}}_{q}(0) | n, q \rangle|^{2} e^{-\tau E_{n,q}}$$

Problems:

- Need large time extent β and time separation τ
- Need large statistics to extract higher excited states

How to get spectrum by TN?

- Hamiltonian formalism
 - ⇒ Matsumoto+Itou+Tanizaki 2023, 2024
- Lagrangian formalism
 - Two-point function
 - Large time extent and separation are easily realized
 - nothing new! (just do it)
 - Transfer matrix We use here!
 - No need to extrapolate time extent and separation

 $(\mathcal{T}|a\rangle = e^{-\omega_a}|a\rangle \text{ for } a = 0, 1, 2\cdots)$ $\mathcal{T} \leftrightarrow e^{-\hat{H}} \implies \omega_a \leftrightarrow E_{n,q}$

 $\mathcal{T} \leftrightarrow e^{-\hat{H}} \Rightarrow \omega_a \leftrightarrow E_{n,q}$

Transfer matrix + Tensor network

Spectroscopy for 1+1dim Ising

Quantum number $q = \pm 1$ is determined by selection rule

$$\langle \Omega | s | a \rangle \neq 0 \Longrightarrow q_a = -1$$

Spectroscopy for 1+1dim Ising

Quantum number $q = \pm 1$ is determined by selection rule

$$\langle \Omega | s | a \rangle \neq 0 \Longrightarrow q_a = -1$$

The momentum is also determined by selection rule

Scattering phase shift

Scattering phase shift

Entanglement Entropy with TN

will appear in arXiv soon

共同研究者

加堂大輔(明治学院大) 田中豪太(明治学院大) 早崎貴大(金沢大)

What and Why EE?

Def : measure of quantum correlation between two subsystems A and B

$$S_A = -\mathrm{Tr}_A \rho_A \log \rho_A$$

$$\rho_A = \mathrm{Tr}_B \rho_{A+B}$$

- Quantum information
- A key quantity to understand BH Suskind+Uglum 1996
- EE can also be used as "order parameter" to study quantum phase transition Calabrese+Cardy 2004

Monte Carlo study

- 3+1dim pure SU(3) gauge theory Nakagawa+ 2009, Itou+ 2016
 - Order parameter of confinement
- 1+1, 2+1dim Ising Bulgarelli+Panero 2023
 - Computation of c-function

Renyi Entropy
$$S_A^{(n)} = \frac{1}{1-n} \operatorname{Tr}_A(\rho_A)^n \longrightarrow S_A$$

Difficulties in MC

- extrapolation $n \rightarrow 1$ OK?
- To realize zero temperature, one needs large Euclidean time

 $\rho_{A+B} \longrightarrow |0\rangle \langle 0| \quad \text{for} \quad T \longrightarrow 0$

(previous) Tensor network study

EE can be directly computed without relying on replica method

• TN representation of ρ_A

Bazavov+ 2016

Tensor network rep. of Transfer matrix

EE can be directly computed without relying on replica method

• TN representation of ρ_A

EE can be directly computed without relying on replica method

• TN representation of ρ_A

EE can be directly computed without relying on replica method

• TN representation of ρ_A

EE can be directly computed without relying on replica method

• TN representation of ρ_A

$$(\rho_A)_{n,n'} = \operatorname{Tr}_B \rho_{A+B} \approx$$

$$\Rightarrow \quad S_A = -\operatorname{Tr}_A \rho_A \log \rho_A \approx -\sum_i \lambda_i \log \lambda_i$$

EE can be directly computed without relying on replica method

• TN representation of ρ_A

$$(\rho_A)_{n,n'} = \operatorname{Tr}_B \rho_{A+B} \approx$$

$$\Rightarrow \quad S_A = -\operatorname{Tr}_A \rho_A \log \rho_A \approx -\sum_i \lambda_i \log \lambda_i$$

Transition point and value of central charge can be precisely estimated

Summary

- Tensor network is free of sign problem
- For Lagrangian approach, key point of coarse-graining scheme is information compression based on singular value decomposition
- Improvement of coarse-graining algorithm is essentially important and currently developing
- 4D system with simple d.o.f. is now feasible, but the road to lattice QCD is still long
- As topical topics, we demonstrate the spectroscopy and computation of EE by TRG method
- TN can explore areas where MC cannot

Backup

Tensor renormalization group (TRG) PRL99,120601(2007)

Tensor renormalization group (TRG) PRL99,120601(2007)

Bond dimension $\label{eq:linear} 1 \leq i,j, \ldots \leq \chi$

$$\Leftrightarrow T_{ijkl}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

$$1 \le i, j, \dots \le \chi$$

$$\chi^2 \times \chi^2 \text{ matrix}$$

$$\Leftrightarrow \quad T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2}$

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge \dots \ge 0$: singular value (non-negative)

$$\iff T_{ijkl} = M_{(ij)(kl)}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \ \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge ... \ge 0$: singular value (non-negative)

$$\begin{split} T_{ijkl} &= M_{(ij)(kl)} \\ & \overset{\text{SVD}}{=} \sum_{m=1}^{\chi^2} U_{(ij)m} \sigma_m V_{m(kl)}^{\dagger} \end{split}$$

Tensor renormalization group (TRG) PRL99,120601(2007)

 $M \in \mathbb{C}^{\chi^2 \times \chi^2} \ \Rightarrow \mathrm{TN}$ is sign-problem-free

Singular Value Decomposition(SVD) $M_{ab} = \sum_{m} U_{am} \sigma_m (V^{\dagger})_{mb}$ unitary matrix $\sigma_1 \ge \sigma_2 \ge ... \ge 0$: singular value (non-negative)

$$T_{ijkl} = M_{(ij)(kl)}$$

truncation
 $\approx \sum_{m=1}^{\chi} U_{(ij)m} \sigma_m V_{m(kl)}^{\dagger}$

truncation of SVD = information compression

Image compression

numbering *m*

http://www.na.scitec.kobe-u.ac.jp/~yamamoto/lectures/cse-introduction2009/cse-introduction090512.PPT

Image compression

 $D_{\rm cut} = \chi$

 $D_{\rm cut}=3$

 $D_{\rm cut}=20$

 $D_{\rm cut}=10$

http://www.na.scitec.kobe-u.ac.jp/~yamamoto/lectures/cse-introduction2009/cse-introduction090512.PPT

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

truncated SVD

Tensor renormalization group (TRG) PRL99,120601(2007)

contraction

Tensor renormalization group (TRG) PRL99,120601(2007)

Road to lattice QCD

- 4-dimensional space-time
 - Efficient coarse-graining scheme even for higher dimensional system
- Color
 - "Armillary sphere" Yosprakob 2023, Yosprakob+Okunishi 2024
- Flavor
 - Yosprakob+ 2023, Akiyama 2023

Tensor network rep. of ${\cal Z}$

depends on property of field and interaction

Scalar field (non-compact)

Orthonormal basis expansion

Shimizu mod.phys.lett. A27,1250035(2012), Lay & Rundnick PRL88,057203(2002)

■ Gauss Hermite quadrature Sakai et al., JHEP03(2018)141

Gauge field (compact : SU(N), CP(N) etc.)

 Character expansion : maintain symmetry, better convergence Meurice et al., PRD88,056005(2013)

Fermion field (Dirac/Majorana)

Shimizu & Kuramashi PRD90,014508(2014), ST & Yoshimura PTEP(2015)043B01

Grassmann number θ²=0 -> finite sum

In principle, we can treat any fields

$$e^{\phi\theta} = 1 + \phi\theta = \sum_{n=0}^{1} (\phi\theta)^n$$

テンソルのフロー

ある温度での 初期テンソル

高温相の自明な固定点テンソル

低温相の自明な固定点テンソル

低温相の自明な固定点テンソル

臨界温度の非自明な 固定点テンソルは?

その場合、解析的にテンソルを調べることはできない。 非自明な固定点テンソルは無限次元? 数値的にしか解析できない(有限次元で)

MC法とTN法(TRG)の比較

	MC法	TN法(TRG)
分配関数の扱い方	ボルツマン因子を確率とし て扱う	分配関数をテンソルネットワーク 表示する
効率性を確保するた めの技法	重点サンプリング	特異値分解による情報圧縮
誤差	統計誤差	系統誤差 D _{cut}
符号問題(複素作用 問題)	あり	なし(:確率解釈がない)
その他の問題点	臨界減速	臨界点近傍で情報圧縮の効率 が低下
		X

クラスターアルゴリズム等で解決

2次元であれば、克服可能

Evenbly & Vidal 2014, Gu et al., 2015

Hierarchy of singular value

• Near criticality: hierarchy gets worse (large *S*)

like critical slowing down in MC

Tensor network renormalization (TNR) Evenbly&Vidal 2014 can help the situation

Renormalization group

TRG

$$H(K; \{s\}) = \sum_{i} K_i \mathcal{O}_i(\{s\})$$

s : spins

$$\mathcal{Z} = \sum_{\{s\}} e^{-\beta H}$$

Block spin transf., Migdal-Kadanoff RG

$$\begin{split} H &= \sum_{i} K_{i} \mathcal{O}_{i} \xrightarrow{\mathcal{R}} H' = \sum_{i} K'_{i} \mathcal{O}'_{i} \\ K' &= \mathcal{R}_{K}(K) \\ K^{*} &= \mathcal{R}_{K}(K^{*}) \text{ : fixed point} \end{split}$$

target: critical exponent etc

$$T_{ijkl}(K)$$

$$i, j, k, l : indexes$$

$$\mathcal{Z} = \sum_{i,j,k,l,...} \prod T_{ijkl} \cdots$$
SVD + contraction
$$\sum_{j,k,l,...} \prod T_{ijkl} \cdots \xrightarrow{\mathcal{R}} \sum_{i,j,k,l,...} \prod T'_{ijkl} \cdots$$

$$T' = \mathcal{R}_T(T)$$

$$T^* = \mathcal{R}_T(T^*) : \text{fixed point tensor}$$
target : partition function etc

Kadanoff et al, Rev.Mod.Phys.86,647(2014)

From point of view of MC

From point of view of TN

Space of theory

Is there a region where any method cannot access ?

Is entanglement problem NP-hard ?

SVD

For simplicity rank- $k m \times n$ real matrix $A (m \ge n \ge k)$ is given by

 $A = U \Lambda V^T$ (full SVD)

 $\begin{cases} U: m \times m \text{ orthonormal matrix}: U=(u_1, u_2, ..., u_m), \quad U^T U=U U^T = I_m \\ V: n \times n \text{ orthonormal matrix}: V=(v_1, v_2, ..., v_n), \quad V^T V=V V^T = I_n \\ \Lambda: m \times n \text{ diagonal matrix}: \Lambda = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_n) \\ \text{ where } \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_k > \sigma_{k+1} = ... = \sigma_n = 0 \end{cases}$

$$A = \sum_{l=1}^{k} \sigma_l u_l v_l^T$$

Decomposition using rank-1 tensor

Low-rank approximation

■ ランクr(<k)以下のすべての行列の中で、ター ゲットの行列 A に「最も近い」行列 X は?

 $\min_{X \in \mathbb{R}^{m \times n}, \operatorname{rank}(X) \le r} ||A - X||$

■「最も近い」=フロベニウスノルム //*A-X*//_F が最小

 $||Y||_{\mathrm{F}}^2 \equiv \sum_{i=1}^m \sum_{j=1}^n y_{ij}^2 = \mathrm{tr}\left[YY^T\right]$ 以後はこのノルムを使う

■ 具体的な「最も近い」行列は?

Best approximation of A ?

Proof of Eckart & Young theorem

ランクが r (< k) の行列 X を考え、//A-X//_Fを最小化すればよい

Proof of Eckart & Young theorem

ランクが r (< k) の行列 X を考え、//A-X//_Fを最小化すればよい

ランク*r* で、//*A*-*X*//_Fを最小化する*G* は、 $g_{ii}=\sigma_i$ (*i*=1,...,*r*) 以外の要素はすべてゼロ $G = \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_r, 0, ..., 0)$ $X = UGV^T = \sum_{l=1}^r \sigma_l u_l v_l^T$

e.g. 2D Ising model

$$Z = \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y)$$

$$= (\cosh\beta)^{2V} \sum_{\{s\}} \prod_{\langle x,y \rangle = 0} \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} \qquad V = \text{# of lattice sites}$$

$$\exp(\beta s_x s_y) = \cosh(\beta s_x s_y) + \sinh(\beta s_x s_y)$$

$$= \cosh\beta + s_x s_y \sinh\beta$$

$$= \cosh\beta (1 + s_x s_y \tanh\beta)$$

$$= \cosh\beta \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} \qquad x = \pm 1$$

$$\frac{1}{i_{xy}} \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}} \qquad x = \frac{1}{i_{xy}}$$

$$\mathcal{Z} = \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y)$$
$$= (\cosh\beta)^{2V} \sum_{\{s\}} \prod_{\langle x,y \rangle} \sum_{i_{xy}=0}^{1} (s_x s_y \tanh\beta)^{i_{xy}}$$
$$= (\cosh\beta)^{2V} \sum_{\{i\}} \sum_{\langle s \rangle} \prod_{\langle x,y \rangle} (s_x \sqrt{\tanh\beta} \cdot s_y \sqrt{\tanh\beta})^{i_{xy}}$$

e.g. 2D Ising model

$$\begin{aligned} \mathcal{Z} &= \sum_{\{s\}} \exp\left(\sum_{\langle x,y \rangle} \beta s_x s_y\right) = \sum_{\{s\}} \prod_{\langle x,y \rangle} \exp(\beta s_x s_y) \\ &= (\cosh \beta)^{2V} \sum_{\{s\}} \prod_{\langle x,y \rangle} \sum_{i_{xy}=0}^{1} (s_x s_y \tanh \beta)^{i_{xy}} \\ &= (\cosh \beta)^{2V} \sum_{\{s\}} \sum_{\langle x,y \rangle} \prod_{\langle x,y \rangle} (s_x \sqrt{\tanh \beta} \cdot s_y \sqrt{\tanh \beta})^{i_{xy}} \\ &= (\cosh \beta)^{2V} \sum_{\{i\}} \sum_{\{s\}} \prod_{\langle x,y \rangle} (s_x \sqrt{\tanh \beta})^{i_{xy}} (s_x \sqrt{\tanh \beta})^{i_{xx}} (s_x \sqrt{\tanh \beta})^{i_{xw}} (s_x \sqrt{\tanh \beta})^{i_{xv}} \\ &= (\cosh \beta)^{2V} \sum_{\{i\}} \sum_{\{s\}} \prod_{\langle x,y \rangle} (\sqrt{\tanh \beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \\ &= (\cosh \beta)^{2V} \sum_{\{i\}} \sum_{\{s\}} \prod_{\langle x,y \rangle} (\sqrt{\tanh \beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \\ &= (\cosh \beta)^{2V} \sum_{\{i\}} \prod_{\langle x,y \rangle} (\sqrt{\tanh \beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \sum_{s_x=\pm 1} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} s_x^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} \\ &= (\cosh \beta)^{2V} \sum_{\{i\}} \prod_{\langle x,y \rangle} (\sqrt{\tanh \beta})^{i_{xy}+i_{xz}+i_{xw}+i_{xv}} 2\delta(\operatorname{mod}(i_{xy}+i_{xz}+i_{xw}+i_{xv},2)) \\ &= T_{i_{xy}} i_{xz} i_{xw} i_{xv}} \\ & \operatorname{new} \operatorname{d.o.f.:index of tensor} \end{aligned}$$

 $\mathcal{Z} = 2^V (\cosh\beta)^{2V} \sum_{\substack{\dots,i,j,k,l,m,n,n}} \cdots T_{ijkl} T_{mnio} \cdots$

$$T_{ijkl} = (\sqrt{\tanh\beta})^{i+j+k+l}\delta(\operatorname{mod}(i+j+k+l), 2)$$

 $\begin{bmatrix} T_{0000} & T_{0001} & T_{0010} & T_{0011} \\ T_{0100} & T_{0101} & T_{0110} & T_{0111} \\ T_{1000} & T_{1001} & T_{1010} & T_{1011} \\ T_{1100} & T_{1101} & T_{1110} & T_{1111} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \tanh\beta \\ 0 & \tanh\beta & \tanh\beta & 0 \\ 0 & \tanh\beta & \tanh\beta & 0 \\ \tanh\beta & 0 & 0 & (\tanh\beta)^2 \end{bmatrix}$

size and elements of tensor depend on a model

(previous) Tensor network study

EE can be directly computed without relying on replica method

Kuramashi+Luo 2023

Figure 3: N_t dependence of entanglement entropy at $\beta = 1.5$. The bond dimension is $D_{\text{cut}} = 130$.

Figure 11: *n* dependence of central charge *c* obtained from *n*th-ordr Rényi (open) and entanglement (closed) entropies. Solid line denotes c = 2 to guide your eyes.