Light Thermal Dark Matter and MeV Gamma-ray Detection arXiv:2410:xxxxx

Yu Watanabe (IPMU)

with Shigeki Matsumoto(IPMU), Tadayuki Takahashi(IPMU), Tom Melia(IPMU) and COSI Science Team

DM candidates

- IVarious candidates, and one of the most attractive candidate is the thermal DM. Def: Experienced equilibrium with SM particles in the early universe. Motivation: • Free from the initial condition problem of the DM density today.
 - Detectable based on the interaction dependable on maintaining equilibrium.
 - DM density today can be from the freeze-out mechanism.

Mass range spans almost 90 orders of magnitudes...

Motivation of light thermal DM

0(1) MeV 1 GeV m_{DM} Light Thermal DM

- WIMP has been intensively searched for due to the 'WIMP miracle' and the connection to the EWSB (SUSY, UED, Little Higgs), however not found.
- Different mass region, light and heavy thermal DMs, are getting more attention.
- Many experiments are being planned to search for the light thermal DM.
- The light thermal DM is expected to produces MeV γ -ray signal, and the COSI has a chance to detect the signal.
- From the COSI view point, it is important to study light thermal DM complehensively and figure out whether the COSI can prove them.

Light thermal DM models

- What model is favored with the minimlaity, renormalizability and Z_2 symmetry?
- DM should be singlet under SM gauge group. (Relic abundance)
- Minimal model (SM + scalar DM: Higgs portal) was already excluded.
- Next minimal model is SM + DM + mediator.
- We consider the extention of SM with singlet DM and singlet mediator, where DM $(m_{\rm DM} \lesssim 100 \, {\rm MeV})$ is a scalar or fermion and the mediator is a scalar or vector. We consider the dark photon and $U(1)_{\rm R}$ boson scenarios for the vector mediator.
- We name these models as:

\ MED	Scalar	Vector (DP)	Vector (U(1)B)
calar	SS	SV(DP)	SV(B)
rmion	FS	FV(DP)	FV(B)

We investigated all the models to figure out viable model parameter regions.

Constraint on $\langle \sigma v \rangle$ **from CMB**

- not observed, resulting in $\langle \sigma v \rangle \lesssim 10^{-27} \text{cm}^3/\text{s} (\text{m}_{\text{DM}}/\text{GeV})$ @ recommbination
- \leftrightarrow relic abundance: $\langle \sigma v \rangle \approx 10^{-26} \text{cm}^3/\text{s}$ @ freeze-out.
- Simple s-wave annihilation is not good.
- Several mechanisms can be utilized to overcome this.
 - Annihilations into harmless particles (neutrino)
 - Different proceses (Co-annihilation, SIMP, ADM....)
 - Non-standard cosmology (late-time inflation)
 - Velocity-dependent annihilation
- We focus on the last one.

• DM annihilations into primordial plasma may modify the anisotropy of the CMB, which is

dvelocity-dependent annihilation?

Constraints from cosmology

- I many constraints... We implemented all the constraints.
- CMB
 - Constraint on $\langle \sigma v \rangle$
 - Relic abundance
 - rate of universe. $m_{\rm DM} \gtrsim O(1) \,{\rm MeV}$
- BBN

 - element abundances. $m_{\rm DM} \gtrsim O(0.1) \, {\rm MeV}$
- Lyman α

• Constraint on $m_{\rm DM}$: asymmetrical entropy injection into EM-plasma and ν alters expansion

• Constraint on $\langle \sigma v \rangle$: Photons emitted by DM annihilations may destroy the light elements. Deutrium abundance results in $\langle \sigma v \rangle \lesssim 10^{-24} \text{cm}^3/\text{s}$ ($m_{\text{DM}} \gtrsim 2 \text{ MeV}$) @ $T_{\gamma} \sim \mathcal{O}(1)$ keV. • Constraint on $m_{\rm DM}$: Light thermal particle affects $T_{\gamma(\nu)}$ and the expansion rate, then light

• Late kinetic decoupling of DM suppresses the structure formation, resulting in $T_{\rm kd} \gtrsim 200 \, {\rm eV}$.

Detection of DM

• 33 types of DM-SM interaction, and 3 appropriate searching strategy for each.

Direct detection (Observation of DM-SM scatterings at underground laboratories)

- Traditional experiments (Xenon, etc.) lose the sensitivity for the light DM, as the recoil energy is small then falls below the detector threshold.
- Several strategy are being considered to overcome this: detector with low threshold, Migdal effect, electron scattering.

Accelerator (Production of DM by high energy SM particles collisions)

- Imany constraints from accelerator experiments.
- Imany types (collider, fixed target, beam dump) and accelarating SM particles (e and p). • Imany signals (Higgs invisible decay, MED production (invisible decay, visivle decay)).

- DM can produce cosmic-ray and γ -ray.
- Cosmic-ray is the low energy e^{\pm} , which cannot enter the heliosphere by the solar magnetic field. Only Voyager I can detect this.
- γ -ray has energy of MeV. This is known to be difficult to detect ('MeV gap'), resulting in usage of only old experiments (COMPTEL, INTEGRAL).
- We assume NFW profile considering these uncertainties at 2σ .

surviving from all mentioned constraints and conditions.

• COSI(2 years observations of the GC ($|\theta| < 20^{\circ}$) improves sensitivity by several orders of magnitude.

Indirect detection (Observation of SM particles produced by DM annihilations in the universe)

Ex. Forbidden DM

- As an example, we consider SS model, whose Lagrangian is following.
- DM, MED, Higgs.
- annihilates into a pair of MED. MED subsequently decays into SM particles.

signal to the COSI sensitivities.

• MED mixes with Higgs and behaves as a light Higgs boson. **Jinteractions among**

• We parametrize $m_{\rm DM} \leq m_{\rm MED} \equiv m_{\rm DM}(1 + v_{th}^2/8)$. DM with $v_{\rm DM} > (<) v_{th}$ can(cannot)

We find out viable parameter region and compare its prediction of the MeV γ -ray

Prediction of SS-F model

- COSI is expected to detect continuum γ -ray.
- COSI may probe line γ -ray with a more cuspy DM density profile.
- Direct detection is not effective due to the tiny y_e .
- Future accelerator KLEVER can detect some parameters.

S-channel (visible)~ p-wave+resonance

- MED mixes with Z boson. DM annihilates into ee via MED in s-channel.
- We parametrize $2m_{\rm DM} \gtrsim m_{\rm MED} \equiv 2m_{\rm DM}(1-\delta/8)$. As $v_{\rm DM}$ decrease, $\langle \sigma v \rangle$ enhances approaching the resonance, with cutoff, $\sqrt{\delta}$.

We find out viable parameter region and compare its prediction of the MeV γ -ray signal to the COSI sensitivities.

• As an example, we consider SV(DP) model, whose Lagrangian are following.

Prediction of SV(DP)-R(vis) model

- COSI is expected to detect continuum γ -ray.
- No $\gamma\gamma$: vector mediator
- Future direct detections have the potential to detect some points.
- Future accelerator can detect almost all of the parameters.

S-channel (invisible)

- As an example, we consider SV(DP) model, whose Lagrangian are following.
- MED mixes with Z boson. DM annihilates into ee via MED in s-channel.
- resonance.

$$\begin{aligned} \mathscr{L} \ni \mathscr{L}_{\mathrm{SM}} + \left| (\partial_{\mu} + ig_{V}q_{\varphi}V_{\mu})\varphi \right|^{2} - m_{\varphi}^{2}|\varphi|^{2} - g_{V} \\ - \frac{1}{4}(V_{\mu\nu})^{2} + \frac{1}{2}M_{V}^{2}(V_{\mu})^{2} - \frac{\xi}{2}V_{\mu\nu}B^{\mu\nu} \end{aligned}$$

• We parametrize $2m_{\rm DM} \lesssim m_{\rm MED} \equiv 2m_{\rm DM}(1+v_R^2/8)$. At $v_{\rm DM} = v_{th}$, the annihilation the

Prediction of SV(DP)-R(inv) model

Direct detection

- COSI is expected to detect continuum γ -ray.
- Future accelerator can detect visible mediator.
- Future accelerator cannot detect invisible mediator.

• Direct detection is not effective due to the suppression of t,u-channel diagrams.

S-channel(invisible)

- We consider $SV(U(1)_{R})$ model, which is similar to the SV(DP) model. • Charge asignments are $q_l = 0$, $q_q = 1/3$. • Strong line signal is expected by the $\pi^0\gamma$ annihilation mode.

signal to the COSI sensitivities.

d compare its prediction of the MeV γ -ray

Prediction of SV(U(1)_R)-R(inv) model

 Indirect detection (continuum)

 Indirect detection (line)

- COSI cannot efficiently detect continuum γ -ray.
- COSI is expected to detect also line γ -ray in $\pi^0 \gamma$ modes.
- Future accelerator KLEVER can detect some points.

• Direct detection is not effective due to the suppression of t,u-channel diagrams.

Summary

- Light Thermal DM is getting more and more attention. Many experiments are being
- and resonance) are viable.
- We for the first time calculated the sensitivities and detectability of these regions.

	SS	FS	SV(DP)	FV(DP)	SV(B)	FV(B)
Bulk	-	\bigcirc		_		
Forbidden	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Resonance(vis)			\bigcirc			
Resonance(inv)				\bigcirc	\bigcirc	

planed to search for them, and **COSI** is the only approved indirect detection experiments. • We for the first time consider all possible light thermal DM models. **3**Many constraints different from WIMP case, and only regions with velocity dependent $\langle \sigma v \rangle$ (Bulk, forbidden

○ ∃ surviving parameters

- COSI can detect continuum γ -ray
- COSI can detect continuum and line γ -ray

