Mediator decay through mixing with degenerate spectrum Ayuki Kamada, Takumi Kuwahara, Shigeki Matsumoto, and <u>Yuki Watanabe</u>

I.Introduction

- •Dark sector (DS) particles are usually assumed to feebly interact with SM
- Decays of DS into SM are highly suppressed
- On the other hand, when DS are degenerate with SM in mass, they are **mixed**
- unsuppressed decay due to the large mixing angle
- Feeble interaction but degenerate in SM with large decay width (e.g.mesons)

III.Mediator decay at vector resonance We take **3 examples** of the partner of the dark photon: •**Z boson**: $\Gamma_Z / m_Z \cong 0.03$ "middle" width • ρ meson: $\Gamma_\rho / m_\rho \cong 0.2$ "large width" • $\mu^-\mu^+$ bound state: $\Gamma_V / m_V \cong 10^{-12}$ "small width"

Decay widths near the resonance

DS with large decay width into SM ??

What is the boundary for suppressed / unsuppressed behavior of the decay width of a mediator particle ?

II.Mediator particle decay

We use the dark photon model $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu} + \frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$ and evaluate its decay into SM using **3 methods** when its mass being near some vector resonance <u>Classical method</u>

The decay width at the tree-level in the mass basis, where all kinetic and mass mixing are removed by the field redefinition.

Unsuppressed decay width when the dark

photon mass are degenerate with the partner *Mass insertion method*

Using the mass mixing term as an interaction at once.

Suppressed decay width even for large mixing

 $A' \sim \otimes \sim V$

Pole method

Decay width determined by **the pole of scattering amplitudes** and propagators have to be russumed.

 $\sum_{X} \otimes \sum_{X} = \sum_{X} + \sum_{X} \otimes \sum_{Y} + \sum_{X} \otimes \sum_{Y} + \sum_{X} \otimes \sum_{Y} \otimes \sum_{X} + \sum_{X} \otimes \sum_{Y} \otimes \sum_{X} \otimes \sum_{X$ $+ \sim V_X \otimes V_Y + \sim V_Y \otimes V_Y$ $\sim V \otimes \sim V =$

We find the following criteria;

For the mixing partner V, whose effective interaction with the dark photon are given by $\mathcal{L}_{int} \supset \epsilon_{eff} F'_{\mu\nu} V^{\mu\nu}$

 10^{-12}

$$\begin{cases} \epsilon_{\rm eff} \geq \Gamma_V / m_V \\ \epsilon_{\rm eff} \leq \Gamma_V / m_V \end{cases} \Longrightarrow \begin{cases} \text{Classical} \\ \text{Mass - insertion} \end{cases}$$

well approximates the pole width

Critical mixings for various vector mesons

Table 1: Mass, total decay width, and branching ratio to e^-e^+ of mesons, and the critical value of the kinetic mixing.

Meson	Mass (MeV)	Width (MeV)	Branching ratio to e^-e^+	critical mixing $\epsilon_{\rm cr}$
$\rho(770)$	775.26	149.1	4.72×10^{-5}	$9.53 imes 10^{-1}$
$\omega(782)$	782.66	8.68	$7.38 imes 10^{-5}$	$5.26 imes 10^{-1}$
$\phi(1020)$	1019.461	4.249	2.979×10^{-4}	1.81×10^{-1}
$J/\psi(1S)$	3090.9	9.26×10^{-2}	5.971×10^{-2}	1.10×10^{-3}
$\psi(2S)$	3686	2.94×10^{-1}	$7.93 imes 10^{-3}$	4.95×10^{-3}
$\psi(3770)$	3773.7	27.2	9.6×10^{-6}	8.04×10^{-1}
$\psi(4040)$	4039	80	1.07×10^{-5}	9.05×10^{-1}
$\psi(4160)$	4191	70	$6.9 imes 10^{-6}$	$9.25 imes 10^{-1}$
$\Upsilon(1S)$	9460	$5.4 imes 10^{-2}$	$2.38 imes 10^{-2}$	$7.64 imes 10^{-4}$
$\Upsilon(2S)$	10023	3.198×10^{-2}	1.91×10^{-2}	$6.38 imes 10^{-4}$
$\Upsilon(3S)$	10355	2.032×10^{-2}	2.18×10^{-2}	4.68×10^{-4}
$\Upsilon(4S)$	10579.4	20.5	1.57×10^{-5}	4.81×10^{-1}
$\Upsilon(10860)$	10885.2	37	8.3×10^{-6}	7.67×10^{-1}
$\Upsilon(11020)$	11000	24	$5.4 imes 10^{-6}$	$7.04 imes 10^{-1}$

$\widehat{Y} = Y + \widehat{Y} + \widehat{Y$

Diagonalization beyond tree level

IV.Summary and discussion

- We analyze the correct behavior of the decay width of the dark photon when its mass are degenerate with SM particles by introducing 3 methods for decay width.
- We found the criteria that determines the precise way to approximate the decay width of mediators.
- Application to scalar mediators in mass range 300MeV to 2 GeV are interesting due to scalar mesons.
- We may predict indirect signals for scalar mediators in such mass range.