IV.Summary and discussion

- We analyze the correct behavior of the decay width of the dark photon when its mass are degenerate with SM particles by introducing 3 methods for decay width.
- We found the criteria that determines the precise way to approximate the decay width of mediators.
- Application to scalar mediators in mass range 300MeV to 2 GeV are interesting due to scalar mesons.
- We may predict indirect signals for scalar mediators in such mass range.

Mediator decay through mixing with degenerate spectrum Ayuki Kamada, Takumi Kuwahara, Shigeki Matsumoto, and Yuki Watanabe

I.Introduction

- •**Dark sector (DS)** particles are usually assumed to **feebly interact** with SM
- \rightarrow Decays of DS into SM are highly **suppressed**
- On the other hand, when DS are degenerate with SM in mass, they are **mixed**
- **unsuppressed** decay due to the large mixing angle
- Feeble interaction but degenerate in SM with large decay width (e.g.mesons)

III.Mediator decay at vector resonance We take **3 examples** of the partner of the dark photon: •**Z** boson: Γ _z / m _z \cong 0.03 "middle" width • ρ meson: $\Gamma_{\rho}/m_{\rho} \cong 0.2$ "large width" • $\mu^- \mu^+$ bound state: $\Gamma_V / m_V \approx 10^{-12}$ "small width"

We use the dark photon model
 $\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{DS} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \frac{\epsilon}{2 \cos \theta_W} F'_{\mu\nu} B^{\mu\nu}$ and evaluate its decay into SM using **3 methods** when its mass being near some vector resonance *Classical method*

II.Mediator particle decay

What is the boundary for suppressed / unsuppressed behavior of the decay width of a mediator particle ?

The decay width at the tree-level in the mass basis, where all kinetic and mass mixing are removed by the field redefinition.

> *For the mixing partner V, whose effective interaction with the dark photon are given by* $\mathcal{L}_{int} \supset \epsilon_{eff} F'_{\mu\nu} V^{\mu\nu}$

 10^{-12}

$$
\left\{ \epsilon_{\text{eff}} \geq \Gamma_V / m_V \right\} \Longrightarrow \left\{ \text{Classical} \atop \text{Kass}-\text{insertion} \right\}
$$

Using the mass mixing term as an interaction at once.

Mass insertion method photon mass are degenerate with the partner

Unsuppressed decay width when the dark

Suppressed decay width even for large mixing

 $A' \sim \otimes \sim V$

Pole method

 A' municipality

Decay width determined by **the pole of scattering amplitudes** and propagators have to be russumed.

 $\gamma_Y \otimes \gamma_Y \otimes \gamma_{\mathcal{X}} = \gamma_Y \otimes \gamma_Y \otimes \gamma_{\mathcal{X}} + \gamma_Y \otimes \gamma_{\mathcal{X}} \otimes \gamma_{\mathcal{X}} + \gamma_Y \otimes \gamma_Y \otimes \gamma_{\mathcal{X}}$ $+\gamma_Y^{\sim}\bigcirc\gamma_Y^{\sim}\bigcirc\gamma_Y^{\sim}+\gamma_Y^{\sim}\bigcirc\gamma_Y^{\sim}\bigcirc\gamma_Y^{\sim}$ $\sim_Y\!\!\infty\!\!\infty\!\!\infty\!\!\infty\!\!\infty\!=\!$

We find the following criteria;

Diagonalization beyond tree level

Decay widths near the resonance

DS with large decay width into SM ??

Critical mixings for various vector mesons

Table 1: Mass, total decay width, and branching ratio to e^-e^+ of mesons, and the critical value of the kinetic mixing.

Meson	Mass (MeV)	Width (MeV)	Branching ratio to e^-e^+	critical mixing ϵ_{cr}
$\rho(770)$	775.26	149.1	4.72×10^{-5}	9.53×10^{-1}
$\omega(782)$	782.66	8.68	7.38×10^{-5}	5.26×10^{-1}
$\phi(1020)$	1019.461	4.249	2.979×10^{-4}	1.81×10^{-1}
$J/\psi(1S)$	3090.9	9.26×10^{-2}	5.971×10^{-2}	1.10×10^{-3}
$\psi(2S)$	3686	2.94×10^{-1}	7.93×10^{-3}	4.95×10^{-3}
$\psi(3770)$	3773.7	27.2	9.6×10^{-6}	8.04×10^{-1}
$\psi(4040)$	4039	80	1.07×10^{-5}	9.05×10^{-1}
$\psi(4160)$	4191	70	6.9×10^{-6}	9.25×10^{-1}
$\Upsilon(1S)$	9460	5.4×10^{-2}	2.38×10^{-2}	7.64×10^{-4}
$\Upsilon(2S)$	10023	3.198×10^{-2}	1.91×10^{-2}	6.38×10^{-4}
$\Upsilon(3S)$	10355	2.032×10^{-2}	2.18×10^{-2}	4.68×10^{-4}
$\Upsilon(4S)$	10579.4	20.5	1.57×10^{-5}	4.81×10^{-1}
$\Upsilon(10860)$	10885.2	37	8.3×10^{-6}	7.67×10^{-1}
$\Upsilon(11020)$	11000	24	5.4×10^{-6}	7.04×10^{-1}

$$
\underset{Y}{\rightsquigarrow} \text{Supp} \text{Sup
$$

well approximates the pole width